C^{*}-ALGEBRAS GENERATED BY GROUPS OF COMPOSITION OPERATORS

MICHAEL T. JURY

Abstract

We compute the C^{*}-algebra generated by a group of composition operators acting on certain reproducing kernel Hilbert spaces over the disk, where the symbols belong to a non-elementary Fuchsian group. We show that such a C^{*}-algebra contains the compact operators, and its quotient is isomorphic to the crossed product C^{*}-algebra for the action of the group on the boundary circle. In addition we show that the C^{*}-algebras obtained from composition operators acting on a natural family of Hilbert spaces on the disk are in fact isomorphic, and also determine the same Ext-class, which can be related to known extensions of the crossed product.

1. Introduction

The purpose of this paper is to begin a line of investigation suggested by recent work of Moorhouse et al. [12, 8, 7]: to describe, in as much detail as possible, the C^{*}-algebra generated by a set of composition operators acting on a Hilbert function space. In this paper we consider a class of examples which, while likely the simplest from the point of view of composition operators, nonetheless produces C^{*}-algebras which are of great interest both intrinsically and for applications. In fact, the C^{*}-algebras we obtain are objects of current interest among operator algebraists, which appear in the study of hyperbolic dynamics [5], noncommutative geometry [4], and even number theory [11].

Let f belong to the Hardy space $H^{2}(\mathbb{D})$. For an analytic function γ : $\mathbb{D} \rightarrow \mathbb{D}$, the composition operator with symbol γ is the linear operator defined by

$$
\left(C_{\gamma} f\right)(z)=f(\gamma(z))
$$

In this paper, we will be concerned with the C^{*}-algebra

$$
\mathcal{C}_{\Gamma}=C^{*}\left(\left\{C_{\gamma}: \gamma \in \Gamma\right\}\right)
$$

[^0]where Γ is a discrete group of (analytic) automorphisms of \mathbb{D} (i.e. a Fuchsian group). For reasons to be described shortly, we will further restrict ourselves to non-elementary Fuchsian groups (i.e. groups Γ for which the Γ-orbit of 0 in \mathbb{D} accumulates at at least three points of the unit circle \mathbb{T}.) Our main theorem shows that \mathcal{C}_{Γ} contains the compact operators, and computes the quotient $\mathcal{C}_{\Gamma} / \mathcal{K}$:
Theorem 1.1. Let Γ be a non-elementary Fuchsian group, and let \mathcal{C}_{Γ} denote the C^{*}-algebra generated by the set of composition operators on H^{2} with symbols in Γ. Then there is an exact sequence
\[

$$
\begin{equation*}
0 \longrightarrow \mathcal{K} \xrightarrow{\iota} \mathcal{C}_{\Gamma} \xrightarrow{\pi} C(\mathbb{T}) \times \Gamma \longrightarrow 0 \tag{1.1}
\end{equation*}
$$

\]

Here $C(\mathbb{T}) \times \Gamma$ is the crossed product C^{*}-algebra obtained from the action α of Γ on $C(\mathbb{T})$ given by

$$
\alpha_{\gamma}(f)(z)=f\left(\gamma^{-1}(z)\right)
$$

(Since the action of Γ on \mathbb{T} is amenable, the full and reduced crossed products coincide; we will discuss this further shortly.) We will recall the relevant definitions and facts we require in the next section.

There is a similar result for the C^{*}-algebras

$$
\mathcal{C}_{\Gamma}^{n}=C^{*}\left(\left\{C_{\gamma} \in \mathcal{B}\left(A_{n}^{2}\right) \mid \gamma \in \Gamma\right\}\right),
$$

acting on the family of reproducing kernel Hilbert spaces A_{n}^{2} (defined below), namely there is an extension

$$
\begin{equation*}
0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{C}_{\Gamma}^{n} \longrightarrow C(\mathbb{T}) \times \Gamma \longrightarrow 0 \tag{1.2}
\end{equation*}
$$

and for each n this extension is strongly equivalent to the extension (1.1). It follows that each of these extensions represents the same element of the Ext group $\operatorname{Ext}(C(\mathbb{T}) \times \Gamma, \mathcal{K})$, and that \mathcal{C}_{Γ} and \mathcal{C}_{Γ}^{n} are isomorphic as C^{*}-algebras.

Finally, we will compare the extension determined by \mathcal{C}_{Γ} to two other recent constructions of extensions of $C(\mathbb{T}) \times \Gamma$. We show that the Ext-class of \mathcal{C}_{Γ} coincides with the class of the Γ-equivariant Toeplitz extension of $C(\mathbb{T})$ constructed by J. Lott [10], and differs from the extension of crossed products by co-compact groups constructed by H. Emerson [5]. Finally we show that this extension in fact gives rise to a Γ-equivariant $K K_{1}$-cycle for $C(\mathbb{T})$ which also accords with the construction in [10].

2. Preliminaries

We will consider C^{*}-algebras generated by composition operators which act on a family of reproducing kernel Hilbert spaces on the unit
disk. Specifically we will consider the spaces of analytic functions A_{n}^{2}, where A_{n}^{2} is the space with reproducing kernel

$$
k^{n}(z, w)=(1-z \bar{w})^{n}
$$

When $n=1$ this space is the Hardy space H^{2}, and its norm is given by

$$
\|f\|^{2}=\lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta
$$

For $n \geq 2$, the norm on A_{n}^{2} is given by

$$
\|f\|^{2}=\frac{n-1}{\pi} \int_{\mathbb{D}}|f(z)|^{2}\left(1-|z|^{2}\right)^{n-2} d A(z)
$$

An analytic function $\gamma: \mathbb{D} \rightarrow \mathbb{D}$ defines a composition operator C_{γ} on A_{n}^{2} by

$$
\left(C_{\gamma} f\right)(z)=f(\gamma(z))
$$

In this paper, we will only consider cases where γ is a Möbius transformation; in these cases C_{γ} is easily seen to be bounded, by changing variables in the integrals defining the norms. An elementary calculation shows that if $\gamma: \mathbb{D} \rightarrow \mathbb{D}$ is analytic, then

$$
C_{\gamma}^{*} k_{w}(z)=k_{\gamma(w)}(z)
$$

where k is any of the reproducing kernels k^{n}.
We recall here the definitions of the full and reduced crossed product C^{*}-algebras; we refer to [13] for details. Let a group Γ act by homeomorphisms on a compact Hausdorff space X. This induces an action of Γ on the commutative C^{*}-algebra $C(X)$ via

$$
(\gamma \cdot f)(x)=f\left(\gamma^{-1} \cdot x\right)
$$

The algebraic crossed product $C(X) \times$ alg Γ consists of formal finite sums $f=\sum_{\gamma \in \Gamma} f_{\gamma}[\gamma]$, where $f_{\gamma} \in C(X)$ and the $[\gamma]$ are formal symbols. Multiplication is defined in $C(X) \times a l g$ by

$$
\left(\sum_{\gamma \in \Gamma} f_{\gamma}[\gamma]\right)\left(\sum_{\gamma \in \Gamma} f_{\gamma}^{\prime}\left[\gamma^{\prime}\right]\right)=\sum_{\delta \in \Gamma} \sum_{\gamma \gamma^{\prime}=\delta} f_{\gamma}\left(\gamma \cdot f_{\gamma^{\prime}}^{\prime}\right)[\delta]
$$

For $f=\sum_{\gamma} f_{\gamma}[\gamma]$, define $f^{*} \in C(X) \times_{\text {alg }} \Gamma$ by

$$
f^{*}=\sum_{\gamma \in \Gamma}\left(\gamma \cdot \overline{f_{\gamma^{-1}}}\right)[\gamma]
$$

With this multiplication and involution, $C(X) \times{ }_{\text {alg }} \Gamma$ becomes a *algebra, and we may construct a C^{*}-algebra by closing the algebraic crossed product with respect to a C^{*}-norm.

