Dilations and constrained algebras

Michael Dritschel (Newcastle), Scott McCullough (U Florida)

me -UF

St. Louis, October 20, 2013

< ∃ >

 ${\cal T}$ - a bounded operator on Hilbert space ${\cal H}$

 $K \subset \mathbb{C}$ - compact

Definition (von Neumann, 1949)

```
K is a spectral set for T if
```

$$||r(T)|| \le ||r||_{\mathcal{K}} := \sup_{z \in \mathcal{K}} |r(z)|$$

for all rational functions with poles off K.

A ■

Definition (von Neumann)

K is a **spectral set** for T if

$$||r(T)|| \le ||r||_{\mathcal{K}} := \sup_{z \in \mathcal{K}} |r(z)|$$

for all rational functions with poles off K.

Definition (Arveson, 1972)

Say K is a **complete spectral set** for T if

$$\|[r_{ij}(T)]\| \le \|[r_{ij}]\|_{\mathcal{K}} := \sup_{z \in \mathcal{K}} \|[r_{ij}(z)]\|$$

for all $n \times n$ matrices $[r_i j]$ of rational functions, and all n.

< A > < 3

Definition

Say K is a **complete spectral set** for T if

$$\|[r_{ij}(T)]\| \le \|[r_{ij}]\|_{\mathcal{K}} := \sup_{z \in \mathcal{K}} \|[r_{ij}(z)]\|$$

for all $n \times n$ matrices $[r_i j]$ of rational functions, and all n.

Theorem (Arveson, 1972)

K is a complete spectral set for T if and only if T has a normal ∂K -dilation. That is, there exist

- A Hilbert space $\mathcal{L} \supset \mathcal{H}$,
- a normal operator N on $\mathcal L$ with spectrum in ∂K

such that

$$r(T) = P_{\mathcal{H}}r(N)|_{\mathcal{H}}$$

for all r.

Theorem (Arveson 1972)

K is a complete spectral set for T if and only if T has a normal ∂K -dilation. That is, there exist

• A Hilbert space $\mathcal{L} \supset \mathcal{H}$,

• a normal operator N on \mathcal{L} with spectrum in ∂K such that

$$r(T) = P_{\mathcal{H}}r(N)|_{\mathcal{H}}$$

for all r.

Say **rational dilation holds on** K if whenever K is spectral for T, then K is complete spectral for T.

Examples:

- rational dilation holds for K=disk (Sz.-Nagy 1952)
- rational dilation holds for K=annulus (Agler 1985)
- rational dilation **fails** for *K*=two-holed domain (Dritschel-McCullough 2005, Agler-Harland-Raphael 2008)

< ∃ >

R(K)=uniform closure of rational functions in C(K)all the above examples: R(K) is a **hypo-Dirichlet algebra** on ∂K :

$$\overline{{\sf Re}\;R(K)}\subset \mathcal{C}_{\mathbb{R}}(\partial K)$$

has finite codimension.

When the codimension is 0, rational dilation always holds (Berger-Foais-Lebow)

□→ ★ 国 → ★ 国 → □ 国

The variety $z^2 = w^2$ in \mathbb{D}^2 :

$$\mathcal{Y} = \{z^2 = w^2\} = \{z = w\} \cup \{z = -w\}$$
$$:= \mathcal{Y}_+ \cup \mathcal{Y}_-$$

 $\partial \mathcal{Y} = \partial \mathcal{Y}_+ \cup \partial \mathcal{Y}_-$ (a union of two circles) $R(\mathcal{Y})$ is a hypo-Dirichlet algebra on $\partial \mathcal{Y}$ (codimension 1)

・回 と く ヨ と ・ ヨ と

The variety

$$z^2 = \frac{w^2 - r^2}{1 - r^2 w^2}$$

in \mathbb{D}^2 is an annulus.

 ${\mathcal Y}$ is the limiting case r o 0

Rational dilation holds on the annulus, does it hold on \mathcal{Y} ?

- 170

돌아 수 돌아 ~

æ

The Neil parabola:

$$\mathcal{N} = \{z^2 = w^3\} \subset \mathbb{D}^2$$

$R(\mathcal{N}) \cong \{f \in R(\mathbb{D}) : f'(0) = 0\}$

 $R(\mathcal{N})$ is hypo-Dirichlet on $\partial \mathcal{N}$ (codimension 2) Does rational dilation hold on \mathcal{N} ?

