REPRODUCING KERNELS, DE BRANGES-ROVNYAK
SPACES, AND NORMS OF WEIGHTED
COMPOSITION OPERATORS

MICHAEL T. JURY

ABSTRACT. We prove that the norm of a weighted composition
operator on the Hardy space H? of the disk is controlled by the
norm of the weight function in the de Branges-Rovnyak space as-
sociated to the symbol of the composition operator. As a corollary
we obtain a new proof of the boundedness of composition operators
on H?, and recover the standard upper bound for the norm. Sim-
ilar arguments apply to weighted Bergman spaces. We also show
that the positivity of a generalized de Branges-Rovnyak kernel is
sufficient for the boundedness of a given composition operator on
the standard functions spaces on the unit ball.

If H is a vector space of functions defined on a set X, given a function
b: X — X one can define a composition operator C, by (Cyf)(z) =
f(b(z)). When H is the Hardy space H*(D), the Hilbert space of
functions analytic in the open unit disk D equipped with the norm

2 1 i0y |2
IFIF = sup o— | |f(re®)[" db,
0<r<1 2T Jo
the composition operator )}, is bounded for every analytic map b : D —
D, and

1+ [b(0)]\"?
|Coll < (m) .

The standard proof of these facts appeals to the Littlewood subordi-
nation principle in harmonic analysis; see [4].

In this note we give a proof of the boundedness of Cj on H? which
does not use the Littlewood subordination principle, only reproducing
kernel methods. The idea behind the proof is to express the bound-
edness of certain weighted composition operators T+C} in terms of the
positivity of kernels related to b and H?, in particular the kernels of
the de Branges-Rovnyak spaces. The boundedness of (', is obtained as
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a corollary by a suitable choice of the weight function f. This proof
is easily adapted to prove boundedness, with norm estimates, of C
on the standard weighted Bergman spaces. We also obtain a sufficient
condition for boundedness of composition operators on the standard
scale of Hilbert function spaces on the unit ball of C".

We first fix some notation. For z,w € D, the Szegd kernel k(z,w) is
defined by

1

1—wz’

ky(2) = k(z,w) =

k is the reproducing kernel for the Hardy space H?, i.e. for every
f € H? and every w € D we have (f, k,) = f(w). Let b € H*(D) with
16l < 1, to avoid trivialities we assume b is non-constant. The de
Branges-Rovnyak space H(b) is the reproducing kernel Hilbert space
on D with kernel
1 — b(w)b(2)

1—wz

kb (z,w) =

Equivalently, H(b) may be defined as the linear subspace of H? equal
to the range of the operator (I — TbTb*)l/Q, equipped with the range
norm. The standard references for de Branges-Rovnyak spaces are the
books [6] and [9].

For any function f : D — C, there is a densely defined operator 77 on
H?, defined on the Szegé kernel ky, by Ttk, = f(w)k, and extended
linearly. (The adjoint notation here is only formal; if f € H® then
T} is bounded and equal to the adjoint of the Toeplitz operator Ty.)

We define the operator C}; on the linear span of the Szegd kernels by
Ciky = k). If f € H* and fob e H?, then

<be7 kw> = <f ob, kw> = f(b(w)) = <f7 kb(w)) = <f7 C;kw>a

so the operator Cf is the formal adjoint of the composition operator
Ch, so to prove C} is bounded it suffices to prove that C} is bounded.
It then follows that Cj is the genuine adjoint of Cj.

Theorem 0.1. For any f € H(b), the operator Cy'T} is bounded on
H? and ||CETHI < |1 f |l mrey

Proof. We assume || f||ge) = 1; the general case follows by rescaling.
Put fo = f and choose unlt vectors fi, fo,... such that (f)m>0 is an
orthonormal basis for H(b). Then

AP LON o e

m>0
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which we rewrite as

(0.1) _me%z

m>0 b(w)b(z)
The kernel
1 flw Fn(w) fm
0.2
( ) 1-— Ez 1 — b mZ;l b )

is therefore positive semideﬁnite, being a sum of positive semidefinite
kernels. Since we can rewrite the left-hand side as

(Eus kz) = (C;Trky, CiTHE,)

the positivity means that for any n distinct points wy,...w, in D and
complex numbers ¢y, ... c,, if we define h € H? by
n
he) = 3 ik (2
i=1
we then have

0 < Z Cic_j<kwi7 kwj> - Z Cl§<CZT;kwn C;T;;kwj>
ig=1 ij=1
or ||CyTrh|[> < ||h||*. Since such h are dense in H?, it follows that
G TFI < 1. O

As a corollary we can now prove that Cj is bounded on H?. We
also note in the proof of Theorem 0.1 one could deduce the positivity
of the left-hand side of equation (0.2) directly from the assumption
| fllz@y < 1 (without mention of an orthonormal basis); however the
proof given allows us to obtain Corollary 0.3 below.