To obtain a C^{*}-norm, one constructs $*$-representations of $C(X) \times{ }_{a l g} \Gamma$ on Hilbert space. To do this, we first fix a faithful representation π of $C(X)$ on a Hilbert space \mathcal{H}. We then construct a representation σ of the algebraic crossed product on $\mathcal{H} \otimes \ell^{2}(\Gamma)=\ell^{2}(\Gamma, \mathcal{H})$ as follows: define a representation $\tilde{\pi}$ of $C(X)$ by its action on vectors $\xi \in \ell^{2}(\Gamma, \mathcal{H})$

$$
(\tilde{\pi}(f))(\xi)(\gamma)=\pi(f \circ \gamma) \xi(\gamma)
$$

Represent Γ on $\ell^{2}(\Gamma, \mathcal{H})$ by left translation:

$$
(U(\gamma))(\xi)(\eta)=\xi\left(\gamma^{-1} \eta\right)
$$

The representation σ is then given by

$$
\sigma\left(\sum f_{\gamma}[\gamma]\right)=\sum \tilde{\pi}\left(f_{\gamma}\right) U(\gamma)
$$

The closure of $C(X) \times_{\text {alg }} \Gamma$ with respect the norm induced by this representation is called the reduced crossed product of Γ and $C(X)$, and is denoted $C(X) \times_{r} \Gamma$. The full crossed product, denote $C(X) \times \Gamma$, is obtained by taking the closure of the algebraic crossed product with respect to the maximal C^{*}-norm

$$
\|f\|=\sup _{\pi}\|\pi(f)\|
$$

where the supremum is taken over all $*$-representations π of $C(X) \times_{\text {alg }} \Gamma$ on Hilbert space. When Γ is discrete, $C(X) \times \Gamma$ contains a canonical subalgebra isomorphic to $C(X)$, and there is a natural surjective *homomorphism $\lambda: C(X) \times \Gamma \rightarrow C(X) \times_{r} \Gamma$.

The full crossed product is important because of its universality with respect to covariant representations. A covariant representation of the pair (Γ, X) consists of a faithful representation π of $C(X)$ on Hilbert space, together with a unitary representation u of Γ on the same space satisfying the covariance condition

$$
u(\gamma) \pi(f) u(\gamma)^{*}=\pi\left(f \circ \gamma^{-1}\right)
$$

for all $f \in C(X)$ and all $\gamma \in \Gamma$. If \mathcal{A} denotes the C^{*}-algebra generated by the images of π and u, then there is a surjective ${ }^{*}$-homomorphism from $C(X) \times \Gamma$ to \mathcal{A}; equivalently, any C^{*}-algebra generated by a covariant representation is isomorphic to a quotient of the full crossed product.

We now collect properties of group actions on topological spaces which we will require in what follows. Let a group Γ act by homeomorphisms on a locally compact Hausdorff space X. The action of Γ on X is called minimal if the set $\{\gamma \cdot x \mid \gamma \in \Gamma\}$ is dense in X for each $x \in X$, and called topologically free if, for each $\gamma \in \Gamma$, the set of points fixed by γ has empty interior.

Suppose now Γ is discrete and X is compact. Let $\operatorname{Prob}(\Gamma)$ denote the set of finitely supported probability measures on Γ. We say Γ acts amenably on X if there exists a sequence of weak-* continuous maps $b_{x}^{n}: X \rightarrow \operatorname{Prob}(\Gamma)$ such that for every $\gamma \in \Gamma$,

$$
\lim _{n \rightarrow \infty} \sup _{x \in X}\left\|\gamma \cdot b_{x}^{n}-b_{\gamma \cdot x}^{n}\right\|_{1}=0
$$

where Γ acts on the functions b_{x}^{n} via $\left(\gamma \cdot b_{x}^{n}\right)(z)=b_{x}^{n}\left(\gamma^{-1} \cdot z\right)$, and $\|\cdot\|_{1}$ denotes the l^{1}-norm on Γ.
Theorem 2.1. [2] Let Γ be a discrete group acting on a compact Hausdorff space X, and suppose that the action is topologically free. If \mathcal{J} is an ideal in $C(X) \times \Gamma$ such that $C(X) \cap \mathcal{J}=0$, then $\mathcal{J} \subseteq \mathcal{J}_{\lambda}$, where \mathcal{J}_{λ} is the kernel of the surjection of the full crossed product onto the reduced crossed product.
Theorem 2.2. $[15,16]$ If the Γ acts amenably on X, then the full and reduced crossed product C^{*}-algebras coincide, and this crossed product is nuclear.

In this paper we are concerned with the case $X=\mathbb{T}$ and $G=\Gamma$, a non-elementary Fuchsian group. The action of Γ on \mathbb{T} is always amenable, so by Theorem 2.2 the full and reduced crossed products coincide and $C(\mathbb{T}) \times \Gamma$ is nuclear.

We also require some of the basic terminology concerning Fuchsian groups. Fix a base point $z_{0} \in \mathbb{D}$. The limit set of Γ is the set accumulation points of the orbit $\left\{\gamma\left(z_{0}\right): \gamma \in \Gamma\right\}$ on the boundary circle; it is closed and does not depend on the choice of z_{0}. The limit set can be one of three types: it is either finite (in which case it consists of at most two points), a totally disconnected perfect set (hence uncountable), or all of the circle. In the latter case we say Γ is of the first kind, and of the second kind otherwise. If the limit set is finite, Γ is called elementary, and non-elementary otherwise.

Though we do not require it in this paper, it is worth recording that if Γ is of the first kind, then $C(\mathbb{T}) \times \Gamma$ is simple, nuclear, purely infinite, and belongs to the bootstrap category \mathcal{N} (and is clearly separable and unital). Hence, it satisfies the hypotheses of the Kirchberg-Phillips classification theorem, and is classified up to isomorphism by its (unital) K-theory $[9,1]$.

Finally, we recall briefly the basic facts about extensions of C^{*} algebras and the Ext functor. An exact sequence of C*-algebras

$$
\begin{equation*}
0 \longrightarrow B \longrightarrow E \longrightarrow A \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

is called an extension of A by B. (In this paper we consider only extensions for which $B=\mathcal{K}$, the C^{*}-algebra of compact operators on
a separable Hilbert space.) Associated to an extension of A by \mathcal{K} is a *-homomorphism τ from A to the Calkin algebra $\mathcal{Q}(\mathcal{H})=\mathcal{B}(\mathcal{H}) / \mathcal{K}(\mathcal{H})$; this τ is called the Busby map associated to the extension. Conversely, given a $\operatorname{map} \tau: A \rightarrow \mathcal{Q}(\mathcal{H})$ there is, via the pull-back construction, a unique extension having Busby map τ; we will thus speak of an extension and its Busby map interchangeably. Two extensions of A by \mathcal{K} with Busby maps $\tau_{1}: A \rightarrow \mathcal{Q}\left(\mathcal{H}_{1}\right)$ and $\tau_{2}: A \rightarrow \mathcal{Q}\left(\mathcal{H}_{2}\right)$ are strongly unitarily equivalent if there is a unitary $u: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ such that

$$
\begin{equation*}
\pi(u) \tau_{1}(a) \pi(u)^{*}=\tau_{2}(a) \tag{2.2}
\end{equation*}
$$

for all $a \in A$ (here π denotes the quotient map from $\mathcal{B}\left(\mathcal{H}_{1}\right)$ to $\mathcal{Q}\left(\mathcal{H}_{1}\right)$). We say τ_{1} and τ_{2} are unitarily equivalent, written $\tau_{1} \sim_{u} \tau_{2}$, if (2.2) holds with u replaced by some v such that $\pi(v)$ is unitary. An extension τ is trivial if it lifts to a $*$-homomorphism, that is there exists a $*$-homomorphism $\rho: A \rightarrow \mathcal{B}(\mathcal{H})$ such that $\tau(a)=\pi(\rho(a))$ for all $a \in A$. Two extensions τ_{1}, τ_{2} are stably equivalent if there exist trivial extensions σ_{1}, σ_{2} such that $\tau_{1} \oplus \sigma_{1}$ and $\tau_{2} \oplus \sigma_{2}$ are strongly unitarily equivalent; stable equivalence is an equivalence relation. If A is separable and nuclear (which will always be the case in this paper) then the stable equivalence classes of extensions of A by \mathcal{K} form an abelian group (where addition is given by direct sum of Busby maps) called $\operatorname{Ext}(A, \mathcal{K})$, abbreviated $\operatorname{Ext}(A)$. Finally, each element of $\operatorname{Ext}(A)$ determines an index homomorphism $\partial: K_{1}(A) \rightarrow \mathbb{Z}$ obtained by lifting a unitary in $M_{n}(A)$ representing the K_{1} class to a Fredholm operator in $M_{n}(E)$ and taking its Fredholm index.

3. The Extensions \mathcal{C}_{Γ} and \mathcal{C}_{Γ}^{n}

3.1. The Hardy space. This section is devoted to the proof of our main theorem, in the case of the Hardy space:
Theorem 3.1. Let Γ be a non-elementary Fuchsian group, and let \mathcal{C}_{Γ} denote the C^{*}-algebra generated by the set of composition operators on H^{2} with symbols in Γ. Then there is an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{K} \xrightarrow{\iota} \mathcal{C}_{\Gamma} \xrightarrow{\pi} C(\mathbb{T}) \times \Gamma \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

While the proof in the general case of A_{n}^{2} follows similar lines, we prove the H^{2} case first since it is technically simpler and illustrates the main ideas. The proof splits into three parts: first, we prove that \mathcal{C}_{Γ} contains the unilateral shift S and hence the compacts (Proposition 3.4). We then prove that the quotient $\mathcal{C}_{\Gamma} / \mathcal{K}$ is generated by a covariant representation of the topological dynamical system $(C(\mathbb{T}), \Gamma)$.

