Analysis on Varieties

Michael Jury

University of Florida

FLOAS, May 14, 2011

Consider a polynomial $p \in \mathbb{C}[z, w]$. Its zero variety is the set

$$
\left\{(z, w) \in \mathbb{C}^{2}: p(z, w)=0\right\}
$$

Say p defines a distinguished variety if

$$
\begin{equation*}
\text { for all }(z, w) \in Z_{p},|z|=1 \text { if and only if }|w|=1 \tag{DV}
\end{equation*}
$$

Examples:

- $p(z, w)=z-w$ (boring)
- $p(z, w)=z^{2}-w^{2}=(z-w)(z+w)$ (mostly boring)
- $p(z, w)=z^{3}-w^{2}$ (not boring)

The zero variety in the last example

$$
p(z, w)=z^{3}-w^{2}
$$

is called the Neil parabola. Since

$$
\nabla p=\left(\frac{\partial p}{\partial z}, \frac{\partial p}{\partial w}\right)=\left(3 z^{2},-2 w\right)
$$

the origin $(0,0)$ is a singular point (in this case, a cusp).
Mostly we are interested in analytic functions on

$$
V=Z_{p} \cap \mathbb{D}^{2}
$$

Notice $\partial V \subset \partial \mathbb{D} \times \partial \mathbb{D} \subsetneq \partial(\mathbb{D} \times \mathbb{D})$.

Definition

Let V be a distinguished variety. A function $f: V \rightarrow \mathbb{C}$ is holomorphic at $(z, w) \in V$ if there exist:

- a neighborhood Ω of (z, w) in \mathbb{C}^{2}, and
- a holomorphic function $F: \Omega \rightarrow \mathbb{C}$
such that

$$
\left.F\right|_{V \cap \Omega}=\left.f\right|_{V \cap \Omega}
$$

FACT (H. Cartan): If f is holomorphic on V then there exists an F holomorphic on \mathbb{D}^{2} such that $\left.F\right|_{V}=f$.

Example: what do the holomorphic functions on the Neil parabola \mathcal{N} look like?

The Neil parabola

$$
\mathcal{N}=\left\{(z, w) \in \mathbb{D}^{2}: z^{3}=w^{2}\right\}
$$

is paramaterized by the disk:

$$
\psi: t \rightarrow\left(t^{2}, t^{3}\right)
$$

is a holomorphic bijection of \mathbb{D} with \mathcal{N}. Take $f \in \operatorname{Hol}(\mathcal{N})$, extend to \mathbb{D}^{2} (Cartan):

$$
f=\left.F\right|_{V}, \quad F(z, w)=\sum_{n, m \geq 0} a_{m n} z^{m} w^{n} .
$$

Then

$$
F(\psi(t))=\sum a_{m n} t^{2 m+3 n}=\sum_{j \neq 1} b_{j} t^{j}
$$

is holomorphic in \mathbb{D}.

Conversely for each $j \neq 1$ choose m, n with $j=2 m+3 n$. If $f(t)=\sum_{j \neq 1} b_{j} t^{j}$ is holomorphic in \mathbb{D}, then

$$
F(z, w)=\sum_{m, n \geq 0} b_{2 m+3 n} z^{m} w^{n}
$$

is holomorphic on \mathbb{D}^{2}, and $F(\psi(t))=f(t)$.
Conclusion: the map $f \rightarrow f \circ \psi$ is an isomorphism of $\operatorname{Hol}(\mathcal{N})$ with

$$
\left\{f \in \operatorname{Hol}(\mathbb{D}): f^{\prime}(0)=0\right\} .
$$

This was a special case of a general fact:

Theorem (Agler-McCarthy, 2007)

Let $V \subset \mathbb{D}^{2}$ be a distinguished variety. Then there exist:

- a finite Riemann surface R,
- a holomorphic map $\psi: R \rightarrow V$, and
- a finite codimension subalgebra $\mathcal{A} \subset \operatorname{Hol}(R)$
such that

$$
f \rightarrow f \circ \psi
$$

is an isomrophism of $\mathrm{Hol}(V)$ with \mathcal{A}.