Corollary 0.2. For any analytic map b : D — D, the composition
operator Cy is bounded on H?, and

1+ [b(0)]\ "2
|G| < (m) .

Proof. If b is constant then the boundedness is trivial. For b non-
constant, we apply Theorem 1 to the function

f(2) = kg(2) = 1 = b(0)b(2).
the reproducing kernel for H(b) at the origin. We have ||f||n@p) =
(1 — [b(0)]?)"/2, and we observe that f and 1/f are both bounded and
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analytic in D, since [|b]||loc < 1 and [b(0)] < 1. It follows that the
Toeplitz operator T} is bounded and invertible with inverse T1*/ s> and

||T1*/f|| = |11/ flls < (1 —|b(0)])"*. Thus

G Nl = N 7Ty | < NCTTFIIT 4
< [/ flle

It is well known that the estimate obtained in this corollary is sharp
as b ranges over all self-maps b : D — D; by a result of Nordgren [8]
this bound is attained whenever b is an inner function. Also, it is clear
from the above proof that for any C, we have the norm estimate

(03) il < int {18/ 71l fllgy -

O

If we define T},, in the obvious way on the range of Cj, we also obtain
immediately from Theorem 0.1 the following summation identity:

Corollary 0.3. If (fm)m>o0 is any orthonormal basis for H(b), then
Y T, CCT; =1
m>0

where the sum converges in the strong operator topology.

Proof. Equation (0.1) shows that the sum

(0.4) > T, GCiT,

m>0

converges to I in the weak operator topology. In fact, the sum con-
verges in the strong operator topology: subtracting the first N terms
of the sum on the right hand side of (0.1) from both sides of that equa-
tion shows that the partial sums of (0.4) form an increasing sequence
of positive operators bounded above (by I), so the series is strongly
convergent. 0]

Similar arguments can be used to prove the boundedness of C} on
the standard weighted Bergman spaces A% when « is an integer: for
a > 1 we consider the spaces A2 with reproducing kernels

1

(1—zw)>

kE*(z,w) =
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When o = 1 this is of course the Szegé kernel; for o« > 1 this is the
reproducing kernel for the space of analytic functions in I with norm

112, = / PR - [2P)* dA().

For b a self map of the disk as before, we define for integers a > 1 the
space A(b, ) to be the space with reproducing kernel

£ (2 ) — (1 - b(z)b(w))

1—zw

a—1

™

This kernel is positive since it is the a-fold Schur product of %' = k?
with itself. Letting M; denote multiplication by f, the same arguments
used in the Hardy space prove that if f € A(b, &) then M;C, is bounded
on A% and

(0.5) IMColl < 11| ago.-

Applying this inequality to the reproducing kernel for A(b, ) at the
origin gives the estimate

1+ [5(0)]\*/*
IGl < (—1 i |b(0)|>

and more generally we obtain as in (0.3)

< 1 .
Icll < int {10/ 1L}

It is well known that on the standard Hilbert function spaces on the
unit ball B" C C”, there are holomorphic maps b : B® — B” which
do not give bounded composition operators [2, 7]. It is therefore worth
understanding why the proof above does not generalize to these spaces.
We consider the spaces H , for a > 1, which we define for each o to
be the space with reproducing kernel

1
(1 - <Z, w))a
where (-, -) denotes the standard inner product in C"*. When « = n this
is the Hardy space on B”, and when o« = n+1 this is the Bergman space.

If we attempt to adapt the single-variable argument to this setting, we
are led to consider in place of the de Branges-Rovnyak kernel the kernel

=SR]

However, even when « is an integer, this kernel is not positive semidef-
inite for all holomorphic maps b : B® — B". (When « = 1, this occurs

K%(z,w) =
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because there exist holomorphic functions on B™ bounded by 1 that do
not act as contractive multipliers of the the Hilbert function space Hﬁ,ﬁ
see e.g. [1, Chapter 8].) Nonetheless, whenever this kernel is positive,
the composition operator Cj is bounded on Hg’a and we obtain a norm
estimate analogous to the one-variable case. This could be proved by
a modification of the argument in the one variable case, except for one
complication: in the proof of Corollary 2, we used the fact the the
reciprocal of the reproducing kernel for H(b) induces a bounded mul-
tiplication operator on H?; this follows simply because the reciprocal
of the kernel is bounded holomorphic function. However, on the ball
(when o < n) the boundedness in the supremum norm is not sufficient
to give a bounded multiplication operator, so an extra argument, pro-
vided by the following lemma, is necessary. For a holomorphic map
b : B" — B", we write b = (by,...b,) for the coordinate functions
of b, so each b; is a holomorphic map from B" to the unit disk and
Sor b(2)|* < 1 for all z € B". Finally, for any ¢ = (¢1,...¢,) € C"
we write |¢] = (31, |2

Lemma 0.4. Let b = (by...b,) be a holomorphic map from B" into
itself and let o« > 1. If the kernel
1 —(b(z), b(M)))a

N e

15 positive semidefinite on B™, then each coordinate function b; is a
contractive multiplier of H. . Moreover the function

1 —a
T (1 - (b(2),b(0)))

is a bounded multiplier of HY , of norm at most (1 — |b(0)])~*.