Finally we prove that the C^{*}-algebra generated by this representation is all of the crossed product $C(\mathbb{T}) \times \Gamma$.

We first require two computational lemmas.
Lemma 3.2. Let γ be an automorphism of \mathbb{D} with $a=\gamma^{-1}(0)$ and let

$$
f(z)=\frac{1-\bar{a} z}{\left(1-|a|^{2}\right)^{1 / 2}}
$$

Then

$$
C_{\gamma} C_{\gamma}^{*}=M_{f} M_{f}^{*}
$$

where M_{f} denotes the operator of multiplication by f.
Proof. It suffices to show

$$
\begin{equation*}
\left\langle C_{\gamma} C_{\gamma}^{*} k_{w}, k_{z}\right\rangle=\left\langle M_{f} M_{f}^{*} k_{w}, k_{z}\right\rangle \tag{3.2}
\end{equation*}
$$

for all z, w in \mathbb{D}. Since $C_{\gamma}^{*} k_{w}=k_{\gamma(w)}$ and $M_{f}^{*} k_{w}=\overline{f(w)} k_{w}$, (3.2) reduces to the well-known identity

$$
\begin{equation*}
\frac{1}{1-\gamma(z) \overline{\gamma(w)}}=\frac{(1-\bar{a} z)(1-a \bar{w})}{\left(1-|a|^{2}\right)(1-z \bar{w})} . \tag{3.3}
\end{equation*}
$$

Lemma 3.3. Let $\gamma(z)$ be an automorphism of \mathbb{D} and let $S=M_{z}$. Then

$$
M_{\gamma} C_{\gamma}=C_{\gamma} S
$$

Proof. For all $g \in H^{2}$,

$$
\begin{aligned}
\left(C_{\gamma} S\right)(g)(z) & =\gamma(z) g(\gamma(z)) \\
& =\left(M_{\gamma} C_{\gamma}\right)(g)(z)
\end{aligned}
$$

Proposition 3.4. Let Γ be a non-elementary Fuchsian group. Then \mathcal{C}_{Γ} contains the unilateral shift S.
Proof. Let Λ denote the limit set of Γ. Since Γ is non-elementary, there exist three distinct points $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \Lambda$. For each λ_{i} there exists a sequence $\left(\gamma_{n, i}\right)_{n=1}^{\infty} \subset \Gamma$ such that $\gamma_{n, i}(0) \rightarrow \lambda_{i}$. Let $a_{i}^{n}=\gamma_{n, i}(0)$. By Lemma 3.2,

$$
\left(1-\left|a_{i}^{n}\right|^{2}\right) C_{\gamma_{n, i}^{-1}} C_{\gamma_{n, i}^{-1}}^{*}=\left(1-\overline{a_{i}^{n}} S\right)\left(1-\overline{a_{i}^{n}} S\right)^{*}
$$

As $n \rightarrow \infty, a_{i}^{n} \rightarrow \lambda_{i}$ and the right-hand side converges to

$$
1-\bar{\lambda} S-\lambda S^{*}+S S^{*}
$$

in \mathcal{C}_{Γ}. Taking differences of these operators for different values of i, we see that $\Re\left[\mu_{1} S\right], \Re\left[\mu_{2} S\right] \in \mathcal{C}_{\Gamma}$, with $\mu_{1}=\overline{\lambda_{1}-\lambda_{2}}$ and $\mu_{2}=\overline{\lambda_{2}-\lambda_{3}}$. Note that since $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are distinct points on the circle, the complex numbers μ_{1} and μ_{2} are linearly independent over \mathbb{R}. We now show there exist scalars a_{1}, a_{2} such that

$$
a_{1} \Re\left[\mu_{1} S\right]+a_{2} \Re\left[\mu_{2} S\right]=S
$$

which proves the lemma. Such scalars must solve the linear system

$$
\left(\begin{array}{ll}
\mu_{1} & \mu_{2} \tag{3.4}\\
\mu_{1} & \overline{\mu_{2}}
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{1}{0}
$$

Writing $\mu_{1}=\alpha_{1}+i \beta_{1}, \mu_{2}=\alpha_{2}+i \beta_{2}$, a short calculation shows that

$$
\operatorname{det}\left(\begin{array}{ll}
\mu_{1} & \mu_{2} \\
\overline{\mu_{1}} & \overline{\mu_{2}}
\end{array}\right)=-2 i \operatorname{det}\left(\begin{array}{ll}
\alpha_{1} & \alpha_{2} \\
\beta_{1} & \beta_{2}
\end{array}\right)
$$

The latter determinant is nonzero since μ_{1}, μ_{2} are linearly independent over \mathbb{R}, and the system is solvable.

The above argument does not depend on the discreteness of Γ; indeed it is a refinement of an argument due to J. Moorhouse [12] that the C^{*}-algebra generated by all Möbius transformations contains S. The argument is valid for any group which has an orbit with three accumulation points on \mathbb{T}; e.g. the conclusion holds for any dense subgroup of $\operatorname{Aut}(\mathbb{D}) \cong \operatorname{PSU}(1,1)$.

Proof of Theorem 3.1 For an automorphism γ of \mathbb{D} set

$$
U_{\gamma}=\left(C_{\gamma} C_{\gamma}^{*}\right)^{-1 / 2} C_{\gamma},
$$

the unitary appearing in the polar decomposition of C_{γ}. By Lemma 3.2, $C_{\gamma} C_{\gamma}^{*}=T_{f} T_{f}^{*}$, so we may write

$$
U_{\gamma}=T_{|f|^{-1}} C_{\gamma}+K
$$

for some compact K. (Here we have used the fact the Toeplitz operators with continuous symbols commute modulo the compact operators.) Now by Lemma 3.3, if p is any analytic polynomial,

$$
\begin{aligned}
U_{\gamma} T_{p} & =T_{|f|^{-1}} C_{\gamma} T_{p}+K^{\prime} \\
& =T_{|f|^{-1}} T_{p \circ \gamma} C_{\gamma}+K^{\prime} \\
& =T_{p \circ \gamma} T_{|f|^{-1}} C_{\gamma}+K^{\prime \prime} \\
& =T_{p \circ \gamma} U_{\gamma}+K^{\prime \prime}
\end{aligned}
$$

again using the fact that $T_{|f|^{-1}}$ and T_{p} commute modulo \mathcal{K}. Taking adjoints and sums shows that

$$
\begin{equation*}
U_{\gamma} T_{q} U_{\gamma}^{*}=T_{q \circ \gamma}+K \tag{3.5}
\end{equation*}
$$

for any trigonometric polynomial q. We next show that, for Möbius transformations γ, η,

$$
U_{\gamma} U_{\eta}=U_{\eta \circ \gamma}+K
$$

for some compact K. To see this, write

$$
\gamma(z)=\frac{a z+b}{c z+d}, \quad \eta(z)=\frac{e z+f}{g z+h}
$$

Then

$$
U_{\gamma}=T_{|c z+d|^{-1}} C_{\gamma}+K_{1}, \quad U_{\eta}=T_{|g z+h|^{-1}} C_{\eta}+K_{2} .
$$

Note that

$$
U_{\eta \circ \gamma}=T_{|g(a z+b)+h(c z+d)|^{-1}} C_{\eta \circ \gamma}+K_{3} .
$$

Then

$$
\begin{aligned}
U_{\gamma} U_{\eta} & =T_{|c z+d|^{-1}} C_{\gamma} T_{|g z+h|^{-1}} C_{\eta}+K \\
& =T_{|c z+d|^{-1}} T_{|g \gamma(z)+h|^{-1}} C_{\gamma} C_{\eta}+K^{\prime} \\
& =T_{|g(a z+b)+h(c z+d)|^{-1}} C_{\eta \circ \gamma}+K^{\prime} \\
& =U_{\eta \circ \gamma}+K^{\prime \prime}
\end{aligned}
$$