(< E) < E)</p>

A ₽

Theorem (1)

Rational dilation holds on the variety $z^2 = w^2$.

Theorem (2)

Rational dilation fails on the variety $z^2 = w^3$.

(ロ) (同) (E) (E) (E)

Rational dilation on the annulus:

$$\mathbb{A}_q = \{0 < q < |z| < 1\}$$

Theorem (Agler 1985)

Rational dilation holds on \mathbb{A}_q .

Goal: give a proof of Agler's theorem that can be extended to cover the $z^2 = w^2$ variety.

< ≣ >

$$\mathbb{A}_q = \{0 < q < |z| < 1\}$$

inner boundary $\partial_0 = \{|z| = q\}$, outer boundary $\partial_1 = \{|z| = 1\}$

Let $u \ge 0$, harmonic in A. Then

$$u(z) = \int_{\partial \mathbb{A}} P(z,\zeta) d\mu(\zeta).$$

 $u = \operatorname{Re} f...$ if and only if $\mu(\partial_0) = \mu(\partial_1)$

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

Let $u \ge 0$, harmonic in A. Then

$$u(z) = \int_{\partial \mathbb{A}} P(z,\zeta) \, d\mu(\zeta).$$

Still true for $n \times n$ matrix-valued u; then μ is a positive matrix-valued measure (POVM)

$$u = \operatorname{Re} f...$$
 if and only if $\mu(\partial_0) = \mu(\partial_1)$

▲圖▶ ▲屋▶ ▲屋▶ ---

Let $\sigma(T) \subset \mathbb{A}_q$ and suppose \mathbb{A}_q is spectral for T.

We want to prove

$$\|G(T)\|\leq 1$$

for all rational matrix-valued G(z) with

$$\|G\|_{\mathbb{A}} = \sup_{\mathbb{A}} \|G(z)\| \leq 1,$$

個 と く ヨ と く ヨ と …

First reduction:

$$F(z) = (I_n + G(z))(I_n - G(z))^{-1}$$

Then Re $F(z) \succeq 0$ and

$$\|G(T)\| \leq 1$$
 if and only if Re $F(T) \succeq 0$

æ

Second reduction: we want Re $F(T) \succeq 0$.

$${\sf Re} {\sf F}_\mu(z) = \int_{\partial \mathbb{A}} {\sf P}(z,\zeta) \, d\mu(\zeta)$$

with $\mu(\partial_0) = \mu(\partial_1) = I_n$

 F_{μ} is a Choquet integral

$$F_{\mu}(z) = \int_{\mathcal{E}} F_{\lambda}(z) \, dE_{\mu}(\lambda)$$

So we don't need check all F_{μ} , just the extreme points $F_{\lambda}...$

白 と く ヨ と く ヨ と

Second reduction (continued)

 F_{μ} is a Choquet integral

$$F_{\mu}(z) = \int_{\mathcal{E}_n} F_{\lambda}(z) \, dE_{\mu}(\lambda)$$

where \mathcal{E}_n is the set of extreme points of the compact, convex set

$$\Gamma_n := \{n \times n \text{ matrix-valued } \mu, \mu(\partial_0) = \mu(\partial_1) = I_n\}$$

When n = 1, exteme points are pairs of point masses (one on ∂_0 , one on ∂_1).

• E •

$$\Gamma_n := \{n \times n \text{ matrix-valued } \mu, \mu(\partial_0) = \mu(\partial_1) = I_n\}$$

Theorem (Ball, Guerra-Huamán 2013)

If λ is an extreme point of Γ_n then λ is finitely supported:

$$\lambda = \sum_{j=1}^{m} A_j \delta_{\alpha_j} + \sum_{j=1}^{m} B_j \delta_{\beta_j}, \quad \alpha_j \in \partial_0, \quad \beta_j \in \partial_1$$

with A_j, B_j positive, rank one, and $\sum A_j = \sum B_j = I$

Not all of these are extreme-but it will suffice to check all of these.