Proof. Fix o > 1 and let M, denote the operator of multiplication by
b; on Hfm. Assuming K% is positive, the kernel
1 <b(z)7b(w)> — 1 — Kb’a(z,w)
1= (zw)* (1= (b(z),b(w)))*"
is positive semidefinite, since it is the Schur product of the positive
kernels K% and (1 — (b(z),b(w)))'=®. By a standard reproducing
kernel argument, this kernel is positive if and only if the operator I —
> iy My, M is positive. Thus each M, is contractive.
To prove the second statement, we first observe that for each w € B”,

| 5w M| < o)
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To see this, note that the operator inequality

J—iMbng; >0

1=1

may be interpreted as saying the column operator (Mpy, --- M, )* is
contractive from H , to the direct sum of n copies of this space with
itself; and similarly for the row operator (M,, --- M, ) in the reverse
direction. Since for any ¢ = (¢q,...¢,) € C", the column operator
(erd -+ ¢, )T has norm |c|, we have

I Zb )My, || = [[(M, - - - My, ) (br(w)I - - b (w) )| < [b(w)].

The second claim of the lemma can now be proved by expanding the op-
erator (I — 3" b;(0)M,,)~® as a power series in 3", b;(0)M,,, which
is norm Convergent since || 320, 5:(0) M, || < [b(0)] < 1. O

Theorem 0.5. Let b : B® — B” be a holomorphic map and let o« > 1.
Suppose the kernel K®®(z,w) is positive semidefinite on B", and let
H? (b) denote the Hilbert space with kernel K. Then for all f €
H? (), the weighted composition operator MyCy is bounded on HY
and

M Col| < (112 000
Moreover Cy, is bounded on HTZW and

1+ [b(0)\
Il < (—1 i ‘b(o)‘) .

Proof. The first inequality is proved exactly as in the one-variable case.
Similarly, by virtue of Lemma 0.4 the norm estimate for C), follows from
the estimate for the weighted operator applied to f(z) = K»%(2,0) as
in Corollary 0.2. O

For certain values of « (e.g v = n, the Hardy space) there are known
necessary and sufficient conditions for the boundedness of C, on H7 ,,
given in terms of Carleson measures [7]. Theorem 0.5 tells us that
positivity of K> is sufficient for the boundedness of Cy on Hy, ,. In the
one-variable Hardy space, this condition is also necessary: the symbol
of a bounded composition operator on H? must belong to the unit ball
of H*, which coincides with the unit ball of the multiplier algebra of
H?; the positivity of the de Branges-Rovnyak kernel follows. However

in general the positivity of K is not necessary for the boundedness of
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Cp. For example, when n = 2 and o = 1 it can be shown by standard
estimates that for
br(21, 22) = (2121 29,0)

the composition operator Cjp is bounded when 0 < r < 1 and un-
bounded when r = 1. If the kernels K°! were positive for all » < 1
then by taking pointwise limits X! would be positive as well, which
by Theorem 0.5 would make Cj, bounded, a contradiction. Thus K
is non-positive for r sufficiently close to 1.

In the ball, when o = 1, the positivity of K*' is equivalent to the
statement that the tuple (M,,,... M, ) is a row contraction. Recently,
S. Shimorin [10] has proved that the positivity of K®! is essentially
equivalent to a commutant lifting theorem between Hil and the space
with reproducing kernel (1— (b(z),b(w)))~*. Also, it can be shown that
the linear fractional maps of the unit ball introduced in [5] induce row
contractions; we thus obtain a new proof of the boundedness of linear
fractional composition operators on the ball, with norm estimates. This
will be discussed in detail in a separate paper.

Finally, returning to Theorem 1, it is clear f € H(b) is only a suf-
ficient condition for the boundedness of T;C, on H?, not a necessary
one; e.g. TyCy is bounded for all f € H* but in general H(b) does not
contain H*. It follows from the theorem that 7+C) is bounded for all
f in the linear span of H* - H(b); however it is not clear how close this
comes to describing all bounded weighted composition operators (with
analytic weights). In particular, we do not know if this set of weights
is “dense” in the set of all weights giving bounded operators, in the
following sense:

Question 0.6. Given f € H? and b in the unit ball of H>® such
that T¢C}, is bounded on H?, and given € > 0, does there exists g €
span (H* - H(b)) such that ||Ts—,Cl|| < €?

A necessary and sufficient condition for the boundedness of T}C},
can be given in terms of Carleson measures [3, Theorem 2.2], but the
relationship between such conditions and the H(b) spaces is not imme-
diately clear.
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