Observe now that \mathcal{C}_{Γ} is equal to the C*-algebra generated by S and the unitaries U_{γ}. We have already shown that \mathcal{C}_{Γ} contains S and each U_{γ}, for the converse we recall that $C_{\gamma}=\left(C_{\gamma} C_{\gamma}^{*}\right)^{1 / 2} U_{\gamma}$, and since $C_{\gamma} C_{\gamma}^{*}$ lies in $C^{*}(S)$ by Lemma 3.2 , we see that C_{γ} lies in the C^{*}-algebra generated by S and U_{γ}. Letting π denote the quotient map $\pi: \mathcal{C}_{\Gamma} \rightarrow$ $\mathcal{C}_{\Gamma} / \mathcal{K}$, it follows hat $\mathcal{C}_{\Gamma} / \mathcal{K}$ is generated as a C^{*}-algebra by a copy of $C(\mathbb{T})$ and the unitaries $\pi\left(U_{\gamma}\right)$, and the map $\gamma \rightarrow \pi\left(U_{\gamma^{-1}}\right)$ defines a unitary representation of Γ. Let $\alpha: \Gamma \rightarrow \operatorname{Aut}(C(\mathbb{T}))$ be given by

$$
\alpha_{\gamma}(f)(z)=f\left(\gamma^{-1}(z)\right)
$$

Then by (3.5),

$$
\begin{equation*}
\pi\left(U_{\gamma^{-1}}\right) \pi\left(T_{f}\right) \pi\left(U_{\gamma^{-1}}^{*}\right)=\pi\left(T_{f \circ \gamma^{-1}}\right)=\pi\left(T_{\alpha_{\gamma}(f)}\right) \tag{3.6}
\end{equation*}
$$

for all trigonometric polynomials f, and hence for all $f \in C(\mathbb{T})$ by continuity. Thus, $\mathcal{C}_{\Gamma} / \mathcal{K}$ is generated by $C(\mathbb{T})$ and a unitary representation of Γ satisfying the relation (3.6). Therefore there is a surjective *-homomorphism $\rho: C(\mathbb{T}) \times \Gamma \rightarrow \mathcal{C}_{\Gamma} / \mathcal{K}$ satisfying

$$
\rho(f)=\pi\left(T_{f}\right), \quad \rho\left(u_{\gamma}\right)=\pi\left(U_{\gamma^{-1}}\right)
$$

for all $f \in C(\mathbb{T})$ and all $\gamma \in \Gamma$. Let $\mathcal{J}=\operatorname{ker} \rho$. The theorem will be proved once we show $\mathcal{J}=0$. To do this, we use Theorems 2.1 and 2.2. Indeed, it suffices to show that $C(\mathbb{T}) \cap \mathcal{J}=0$: then $\mathcal{J} \subset \mathcal{J}_{\lambda}$ by Theorem 2.1, and $\mathcal{J}_{\lambda}=0$ by Theorem 2.2.

To see that $C(\mathbb{T}) \cap \mathcal{J}=0$, choose $f \in C(\mathbb{T}) \cap \mathcal{J}$. Then $\pi\left(T_{f}\right)=$ $\rho(f)=0$, which means that T_{f} is compact. But then $f=0$, since nonzero Toeplitz operators are non-compact.
3.2. Other Hilbert spaces. In this section we prove the analogue of Theorem 3.1 for composition operators acting on the reproducing kernel Hilbert spaces with kernel given by

$$
k(z, w)=\frac{1}{(1-z \bar{w})^{n}}
$$

for integers $n \geq 2$.
We let A_{n}^{2} denote the Hilbert function space on \mathbb{D} with kernel $k(z, w)=$ $(1-z \bar{w})^{-n}$. For $n \geq 2$, this space consists of those analytic functions in \mathbb{D} for which

$$
\frac{n-1}{\pi} \int_{\mathbb{D}}|f(w)|^{2}\left(1-|w|^{2}\right)^{n-2} d A(w)
$$

is finite, and the square root of this quantity gives the norm on A_{n}^{2}.
We fix $n \geq 2$ for the remainder of this section, and let T denote the operator of multiplication by z on A_{n}^{2}. The operator T is a contractive weighted shift, and essentially normal. Moreover, if f is any bounded analytic function on \mathbb{D}, then multiplication by f is bounded on A_{n}^{2} and is denoted M_{f}. If γ is a Möbius transformation, then C_{γ} is bounded on A_{n}^{2}. We let \mathcal{C}_{Γ}^{n} denote the C^{*}-algebra generated by the operators $\left\{C_{\gamma}: \gamma \in \Gamma\right\}$ acting on A_{n}^{2}.

We collect the following computations together in a single Lemma, the analogue for A_{n}^{2} of the lemmas at the beginning of the previous section.
Lemma 3.5. For $\gamma \in \Gamma$, with $a=\gamma^{-1}(0)$ and n fixed, let

$$
f(z)=\frac{(1-\bar{a} z)^{n}}{\left(1-|a|^{2}\right)^{n / 2}}
$$

Then $C_{\gamma} C_{\gamma}^{*}=M_{f} M_{f}^{*}$, and $M_{\gamma} C_{\gamma}=C_{\gamma} T$.
Proof. As in the Hardy space, for the first equation it suffices to prove that

$$
\begin{equation*}
\left\langle C_{\gamma} C_{\gamma}^{*} k_{w}, k_{z}\right\rangle=\left\langle T_{f} T_{f}^{*} k_{w}, k_{z}\right\rangle \tag{3.7}
\end{equation*}
$$

for all z, w in \mathbb{D}. This is the same as the identity

$$
\begin{equation*}
\left(\frac{1}{1-\gamma(z) \overline{\gamma(w)}}\right)^{n}=\frac{(1-\bar{a} z)^{n}(1-a \bar{w})^{n}}{\left(1-|a|^{2}\right)^{n}(1-z \bar{w})^{n}} \tag{3.8}
\end{equation*}
$$

which is just (3.3) raised to the power n. As before, the relation $M_{\gamma} C_{\gamma}=C_{\gamma} T$ follows immediately from the definitions.

The proof of Theorem 3.8 below follows the same lines as that for the Hardy space, except that it requires more work to show that \mathcal{C}_{Γ}^{n} contains T. We first prove that \mathcal{C}_{Γ}^{n} is irreducible.

Proposition 3.6. The C^{*}-algebra \mathcal{C}_{Γ}^{n} is irreducible.
Proof. We claim that the operator $T^{n}=M_{z^{n}}$ lies in \mathcal{C}_{Γ}^{n}; we first show how irreducibility follows from this and then prove the claim.

By [14, Theorem 14], the only reducing subspaces of T^{n} are direct sums of subspaces of the form

$$
X_{k}=\overline{\operatorname{span}}\left\{z^{k+m n} \mid m=0,1,2, \ldots\right\}
$$

for $0 \leq k \leq n-1$. Thus, since $T^{n} \in \mathcal{C}_{\Gamma}^{n}$, these are the only possible reducing subspaces for \mathcal{C}_{Γ}^{n}. Suppose, then, that X is a nontrivial direct sum of distinct subspaces X_{k} (i.e. $X \neq A_{n}^{2}$). Observe that, for each k, either X contains X_{k} as a summand, or X is orthogonal to X_{k}. In the latter case (which we assume holds for some k), the $k^{\text {th }}$ Taylor coefficient of every function in X vanishes.

It is now easy to see that X cannot be reducing (or even invariant) for \mathcal{C}_{Γ}^{n}. Indeed, if X does not contain X_{0} as a summand, then every function $f \in X$ vanishes at the origin, but if $\gamma \in \Gamma$ does not fix the origin then $C_{\gamma} f \notin X$. On the other hand, if X contains the scalars, then consider the operator $F(\lambda)=(1-\bar{\lambda} T)^{n}\left(1-\lambda T^{*}\right)^{n}$, for $\lambda \in \Lambda$. Since T^{*} annihilates the scalars, we have $F(\lambda) 1=(1-\bar{\lambda} z)^{n}=p(z)$. But since $|\lambda|=1$, the $k^{\text {th }}$ Taylor coefficient of p does not vanish, so $p \notin X$. Finally, as $F(\lambda)$ belongs to \mathcal{C}_{Γ}^{n}, it follows that X is not invariant for \mathcal{C}_{Γ}^{n} and hence \mathcal{C}_{Γ}^{n} is irreducible.