伺 と く ヨ と く ヨ と

Third reduction (Naimark dilation trick):

Lemma

If $A_1, \ldots A_m$, $B_1, \ldots B_m$ are positive, rank one, $n \times n$ matrices and $\sum A_j = \sum B_j = I_{n \times n}$ then there exist

• rank one projections $P_1, \ldots P_m, Q_1, \ldots Q_m$ with $\sum P_j = \sum Q_j = I_{m \times m}$, and

• an isometry
$$V:\mathbb{C}^n
ightarrow\mathbb{C}^m$$

such that

$$A_j = V^* P_j V, \quad B_j = V^* Q_j V$$

We may thus assume λ is a $\mathbf{spectral}\ \mathbf{measure}$ on each boundary component

(《圖》 《문》 《문》 - 문

Final reduction (rotation trick):

$$\lambda = \sum_{j=1}^{n} P_j \delta_{\alpha_j} + \sum_{j=1}^{n} Q_j \delta_{\beta_j}$$

Assume $1 \notin \text{supp}(\lambda)$.

By transforming $F = F_{\lambda}$ appropriately we may sweep all the mass on ∂_1 onto a single point:

Lemma

Let
$$G = (F - I)(F + I)^{-1}$$
 and $U = G(1)$ (unitary). Then for

$$F_{\widetilde{\lambda}} := (I + U^*G)(I - U^*G)^{-1}$$

we have $\widetilde{\lambda}|_{\partial_1} = I_n \delta_1$.

・ロン ・回 と ・ 回 と ・ 回 と

Summary of the reductions: to show $\mathbb A$ is complete spectral for $\mathcal T,$ it suffices to show

• $\|G(T)\| \leq 1$ for all contractive G

▲圖▶ ▲屋▶ ▲屋▶ ---

Summary of the reductions: to show $\mathbb A$ is complete spectral for ${\mathcal T}$, it suffices to show

- $||G(T)|| \le 1$ for all contractive G
- Re $F(T) \succeq 0$ for all Re $F \succeq 0$

向下 イヨト イヨト

Summary of the reductions: to show $\mathbb A$ is complete spectral for ${\mathcal T},$ it suffices to show

- $||G(T)|| \le 1$ for all contractive G
- Re $F(T) \succeq 0$ for all Re $F \succeq 0$
- Re $F_{\lambda}(T) \succeq 0$ for all finitely supported λ

伺下 イヨト イヨト

Summary of the reductions: to show $\mathbb A$ is complete spectral for ${\mathcal T},$ it suffices to show

- $||G(T)|| \le 1$ for all contractive G
- Re $F(T) \succeq 0$ for all Re $F \succeq 0$
- Re $F_{\lambda}(\mathcal{T}) \succeq 0$ for all finitely supported λ
- Re $F_{\lambda}(T) \succeq 0$ for all finitely supported spectral λ

伺い イヨト イヨト 三日

Summary of the reductions: to show $\mathbb A$ is complete spectral for ${\mathcal T},$ it suffices to show

- $||G(T)|| \le 1$ for all contractive G
- Re $F(T) \succeq 0$ for all Re $F \succeq 0$
- Re $F_{\lambda}(T) \succeq 0$ for all finitely supported λ
- Re $F_{\lambda}(T) \succeq 0$ for all finitely supported spectral λ
- Re $F_{\lambda}(T) \succeq 0$ for all finitely supported spectral λ with only $I_n \delta_1$ on outer boundary

個 と く き と く き と … き

Consider F_{λ} with

$$\lambda = \sum_{j=1}^{n} P_j \delta_{\alpha_j} + I \delta_1.$$

$$\lambda = \sum_{j=1}^{n} P_j \delta_{\zeta_j} + \sum_{j=1}^{n} P_j \delta_1$$

(recall $\sum P_j = I$).

$$\lambda = \sum_{j=1}^{n} P_j \cdot (\delta_{\alpha_j} + \delta_1)$$

$$\lambda = \sum_{j=1}^{n} P_j \cdot (\delta_{\alpha_j} + \delta_1)$$

Put

$$\rho_j = \delta_{\alpha_j} + \delta_1$$

Poisson integral of ρ_j is real part of some holomorphic f_j . Since P_j are orthogonal,

$$F_{\lambda} = \mathsf{diag}(f_1, \dots f_n)$$

But each Re $f_j(T) \succeq 0$ by the spectral set hypothesis, so Re $F(T) \succeq 0$. \Box