The map ψ has the form

$$
t \rightarrow\left(\psi_{1}(t), \psi_{2}(t)\right)
$$

with $\left|\psi_{1}\right|=\left|\psi_{2}\right|=1$ on ∂R, and $p\left(\psi_{1}, \psi_{2}\right)=0$. In other words, an algebraic pair of inner functions on R.

von Neumann's inequality

Consider \mathbb{C}^{n} with its usual inner product (and Euclidean norm):

$$
\langle\vec{z}, \vec{w}\rangle=\sum_{j=1}^{n} z_{j} \overline{w_{j}}, \quad\|z\|=\left(\sum_{j=1}^{n}\left|z_{j}\right|^{2}\right)^{1 / 2}
$$

An $n \times n$ matrix T is contractive if

$$
\|T \vec{z}\| \leq\|\vec{z}\|, \quad \text { for all } \vec{z} \in \mathbb{C}^{n}
$$

that is, $\|T\| \leq 1$.

Theorem (von Neumann, 1949)

For every contractive matrix T and every polynomial $p \in \mathbb{C}[z]$,

$$
\|p(T)\| \leq\|p\|_{\mathbb{D}}:=\sup _{|z| \leq 1}|p(z)|
$$

Same thing in 2 variables:

Theorem (Ando, 1963)

If S, T are commuting contractive matrices and $p \in \mathbb{C}[z, w]$, then

$$
\|p(S, T)\| \leq\|p\|_{\mathbb{D}^{2}}:=\sup _{|z|,|w| \leq 1}|p(z, w)| .
$$

Once S and T are fixed, this can be sharpened...

Suppose S, T are simultaneously diagonalizable matrices with common eigenvectors $v_{1}, \ldots v_{n}$:

$$
S v_{i}=\lambda_{i} v_{i}, \quad T v_{i}=\mu_{i} v_{i}
$$

We also assume all $\left|\lambda_{1}\right|<1,\left|\mu_{i}\right|<1$. The set

$$
\Lambda=\left\{\left(\lambda_{i}, \mu_{i}\right): i=1, \ldots n\right\}
$$

is called the joint spectrum of S, T.

Theorem (Agler-McCarthy, 2005)

Let, T be as above. Then there exists a disguished variety V such that $\Lambda \subset V$ and for all $p \in \mathbb{C}[z, w]$,

$$
\|p(S, T)\| \leq\|p\| v:=\sup _{(z, w) \in V}|p(z, w)|
$$

In other words, in Ando we can sup over just V, instead of all of \mathbb{D}^{2}.

Since S is contractive, the matrix

$$
\left\langle\left(I-S^{*} S\right) v_{j}, v_{i}\right\rangle=\left(1-\lambda_{i} \overline{\lambda_{j}}\right)\left\langle v_{j}, v_{i}\right\rangle
$$

is positive semidefinite; same for T. So, factor:

$$
\begin{align*}
\left(1-\overline{\lambda_{i}} \lambda_{j}\right)\left\langle v_{j}, v_{i}\right\rangle & =\left\langle x_{j}, x_{i}\right\rangle \tag{1}\\
\left(1-\overline{\mu_{i}} \mu_{j}\right)\left\langle v_{j}, v_{i}\right\rangle & =\left\langle y_{j}, y_{i}\right\rangle \tag{2}
\end{align*}
$$

with $x_{i} \in \mathbb{C}^{d_{1}}, y_{i} \in \mathbb{C}^{d_{2}}$.
Multiply first equation by $\left(1-\overline{\mu_{i}} \mu_{j}\right)$, second by $\left(1-\overline{\lambda_{i}} \lambda_{j}\right)$, get

$$
\left(1-\overline{\lambda_{i}} \lambda_{j}\right)\left\langle y_{j}, y_{i}\right\rangle=\left(1-\overline{\mu_{i}} \mu_{j}\right)\left\langle x_{j}, x_{i}\right\rangle
$$