To prove that $T^{n} \in \mathcal{C}_{\Gamma}^{n}$, we argue along the lines of Proposition 3.4, though the situation is somewhat more complicated. Using the same reproducing kernel argument as in that Proposition, we see that the operators
$F(\lambda)=(1-\bar{\lambda} T)^{n}\left(1-\lambda T^{*}\right)^{n}$

$$
\begin{equation*}
=\sum_{j=0}^{n} \sum_{k=0}^{n}(-1)^{(j+k)}\binom{n}{j}\binom{n}{k} \bar{\lambda}^{k} \lambda^{j} T^{k} T^{* j} \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
=\sum_{d=0}^{n}\binom{n}{d}^{2} T^{d} T^{* d}+2 \Re \sum_{m=1}^{n}(-1)^{m} \bar{\lambda}^{m} \sum_{m \leq k \leq n}\binom{n}{k}\binom{n}{k-m} T^{k} T^{* k-m} \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
=\sum_{d=0}^{n}\binom{n}{d}^{2} T^{d} T^{* d}+\sum_{m=1}^{n} \bar{\lambda}^{m} E_{m}+\lambda^{m} E_{m}^{*} \tag{3.12}
\end{equation*}
$$

lie in \mathcal{C}_{Γ}^{n} for all λ in the limit set Λ of Γ. Here we have adopted the notation

$$
E_{m}=(-1)^{m} \sum_{m \leq k \leq n}\binom{n}{k}\binom{n}{k-m} T^{k} T^{* k-m}
$$

Note in particular that $E_{n}=(-1)^{n} T^{n}$. Forming differences as λ ranges over Λ shows that \mathcal{C}_{Γ}^{n} contains all operators of the form

$$
G(\lambda, \mu)=F(\lambda)-F(\mu)=\sum_{m=1}^{n}\left(\bar{\lambda}^{m}-\bar{\mu}^{m}\right) E_{m}+\left(\lambda^{m}-\mu^{m}\right) E_{m}^{*}
$$

for all $\lambda, \mu \in \Lambda$. We wish to obtain T^{n} as a linear combination of the $G(\lambda, \mu)$; since E_{n} is a scalar multiple of T^{n} it suffices to show that there exist $2 n$ pairs $\left(\lambda_{j}, \mu_{j}\right) \in \Lambda \times \Lambda$ and $2 n$ scalars α_{j} such that

$$
E_{n}=\sum_{j=1}^{2 n} \alpha_{j} G\left(\lambda_{j}, \mu_{j}\right)
$$

Let L be the $2 n \times 2 n$ matrix whose $j^{\text {th }}$ column is

$$
\left(\begin{array}{c}
\overline{\lambda_{j}}-\overline{\mu_{j}} \\
\lambda_{j}-\mu_{j} \\
{\overline{\lambda_{j}}}^{2}-{\overline{\mu_{j}}}^{2} \\
\lambda_{j}^{2}-\mu_{j}^{2} \\
\vdots \\
{\overline{\lambda_{j}}}^{n}-{\overline{\mu_{j}}}^{n} \\
\lambda_{j}^{n}-\mu_{j}^{n}
\end{array}\right)
$$

We must therefore solve the linear system

$$
L\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{2 n-1} \\
\alpha_{2 n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
0
\end{array}\right)
$$

for which it suffices to show that the matrix L is nonsingular for some choice of the λ_{j} and μ_{j} in Λ. To do this, we fix $2 n+1$ distinct points $z_{0}, z_{1}, \ldots z_{2 n}$ in Λ and set $\lambda_{j}=z_{0}$ for all j and $\mu_{j}=z_{j}$ for $j=1, \ldots 2 n$.

The matrix L then becomes the matrix whose $j^{t h}$ column is

$$
\left(\begin{array}{c}
\overline{z_{0}}-\overline{z_{j}} \\
z_{0}-z_{j} \\
{\overline{z_{0}}}^{2}-{\overline{z_{j}}}^{2} \\
z_{0}^{2}-z_{j}^{2} \\
\vdots \\
{\overline{z_{0}}}^{n}-{\overline{z_{j}}}^{n} \\
z_{0}^{n}-z_{j}^{n}
\end{array}\right)
$$

To prove that L is nonsingular, we prove that its rows are linearly independent. To this end, let c_{j} and $d_{j}, j=1, \ldots n$ be scalars such that for each $k=1, \ldots 2 n$,

$$
\begin{equation*}
\sum_{j=1}^{n} c_{j}\left(z_{0}^{j}-z_{k}^{j}\right)+\sum_{j=1}^{n} d_{j}\left({\overline{z_{0}}}^{j}-{\overline{z_{k}}}^{j}\right)=0 \tag{3.13}
\end{equation*}
$$

To see that all of the c_{j} and d_{j} must be 0 , consider the harmonic polynomial

$$
P(z, \bar{z})=\sum_{j=1}^{n} c_{j}\left(z_{0}^{j}-z^{j}\right)+\sum_{j=1}^{n} d_{j}\left({\overline{z_{0}}}^{j}-\bar{z}^{j}\right)
$$

By (3.13), P has $2 n+1$ distinct zeroes on the unit circle, namely the points $z_{0}, \ldots z_{2 n}$. But this means that the rational function

$$
Q(z)=\sum_{j=1}^{n} c_{j}\left(z_{0}^{j}-z^{j}\right)+\sum_{j=1}^{n} d_{j}\left({\overline{z_{0}}}^{j}-\frac{1}{z^{j}}\right)
$$

also has $2 n+1$ zeroes on the circle. But since the degree of Q is at most $2 n$, it follows that Q must be identically zero, and hence all the c_{j} and d_{j} are 0 .
Proposition 3.7. \mathcal{C}_{Γ}^{n} contains T.
Proof. We have established that for each λ in the limit set, the operators

$$
(1-\bar{\lambda} T)^{n}(1-\bar{\lambda} T)^{* n}
$$

lie in \mathcal{C}_{Γ}^{n}. Now, since T is essentially normal, the difference

$$
(1-\bar{\lambda} T)^{n}(1-\bar{\lambda} T)^{* n}-\left[(1-\bar{\lambda} T)(1-\bar{\lambda} T)^{*}\right]^{n}
$$

is compact. Given two positive operators which differ by a compact, their (unique) positive $n^{\text {th }}$ roots also differ by a compact. The positive $n^{\text {th }}$ root of $F(\lambda)$ thus equal to

$$
(1-\bar{\lambda} T)(1-\bar{\lambda} T)^{*}+K(\lambda)
$$

for some compact operator $K(\lambda)$, and lies in \mathcal{C}_{Γ}^{n}. Forming linear combinations as in Proposition 3.4, we conclude that $T+K$ lies in \mathcal{C}_{Γ}^{n} for some compact K. Now, as \mathcal{C}_{Γ}^{n} is irreducible and contains a nonzero compact operator (namely, the self-commutator of $T+K$), it contains all the compacts, and hence T.

We now prove the analogue of Theorem 3.1 for \mathcal{C}_{Γ}^{n} :
Theorem 3.8. Let Γ be a non-elementary Fuchsian group, and let \mathcal{C}_{Γ}^{n} denote the C^{*}-algebra generated by the set of composition operators on A^{2} with symbols in Γ. Then there is an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{K} \xrightarrow{\iota} \mathcal{C}_{\Gamma}^{n} \xrightarrow{\pi} C(\mathbb{T}) \times \Gamma \longrightarrow 0 \tag{3.14}
\end{equation*}
$$

Proof. The proof is similar to that of Theorem 3.1; we define the unitary operators U_{γ} in the same way (using the polar decomposition of C_{γ}), and check that the map that sends γ to $U_{\gamma^{-1}}$ is a unitary representation of Γ on A_{n}^{2}, modulo \mathcal{K}. The computation to check the covariance condition is essentially the same. As \mathcal{C}_{Γ}^{n} is generated by the T and the unitaries U_{γ}, the quotient $\mathcal{C}_{\Gamma}^{n} / \mathcal{K}$ is generated by a copy of $C(\mathbb{T})$ (since \mathbb{T} is the essential spectrum of T) and a representation of Γ which satisfy the covariance condition; the rest of the proof proceeds exactly as for H^{2}, up until the final step. At the final step in that proof, we have a Toeplitz operator T_{f} which is compact; this implies that $f=0$ in the H^{2} case but not for the spaces A_{n}^{2}. However the symbol of a compact Toeplitz operator on A_{n}^{2} must vanish at the boundary of \mathbb{D}, so we may still conclude that $f=0$ on \mathbb{T} and the proof is complete. \square

4. K-Homology of $C(\mathbb{T}) \times \Gamma$

4.1. Ext classes of \mathcal{C}_{Γ} and \mathcal{C}_{Γ}^{n}. In this section we prove that the extensions of $C(\mathbb{T}) \times \Gamma$ determined by \mathcal{C}_{Γ} and \mathcal{C}_{Γ}^{n} determine the same element of the group $\operatorname{Ext}(C(\mathbb{T}) \times \Gamma)$, and we prove that \mathcal{C}_{Γ} and \mathcal{C}_{Γ}^{n} are isomorphic as C^{*}-algebras. (In general neither of these statements implies the other.) The reader is referred to [3, Chapter 15] for the basic definitions and theorems concerning extensions of C^{*}-algebras and the Ext group.
Theorem 4.1. For each n, the extension of $C(\mathbb{T}) \times \Gamma$ determined by \mathcal{C}_{Γ}^{n} is strongly equivalent to the extension determined by \mathcal{C}_{Γ}. Hence each of these extensions determines the same class in $\operatorname{Ext}(C(\mathbb{T}) \times \Gamma)$ and the C^{*}-algebras \mathcal{C}_{Γ}^{n} are mutually isomorphic.