- 170

(< E) < E) = E</p>

The variety $z^2 = w^2$ in \mathbb{D}^2 :

$$\mathcal{Y} = \{z^2 = w^2\} = \{z = w\} \cup \{z = -w\}$$
$$:= \mathcal{Y}_+ \cup \mathcal{Y}_-$$

 $\psi_{\pm}(t) = (t,\pm t)$ parametrize \mathcal{Y}_{\pm} by $\mathbb D$

< □ > < □ > < □ > □ □

Holomorphic functions on \mathcal{Y} :

 $F: \mathcal{Y} \to \mathbb{C}$ $F_{\pm} = F|_{\mathcal{Y}_{\pm}}$

are holomorphic on \mathcal{Y}_{\pm} and $F_{+}(0) = F_{-}(0)$. Conversely:

Lemma

If F_\pm are holomorphic in $\mathbb D$ and $F_+(0)=F_-(0)=0,$ then

$$\widetilde{F}(z,w) := (1-(z-w))F_+(\frac{z+w}{2}) + (1-(z+w))F_-(\frac{z-w}{2})$$

is holomrphic in \mathbb{D}^2 and restricts to F_{\pm} on \mathcal{Y}_{\pm} .

(ロ) (同) (E) (E) (E)

To solve the Dirichlet problem on \mathcal{Y} , solve on each disk \mathcal{Y}_\pm and require the solutions to match at 0. Thus:

Lemma

 μ on $\partial \mathcal{Y} = \partial_+ \cup \partial_-$ is the boundary measure of Re F if and only if $\mu(\partial_+) = \mu(\partial_-)$.

Same for matrix valued F, μ .

• 3 • 1

Proof for the annulus works:

Theorem (1)

Rational dilation holds on the variety $z^2 = w^2$.

Note that by the spectral set condition,

$$\|S^2 - T^2\| \le \|z^2 - w^2\|_{\mathcal{Y}} = 0.$$

The dilation of S, T will be a pair of commuting normal operators U, V with spectrum in $\partial \mathcal{Y}$: thus

$$U, V$$
 unitary, and $U^2 = V^2$

Which S, T have \mathcal{Y} as a spectral set?

Which S, T have \mathcal{Y} as a spectral set?

Theorem

Let S, T be commuting operators satisfying $S^2 = T^2$. Then S, T dilate to commuting unitaries with $U^2 = V^2$ if and only if

$$\|\gamma S + (1-\gamma)T\| \leq 1$$

for all $|\gamma - \frac{1}{2}| = \frac{1}{2}$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

A homomorphism

$$\pi: R(K) \to B(H)$$

is contractive if

 $\|\pi(f)\|_{B(H)} \le \|f\|_{\infty}$

for all $f \in R(K)$, and **completely contractive** if

 $\|[\pi(F_{ij})]\|_{B(H)} \le \|[F_{ij}\|_{\infty}$

for all matrices $F \in M_n(R(K))$.

- ★ 臣 ▶ - - 臣

Theorem (2)

Rational dilation fails on the Neil parabola \mathcal{N} .

In fact: there is a representation

$$\pi: R(\mathcal{N}) \to M_{12 \times 12}(\mathbb{C})$$

contractive but not 2-contractive.

Identify $R(\mathcal{N})$ with subalgebra of $\mathcal{A}(\mathbb{D})$:

$$R(\mathcal{N}) = \{ f \in \mathcal{A}(\mathbb{D}) : f'(0) = 0 \}.$$

・回・ ・ヨ・ ・ヨ・

Convexity approach again:

Let

$$\mathcal{P}=\left\{rac{1+f}{1-f}:f\in H^\infty(\mathcal{N}),f(0)=1
ight\}$$

The set $\ensuremath{\mathcal{P}}$ is compact and convex, let

$$\mathcal{E}=\mathsf{extreme}$$
 points of \mathcal{P}

For each $f \in \mathcal{P}$ we have a Choquet integral

$$\frac{1+f}{1-f} = \int_{\mathcal{E}} \frac{1+\phi_t}{1-\phi_t} \, d\mu(t)$$

< 3 > <

For each $f \in \mathcal{P}$ we have a Choquet integral

$$\frac{1+f}{1-f} = \int_{\mathcal{E}} \frac{1+\phi_t}{1-\phi_t} \, d\mu(t)$$

The functions

$$\{\phi: rac{1+\phi}{1-\phi} \in \mathcal{E}\}$$

are called test functions for $H^{\infty}(\mathcal{N})$.