We have

$$
\left(1-\overline{\lambda_{i}} \lambda_{j}\right)\left\langle y_{j}, y_{i}\right\rangle=\left(1-\overline{\mu_{i}} \mu_{j}\right)\left\langle x_{j}, x_{i}\right\rangle
$$

Rearrange to get

$$
\left\langle y_{j}, y_{i}\right\rangle+\overline{\mu_{i}} \mu_{j}\left\langle x_{j}, x_{i}\right\rangle=\left\langle x_{j}, x_{i}\right\rangle+\overline{\lambda_{i}} \lambda_{j}\left\langle y_{j}, y_{i}\right\rangle
$$

Or:

$$
\left\langle\binom{\mu_{j} x_{j}}{y_{j}},\binom{\mu_{i} x_{i}}{y_{i}}\right\rangle=\left\langle\binom{ x_{j}}{\lambda_{j} y_{j}},\binom{x_{i}}{\lambda_{i} y_{i}}\right\rangle
$$

From

$$
\left\langle\binom{\mu_{j} x_{j}}{y_{j}},\binom{\mu_{i} x_{i}}{y_{i}}\right\rangle=\left\langle\binom{ x_{j}}{\lambda_{j} y_{j}},\binom{x_{i}}{\lambda_{i} y_{i}}\right\rangle
$$

there exists a unitary matrix

$$
U=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right): \mathbb{C}^{d_{1}} \oplus \mathbb{C}^{d_{2}} \rightarrow \mathbb{C}^{d_{1}} \oplus \mathbb{C}^{d_{2}}
$$

such that

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{x_{i}}{\lambda_{i} y_{i}}=\binom{\mu_{i} x_{i}}{y_{i}}
$$

Given

$$
\left(\begin{array}{cc}
A & B \tag{3}\\
C & D
\end{array}\right)\binom{x_{i}}{\lambda_{i} y_{i}}=\binom{\mu_{i} x_{i}}{y_{i}}
$$

define

$$
\Phi(z)=A+z B(I-z D)^{-1} C
$$

Since U was unitary,

$$
I-\Phi(z)^{*} \Phi(z)=\left(1-|z|^{2}\right) C^{*}(I-z D)^{-1 *}(I-z D)^{-1} C
$$

so $\Phi(z)$ is unitary when $|z|=1$. (Φ is a matrix inner function.) Moreover, (3) says

$$
\Phi\left(\lambda_{i}\right) x_{i}=\mu_{i} x_{i}
$$

Indeed, write out

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{x_{i}}{\lambda_{i} y_{i}}=\binom{\mu_{i} x_{i}}{y_{i}}
$$

as

$$
\begin{align*}
A x_{i}+\lambda_{i} B y_{i} & =\mu_{i} x_{i} \tag{4}\\
C x_{i}+\lambda_{i} D y_{i} & =y_{i} \tag{5}
\end{align*}
$$

Solve second equation to get

$$
y_{i}=\left(I-\lambda_{i} D\right)^{-1} C x_{i}
$$

substitute into first equation to get

$$
\Phi\left(\lambda_{i}\right) x_{i}=\mu_{i} x_{i}
$$

The eigenvalue equation

$$
\Phi\left(\lambda_{i}\right) x_{i}=\mu_{i} x_{i}
$$

says that each point $\left(\lambda_{i}, \mu_{i}\right)$ of the joint spectrum lies in the variety

$$
\operatorname{det}(w l-\Phi(z))=0
$$

Arranging the algebra differently, there is another matrix inner function Ψ so that

$$
V:=\left\{\operatorname{det}\left(w l_{d_{1}}-\Phi(z)\right)=0\right\}=\left\{\operatorname{det}\left(z l_{d_{2}}-\Psi(w)\right)=0\right\} .
$$

This is a distinguished variety!