To prove the theorem we introduce an integral operator $V \in \mathcal{B}\left(A_{n+1}^{2}, A_{n}^{2}\right)$ and prove the following lemma, which describes the properties of V needed in the proof of the theorem.

Lemma 4.2. Consider the integral operator defined on analytic polynomials $f(w)$ by

$$
(V f)(z)=\int_{\mathbb{D}} \frac{f(w)}{(1-\bar{w} z)}\left(1-|w|^{2}\right)^{-1 / 2} d A(w)
$$

where $d A$ is normalized Lebesgue area measure on \mathbb{D}. Then:
(1) For each $n \geq 0, V$ extends to a bounded diagonal operator from A_{n+1}^{2} to A_{n}^{2}, and there exists a compact operator K_{n} such that $V+K_{n}$ is unitary.
(2) If T_{n+1} and T_{n} denote multiplication by z on A_{n+1}^{2} and A_{n}^{2} respectively, then $V T_{n+1}-T_{n} V$ is compact.
(3) If g is continuous on $\overline{\mathbb{D}}$ and analytic in \mathbb{D}, then the integral operator

$$
\left(V_{\bar{g}} f\right)(z)=\int_{\mathbb{D}} \frac{f(w) \overline{g(w)}}{1-\bar{w} z}\left(1-|w|^{2}\right)^{-1 / 2} d A(w)
$$

is bounded from A_{n+1}^{2} to A_{n}^{2}, and is a compact perturbation of $V M_{g}^{*}$.
Proof. If $f(w)=w^{k}$, then the integral is absolutely convergent for each $z \in \mathbb{D}$, and we calculate

$$
\begin{align*}
(V f)(z) & =\int_{\mathbb{D}} \frac{w^{k}}{1-\bar{w} z}\left(1-|w|^{2}\right)^{-1 / 2} d A(w) \tag{4.1}\\
& =\sum_{j=0}^{\infty} \int_{\mathbb{D}} w^{k} \bar{w}^{j} z^{j}\left(1-|w|^{2}\right)^{-1 / 2} d A(w) \tag{4.2}\\
& =\left(\int_{\mathbb{D}}|w|^{2 k}\left(1-|w|^{2}\right)^{-1 / 2} d A(w)\right) z^{k} \tag{4.3}\\
& =\alpha_{k} z^{k} \tag{4.4}
\end{align*}
$$

It is known that the sequence $\left(\alpha_{k}\right)$ defined by the above integral is asymptotically $(k+1)^{-1 / 2}$. Each space A_{n}^{2} has an orthonormal basis of the form $\beta_{k} z^{k}$, where the sequence β_{k} is asymptotically $(k+1)^{(n-1) / 2}$. It follows that V intertwines orthonormal bases for A_{n+1}^{2} and A_{n}^{2} modulo a compact diagonal operator, which establishes the first statement. Moreover, the second statement also follows, by observing that the operators T_{n+1} and T_{n} are weighted shifts with weight sequences asymptotic to 1 .

To prove the last statement, first suppose $g(w)=w$, and let $\beta_{k} z^{k}$ be an orthonormal basis for A_{n+1}^{2}. Then a direct computation shows that $V_{\bar{g}}$ is a weighted backward shift with weight sequence $\alpha_{j+1} \beta_{j} / \beta_{j+1}, j=$ $0,1, \ldots$ Thus with respect to this basis, $V^{*} V_{\bar{z}}$ is a weighted shift with
weight sequence $\alpha_{j+1} \beta_{j} / \alpha_{j} \beta_{j+1}$. Since $\lim _{j \rightarrow \infty} \alpha_{j+1} / \alpha_{j}=1$, it follows that $V^{*} V_{\bar{z}}$ is a compact perturbation of M_{z}^{*}. A similar argument shows that $V^{*} V_{\bar{z}^{m}}$ is a compact perturbation of $M_{z^{m}}^{*}$. By linearity, the lemma then holds for polynomial g. Finally, if p_{n} is a sequence of polynomials such that $M_{p_{n}}$ converges to M_{g} in the operator norm (which is equal to the supremum norm of the symbol), then $M_{p_{n}}$ converges to M_{g} in the essential norm, and p_{n} converges to g uniformly, so that $V_{\overline{p_{n}}} \rightarrow V_{\bar{g}}$ in norm and the result follows.

Proof of Theorem 4.1

We will prove that the Busby maps of the extensions determined by \mathcal{C}_{Γ} and \mathcal{C}_{Γ}^{n} are strongly unitarily equivalent. By induction, it suffices to prove the equivalence between \mathcal{C}_{Γ}^{n} and $\mathcal{C}_{\Gamma}^{n+1}$ for each n. We first establish some notation: for a function g in the disk algebra, we let M_{g} denote the multiplication operator with symbol g acting on A_{n+1}^{2}, and \widetilde{M}_{g} the corresponding operator acting on A_{n}^{2}. Similarly, for the composition operators C_{γ} and the unitaries U_{γ} on A_{n+1}^{2}, a tilde denotes the corresponding operator on A_{n}^{2}. Now, since each of the algebras $\mathcal{C}_{\Gamma}^{n}, \mathcal{C}_{\Gamma}^{n+1}$ is generated by the operators M_{z} (resp. \widetilde{M}_{z}) and the unitaries U_{γ} (resp. \widetilde{U}_{γ}) on the respective Hilbert spaces, it suffices to produce a unitary U (or indeed a compact perturbation of a unitary) from A_{n+1}^{2} to A_{n}^{2} such that the operators $U M_{z}-\widetilde{M}_{z} U$ and $U U_{\gamma}-\widetilde{U}_{\gamma} U$ are compact for all $\gamma \in \Gamma$. In fact we will prove that the operator V of the previous lemma does the job.

To prove this, we will first calculate the operator $\widetilde{C}_{\gamma} V C_{\gamma^{-1}}$. Written as an integral operator,

$$
\left(\widetilde{C}_{\gamma} V C_{\gamma^{-1}} f\right)(z)=\int_{\mathbb{D}} \frac{f\left(\gamma^{-1}(w)\right)}{1-\bar{w} \gamma(z)}\left(1-|w|^{2}\right)^{-1 / 2} d A(w)
$$

Applying the change of variables $w \rightarrow \gamma(w)$ to this integral, we obtain

$$
\left(\widetilde{C}_{\gamma} V C_{\gamma^{-1}} f\right)(z)=\int_{\mathbb{D}} \frac{f(w)}{1-\overline{\gamma(w)} \gamma(z)}\left(1-|\gamma(w)|^{2}\right)^{-1 / 2}\left|\gamma^{\prime}(w)\right|^{2} d A(w)
$$

A little algebra shows that

$$
1-|\gamma(w)|^{2}=\left(1-|w|^{2}\right)\left|\gamma^{\prime}(w)\right|
$$

Furthermore, multiplying and dividing the identity (3.3) by $1-\bar{a} w$, we obtain

$$
\frac{1}{1-\overline{\gamma(w)} \gamma(z)}=\frac{1-\bar{a} z}{(1-\bar{a} w)(1-\bar{w} z)}\left|\gamma^{\prime}(w)\right|^{-1}
$$

Thus the integral may be transformed into

$$
\left(\widetilde{C}_{\gamma} V C_{\gamma^{-1}} f\right)(z)=\int_{\mathbb{D}} \frac{f(w)}{1-\bar{w} z} \frac{1-\bar{a} z}{1-\bar{a} w}\left|\gamma^{\prime}(w)\right|^{1 / 2}\left(1-|w|^{2}\right)^{-1 / 2} d A(w)
$$