- 17

< 注▶ < 注▶ -

Representing the unit ball of $H^{\infty}(\mathcal{N})$:

Rearringing the Choquet integral we have

$$1-f(z)f(w)^* = \int_{\mathcal{E}} 1-\phi_t(z)\phi_t(w)^* d\mu_{zw}(t)$$

where μ is a positive measure valued kernel on $\mathbb{D} \times \mathbb{D}$. To proceed we need this more explicitly...

• 3 >

 $\mathbb{D}^*=$ one-point compactification of \mathbb{D}

$$\psi_{\lambda}(z) = z^2 rac{\lambda-z}{1-\overline{\lambda}z}, \quad \psi_*(z) = z^2 \; (ext{test functions})$$

Theorem (Pickering)

If f lies in the unit ball of $R(\mathcal{N})$ and is smooth across the boundary then

$$1 - f(z)f(w)^* = \int_{\mathbb{D}^*} (1 - \psi_t(z)\psi_t(w)^*) \, d\mu_{z,w}(t)$$

where μ is a positive $M(\mathbb{D}^*)$ -valued kernel.

・ 同・ ・ ヨ・

< 注→ 注

The test functions can be pushed back down to \mathcal{N} , we get

$$\phi_{\lambda}(z,w) = z rac{\lambda z - w}{z - \lambda^* w}, \phi_*(z) = z$$

Pickering also shows no (closed) subcollection of test functions suffices.

Corollary: a pair of commuting, contractive, invertible matrices X, Y with $X^3 = Y^2$ give a contractive representation of $\mathcal{A}(\mathcal{N})$ if and only if

$$X(\lambda X - Y)(X - \lambda^* Y)^{-1}$$

is contractive for all $\lambda \in \mathbb{D}$.

医下子 医下口

Loosely, moving to matrix valued F, if F every $n \times n$ matrix function also has a representation

$$1 - F(z)F(w)^* = \int_{\mathbb{D}^*} (1 - \psi_t(z)\psi_t(w)^*) \, d\mu_{z,w}(t)$$

then one can pass (nice) representaitons inside the integral to conclude contractive implies completely contractive.

(4) (2) (4) (2) (4)

Conversely, let \mathfrak{F} be a finite set and form the closed, convex cone

$$C_{\mathfrak{F}} = \left\{ H(z,w) = \int_{\mathbb{D}^*} (1 - \psi_t(z)\psi_t(w)^*) \, d\mu_{z,w}(t) \right\}$$

where $\mu_{z,w}$ are matrix-valued measures. If for some F we have

$$I - F(z)F(w)^* \notin C_{\mathfrak{F}}$$

then we can separate $I - F(z)F(w)^*$ from $C_{\mathfrak{F}}$ with a positive functional, apply GNS to get a representation that is contractive but NOT completely contractive.

Key step: if F is a matrix inner function in $M_2 \otimes \mathcal{A}(\mathcal{N})$, an integral representation for F imposes constraints on its zeroes...

▲□→ ▲注→ ▲注→

æ

 $F(z) = z^2 \Phi(z)$, Φ rational, inner, degree 2,

Theorem

If F is representable as

$$I - F(z)F(w)^* = \int_{\mathbb{D}^*} (1 - \psi_t(z)\psi_t(w)^*) \, d\mu_{z,w}(t)$$

for z, w in a large finite set \mathfrak{F} , then either

$$\Phi \simeq egin{pmatrix} \phi_1 & 0 \ 0 & \phi_2 \end{pmatrix} \quad \textit{or} \quad egin{pmatrix} 1 & 0 \ 0 & \phi_1 \phi_2 \end{pmatrix}$$

One can write down Φ for which this fails, so rational dilation fails on $\mathcal{N}.$ $\hfill\square$

イロン イ部ン イヨン イヨン 三日