Theorem (Agler-McCarthy 2005, Knese 2009)

If Φ is a rational matrix inner function, then

$$
\operatorname{det}(w I-\Phi(z))=0
$$

defines a distinguished variety; conversely every distinguished variety may be put in this form.

For example, if we put

$$
\Phi(z)=\left(\begin{array}{cc}
0 & z \\
z^{2} & 0
\end{array}\right)
$$

then

$$
\operatorname{det}\left(w l_{2}-\Phi(z)\right)=\operatorname{det}\left(\begin{array}{cc}
w & -z \\
-z^{2} & w
\end{array}\right)=w^{2}-z^{3}
$$

the Neil parabola.

Nevanlinna-Pick interpolation on V

General question: given points

$$
s_{1}, \ldots s_{n}
$$

in a (domain, surface, variety) Ω, and points

$$
t_{1}, \ldots t_{n}
$$

in the unit disk \mathbb{D}, when does there exist a holomorphic function $f: \Omega \rightarrow \mathbb{D}$ with

$$
f\left(s_{i}\right)=t_{i}, \quad \text { all } i=1, \ldots n ?
$$

For $\Omega=\mathbb{D}$, the answer is

Theorem (Pick(1916), Nevanlinna(1919),...)

The interpolation problem has a solution if and only if the $n \times n$ matrix

$$
\frac{1-t_{i} \bar{t}_{j}}{1-s_{i} \bar{S}_{j}}
$$

is positive semidefinite.

On V ? A family of matrices:
For each matrix inner function giving a determinantal representation

$$
V=\{\operatorname{det}(w l-\Phi(z))=0\},
$$

there is an analytic (on V) family of "eigenvectors" $Q(z, w)$

$$
Q(z, w) \Phi(z)=w Q(z, w)
$$

for all $(z, w) \in V$.
Example:

$$
\left(\begin{array}{ll}
w & z
\end{array}\right)\left(\begin{array}{cc}
0 & z \\
z^{2} & 0
\end{array}\right)=\left(\begin{array}{ll}
z^{3} & w z
\end{array}\right)=w\left(\begin{array}{ll}
w & z
\end{array}\right)
$$

since $z^{3}=w^{2}$ on \mathcal{N}

In addition to

$$
Q(z, w) \Phi(z)=w Q(z, w)
$$

we have $P(z, w)$ so that for the "companion" matrix inner function Ψ,

$$
P(z, w) \Psi(w)=z P(z, w)
$$

For $(z, w) \in V,(\zeta, \eta) \in V$, we have the identity

$$
\frac{Q(z, w) Q(\zeta, \eta)^{*}}{1-z \bar{\zeta}}=\frac{P(z, w) P(\zeta, \eta)^{*}}{1-w \bar{\eta}}
$$

$$
\frac{Q(z, w) Q(\zeta, \eta)^{*}}{1-z \bar{\zeta}}=\frac{P(z, w) P(\zeta, \eta)^{*}}{1-w \bar{\eta}}
$$

Call the above expression $K((z, w),(\zeta, \eta))$. Then

Theorem (Knese, McCullough, J.)

The interpolation problem on V

$$
\left(z_{i}, w_{i}\right) \rightarrow t_{i}
$$

has a solution if and only if the matrices

$$
\left(1-t_{i} \overline{t_{j}}\right) K\left(\left(z_{i}, w_{i}\right),\left(z_{j}, w_{j}\right)\right)
$$

are all positive semidefinite, over all choices of determinantal representation.

For the Neil parabola, we had

$$
H^{\infty}(\mathcal{N}) \cong\left\{f \in H^{\infty}(\mathbb{D}): f^{\prime}(0)=0\right\}
$$

Interpolation theorem recovers result of
Davidson-Paulsen-Raghupathi-Singh (2009).
Bigger picture: each K is a reproducing kernel for a Hilbert space of analytic functions on V; the operators

$$
f \rightarrow z f, \quad f \rightarrow w f
$$

on these spaces are commuting isometries with joint spectrum in ∂V; basically all such pairs arise this way.