Since γ^{\prime} is analytic and non-vanishing in a neighborhood of the closed disk, there exists a function ψ in the disk algebra such that $|\psi|^{2}=\left|\gamma^{\prime}\right|^{1 / 2}$ (choose ψ to be a branch of $\left(\gamma^{\prime}\right)^{1 / 4}$). Thus we may rewrite this integral as

$$
\begin{align*}
\left(\widetilde{C}_{\gamma} V C_{\gamma^{-1}} f\right)(z) & =\int_{\mathbb{D}} \frac{f(w)}{1-\bar{w} z} \frac{1-\bar{a} z}{1-\bar{a} w} \psi(w) \overline{\psi(w)}\left(1-|w|^{2}\right)^{-1 / 2} d A(w) \tag{4.5}\\
& =M_{1-\bar{a} z} V_{\bar{\psi}} M_{(1-\bar{a} z)^{-1} \psi(z)} \tag{4.6}
\end{align*}
$$

Now, applying the lemma to $V_{\bar{\psi}}$ and using the fact that V intertwines the multiplier algebras of A_{n+1}^{2} and A_{n}^{2} modulo the compacts, we have

$$
\begin{align*}
\widetilde{C}_{\gamma} V C_{\gamma^{-1}} & =M_{1-\bar{a} z} V_{\bar{\psi}} M_{(1-\bar{a} z)^{-1} \psi(z)} \tag{4.7}\\
& =M_{1-\bar{a} z} V M_{\psi}^{*} M_{\psi} M_{(1-\bar{a} z)^{-1}}+K \tag{4.8}\\
& =V M_{\psi}^{*} M_{\psi}+K \tag{4.9}
\end{align*}
$$

modulo the compacts. Multiplying on the right by $C_{\gamma^{-1}}$ and on the left by V^{*} we get

$$
\begin{equation*}
V^{*} \widetilde{C}_{\gamma} V=M_{\psi}^{*} M_{\psi} C_{\gamma}+K \tag{4.10}
\end{equation*}
$$

Since $\psi^{2}(z)=\left(1-|a|^{2}\right)^{1 / 2}(1-\bar{a} z)^{-1}$, the calculations in the proof of 3.1 show that

$$
\left(C_{\gamma} C_{\gamma}^{*}\right)^{-1 / 2}=M_{\psi^{n+1}} M_{\psi^{n+1}}^{*} \quad \text { and } \quad\left(\widetilde{C}_{\gamma} \widetilde{C}_{\gamma}^{*}\right)^{-1 / 2}=\widetilde{M}_{\psi^{n}} \widetilde{M}_{\psi^{n}}^{*}
$$

Using the fact that V intertwines the C^{*}-algebras generated by M_{z} and \widetilde{M}_{z} modulo \mathcal{K}, and that these algebras are commutative modulo \mathcal{K}, we conclude after multiplying both sides of (4.10) on the left by $M_{\psi^{n}} M_{\psi^{n}}^{*}$ that

$$
V^{*} \widetilde{U}_{\gamma} V=V^{*} \widetilde{M}_{\psi^{n}} \widetilde{M}_{\psi^{n}}^{*} \widetilde{C}_{\gamma} V+K=M_{\psi^{n+1}} M_{\psi^{n+1}}^{*} C_{\gamma}+K=U_{\gamma}+K
$$

which completes the proof.
4.2. Emerson's construction. When Γ is co-compact, there is another extension of $C(\mathbb{T}) \times \Gamma$ which was constructed by Emerson [5], motivated by work of Kaminker and Putnam [6]; we will show that the Ext-class of \mathcal{C}_{Γ} differs from the Ext-class of this extension.

The extension is constructed as follows: since Γ is co-compact, we may identify \mathbb{T} with the Gromov boundary $\partial \Gamma$. Let f be a continuous
function on $\partial \Gamma$, extend it arbitrarily to Γ by the Tietze extension theorem, denote this extended function by \tilde{f}. Let $e_{x}, x \in \Gamma$ be the standard orthonormal basis for $\ell^{2}(\Gamma)$, and let $u_{\gamma}, \gamma \in \Gamma$ denote the unitary operator of left translation on Γ. Define a map $\tau: C(\mathbb{T}) \times \Gamma \rightarrow \mathcal{Q}\left(\ell^{2}(\Gamma)\right)$ by

$$
\tau(f) e_{x}=\tilde{f}(x) e_{x}
$$

and

$$
\tau(\gamma) e_{x}=u_{\gamma} e_{x}=e_{\gamma x}
$$

it can be shown that these expressions are well defined modulo the compact operators and determine a $*$-homomorphism from $C(\mathbb{T}) \times \Gamma$ to the Calkin algebra of $\ell^{2}(\Gamma)$, i.e. an extension of $C(\mathbb{T}) \times \Gamma$ by the compacts. Let π denote the quotient map $\pi: \mathcal{B}\left(\ell^{2}(\Gamma)\right) \rightarrow \mathcal{Q}\left(\ell^{2}(\Gamma)\right)$, and consider the pull-back C^{*}-algebra E :

We will show this extension is distinct from \mathcal{C}_{Γ} by showing that it induces a different homomorphism from $K_{1}(C(\mathbb{T}) \times \Gamma)$ to \mathbb{Z}. Indeed, consider the class $[z]_{1}$ of the unitary $f(z)=z$ in $K_{1}(C(\mathbb{T}) \times \Gamma)$; the extension belonging to \mathcal{C}_{Γ} sends this class to -1 . On the other hand, for the extension τ we claim the function z lifts to a unitary in E; it follows that $\partial\left([z]_{1}\right)=0$ in this case. To verify the claim, note that z lifts to a diagonal operator on $\ell^{2}(\Gamma)$, and if $\left(x_{n}\right)$ is a subsequence in Γ tending to the boundary point $\lambda \in \mathbb{T}$, then $\tilde{f}\left(x_{n}\right) \rightarrow f(\lambda)=\lambda$. We may thus choose all the $\tilde{f}(x)$ nonzero, and by dividing $\tilde{f}(x)$ by its modulus, we may assume they are all unimodular. Thus z lifts to the unitary $\operatorname{diag}(\tilde{f}(x)) \oplus z$ in E.
4.3. Lott's construction. In this section we relate the extension τ given by \mathcal{C}_{Γ} to an extension recently constructed by J. Lott [10]. We first describe a construction of the extension σ_{+}of [10]. Let \mathcal{D} denote the Hilbert space of analytic functions on \mathbb{D} with finite Dirichlet integral

$$
D(f)=\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A(z)
$$

equipped with the norm

$$
\|f\|^{2}=|f(0)|^{2}+\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A(z)=|f(0)|^{2}+D(f)
$$

If f is represented in \mathbb{D} by the Taylor series $\sum_{n=0}^{\infty} a_{n} z^{n}$, then this norm is given by

$$
\|f\|^{2}=\left|a_{0}\right|^{2}+\sum_{n=1}^{\infty} n\left|a_{n}\right|^{2}
$$

The operator of multiplication by z on \mathcal{D}, denoted M_{z}, is a weighted shift with weight sequence asymptotic to 1 , and hence is unitarily equivalent to a compact perturbation of the unilateral shift on H^{2}. It follows that there is a ${ }^{*}$-homomorphism $\rho: C(\mathbb{T}) \rightarrow \mathcal{Q}(\mathcal{D})$ with $\rho(z)=\pi\left(M_{z}\right)$. Now, by changing variables one checks that if γ is a Möbius transformation, $D(f \circ \gamma)=D(f)$. Let \mathcal{D}_{0} denote the subspace of \mathcal{D} consisting of those functions which vanish at the origin. It then follows from the definition of the norm in \mathcal{D} that the operators

$$
u_{\gamma}(f)(z)=f(\gamma(z))-f(\gamma(0))
$$

are unitary on \mathcal{D}_{0}, and form a unitary representation of Γ. We extend this representation to all of \mathcal{D} by letting Γ act trivially on the scalars. Moreover, it is simple to verify (by noting that u_{γ} is a compact perturbation of the composition operator C_{γ}) that for all $\gamma \in \Gamma$,

$$
u_{\gamma} M_{z} u_{\gamma}^{*}=M_{\gamma(z)}
$$

modulo compact operators. Arguing as in the proof of Theorem 3.1, we conclude that the pair $\left(\rho(f), \pi\left(u_{\gamma}\right)\right)$ determines an injective *-homomorphism from $C(\mathbb{T}) \times \Gamma$ to $\mathcal{Q}(\mathcal{D})$, which is unitarily equivalent to the Busby map σ_{+}of [10].

We may now state the main theorem of this subsection:
Theorem 4.3. The Busby maps τ and σ_{+}are unitarily equivalent.
Proof. We first show that the Busby map $\tau: C(\mathbb{T}) \times \Gamma \rightarrow \mathcal{Q}\left(H^{2}\right)$ lifts to a completely positive map $\eta: C(\mathbb{T}) \times \Gamma \rightarrow \mathcal{B}\left(H^{2}\right)$. Define a unitary representation of Γ on $L^{2}(\mathbb{T})$ by

$$
U\left(\gamma^{-1}\right)=M_{\left|\gamma^{\prime}\right|^{1 / 2}} C_{\gamma}
$$

Together with the usual representation of $C(\mathbb{T})$ as multiplication operators on L^{2}, we obtain a covariant representation of (Γ, \mathbb{T}) which in turn determines a representation $\rho: C(\mathbb{T}) \times \Gamma \rightarrow \mathcal{B}\left(L^{2}\right)$. Letting P denote the Riesz projection $P: L^{2} \rightarrow H^{2}$, we next claim that the commutator $[\rho(a), P]$ is compact for all $a \in C(\mathbb{T}) \times \Gamma$, and so the pair (ρ, P) is an abstract Toeplitz extension of $C(\mathbb{T}) \times \Gamma$ by \mathcal{K}. To see this, it suffices to prove the compactness of the commutators

$$
\left[M_{f}, P\right] \quad \text { and } \quad[U(\gamma), P]
$$

Now, it is well known that $\left[M_{f}, P\right]$ is compact, and as $U(\gamma)$ has the form $M_{g} C_{\gamma^{-1}}$ it suffices to check that $\left[C_{\gamma}, P\right]$ is compact. It is easily
checked that this latter commutator is rank one. Indeed, the range of P is invariant for C_{γ}, so $\left[C_{\gamma}, P\right]=P C_{\gamma} P^{\perp}$. If we expand $h \in L^{2}(\mathbb{T})$ in a Fourier series

$$
h \sim \sum_{n \in \mathbb{Z}} \hat{h}(n) e^{i n \theta}
$$

then a short calculation shows that

$$
P C_{\gamma} P^{\perp} h \sim\left(\sum_{n<0} \hat{h}(n) \overline{\gamma(0)}^{|n|}\right) \cdot 1
$$

so $P C_{\gamma} P^{\perp}$ is rank one.
Thus, we have established that the completely positive map η : $C(\mathbb{T}) \times \Gamma \rightarrow \mathcal{B}\left(H^{2}\right)$ given by

$$
\eta(a)=P \rho(a) P
$$

is a homomorphism modulo compacts, and the calculations in the proof of Theorem 3.1 show that the map

$$
\tau(a)=\pi(P \rho(a) P)
$$

coincides with the Busby map associated to \mathcal{C}_{Γ}. Thus, η is a completely positive lifting of τ as claimed.

With the lifting η in hand, to prove the unitary equivalence of τ and σ_{+}it will suffice to exhibit an operator $V: H^{2} \rightarrow \mathcal{D}$ such that V is a compact perturbation of a unitary, and such that

$$
\pi\left(V \eta(a) V^{*}\right)=\sigma_{+}(a)
$$

for all $a \in C(\mathbb{T}) \times \Gamma$. Since the crossed product is generated by the function $f(z)=z$ and the formal symbols $[\gamma]$, it suffices to establish the above equality on these generators. In fact, we may use the operator V of Lemma 4.2. Since the map $z^{n} \rightarrow n^{-1 / 2} z^{n}$ is essentially unitary from H^{2} to \mathcal{D}, the proofs of statements (1) and (2) of Lemma 4.2 are still valid. The conclusion of statement (3) holds provided the hypothesis on g is strengthened, by requiring that g by analytic in a neighborhood of $\overline{\mathbb{D}}$. Moreover, the arguments of Theorem 4.1 still apply, since the proof applies statement (3) of Lemma 4.2 only to the function ψ, which is indeed analytic across the boundary of \mathbb{D}. Thus, the arguments in the proof of Theorem 4.1 prove that V intertwines (modulo compacts) multiplication by z on H^{2} and \mathcal{H}, and also intertwines (modulo compacts) C_{γ} acting on \mathcal{H} with U_{γ} on H^{2}. Since u_{γ} is a compact perturbation of C_{γ} on \mathcal{H}, it follows that V intertwines U_{γ} and u_{γ}.

Now, the Busby map σ_{+}takes the function z to the image of M_{z} in the Calkin algebra $\mathcal{Q}(\mathcal{H})$. Since $\eta(z)=M_{z} \in \mathcal{B}\left(H^{2}\right)$, the intertwining
property of V (modulo compacts) may be written as

$$
\pi\left(V \eta(z) V^{*}\right)=\sigma_{+}(z)
$$

Similarly, since η applied to the formal symbol $[\gamma]$ (viewed as a generator of $C(\mathbb{T}) \times \Gamma$) is U_{γ}, the intertwining property for V with respect to U_{γ} and u_{γ} reads

$$
\pi\left(V \eta([\gamma]) V^{*}\right)=\sigma_{+}([\gamma])
$$

Thus the equivalence of τ and σ_{+}on generators is established, which proves the theorem.

We conclude by observing that the covariant representation on L^{2} described in the proof of the previous theorem gives rise to an equivariant $K K_{1}$-cycle for $C(\mathbb{T})$. Indeed, such a cycle consists of a triple (U, π, F) where (U, π) is a covariant representation on a Hilbert space \mathcal{H} and F is a bounded operator on \mathcal{H} such that the operators

$$
F^{2}-I, F-F^{*},[U(\gamma), F], \text { and }[\pi(f), F]
$$

are compact for all $\gamma \in \Gamma$ and $f \in C(\mathbb{T})$. The computations in the previous proof show that the triple $(U, \pi, 2 P-I)$ satisfies all of these conditions, and essentially the same unitary equivalence argument shows that this cycle represents (up to a scalar multiple) the class of [10, Section 9.1].

References

[1] Claire Anantharaman-Delaroche. C^{*}-algèbres de Cuntz-Krieger et groupes fuchsiens. In Operator theory, operator algebras and related topics (Timişoara, 1996), pages 17-35. Theta Found., Bucharest, 1997.
[2] R. J. Archbold and J. S. Spielberg. Topologically free actions and ideals in discrete C^{*}-dynamical systems. Proc. Edinburgh Math. Soc. (2), 37(1):119124, 1994.
[3] Bruce Blackadar. K-theory for operator algebras, volume 5 of Mathematical Sciences Research Institute Publications. Springer-Verlag, New York, 1986.
[4] A. Connes. Cyclic cohomology and the transverse fundamental class of a foliation. In Geometric methods in operator algebras (Kyoto, 1983), volume 123 of Pitman Res. Notes Math. Ser., pages 52-144. Longman Sci. Tech., Harlow, 1986.
[5] Heath Emerson. An example of non-commutative Poincaré duality arising from hyperbolic dynamics. Ph. D. Thesis. Pennsylvania State University, 2001.
[6] Jerome Kaminker and Ian Putnam. K-theoretic duality of shifts of finite type. Comm. Math. Phys., 187(3):509-522, 1997.
[7] Thomas Kriete, Barbara MacCluer, and Jennifer Moorhouse. Toeplitzcomposition C^{*}-algebras. Journal of Operator Theory, to appear.
[8] Thomas Kriete and Jennifer Moorhouse. Linear relations in the Calkin algebra for composition operators. Trans. Amer. Math. Soc., to appear.
[9] Marcelo Laca and Jack Spielberg. Purely infinite C^{*}-algebras from boundary actions of discrete groups. J. Reine Angew. Math., 480:125-139, 1996.
[10] John Lott. Limit sets as examples in noncommutative geometry. K-Theory, 34(4):283-326, 2005.
[11] Yuri I. Manin and Matilde Marcolli. Continued fractions, modular symbols, and noncommutative geometry. Selecta Math. (N.S.), 8(3):475-521, 2002.
[12] Jennifer Moorhouse. C^{*}-algebraic and component structure of composition operators. Ph. D. Thesis. University of Virginia, 2003.
[13] Gert K. Pedersen. C^{*}-algebras and their automorphism groups, volume 14 of London Mathematical Society Monographs. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1979.
[14] Michael Stessin and Kehe Zhu. Reducing subspaces of weighted shift operators. Proc. Amer. Math. Soc., 130(9):2631-2639, 2002.
[15] Jean-Louis Tu. La conjecture de Baum-Connes pour les feuilletages moyennables. K-Theory, 17(3):215-264, 1999.
[16] Robert J. Zimmer. Ergodic theory and semisimple groups, volume 81 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1984.

Department of Mathematics, University of Florida, Gainesville, Florida 32603

E-mail address: mjury@math.ufl.edu

[^0]: Date: August 9, 2006.
 *Research partially supported by NSF VIGRE grant DMS-9983601, Purdue University.

 2000 Mathematics Subject Classification. 20H10, 46L55, 46L80, 47B33, 47L80.

