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Abstract. We show that when m > n, the space of m × n-matrix-valued rational inner functions is path
connected.

A matrix-valued rational function is an m × n matrix W (z) each of whose entries is a rational function
wij(z) of the complex variable z. Thus W (z) is an m×n matrix valued function defined at all but (at most)
finitely many points of the complex plane C.

We let ∥W∥∞ denote the supremum of ∥W (z)∥ over the open unit disk |z| < 1, here ∥W (z)∥ is the usual
operator norm of the linear transformation W (z) acting between the Euclidean spaces Cn and Cm. If W is
rational and ∥W∥∞ < ∞, then W extends continuously to the closed disk |z| ≤ 1, and conversely. (Evidently
this occurs if and only if W has no poles in |z| ≤ 1, we will be working only with such functions.) We say
an m× n rational matrix function is inner if ∥W∥∞ ≤ 1 and W (eiθ)∗W (eiθ) = In for all θ ∈ [0, 2π]. (Note
that this condition forces m ≥ n.) We will let RIF(m,n) denote the set of all m× n matrix rational inner
functions. The set RIF(m,n) is equipped with the (metric) topology induced by the norm ∥ · ∥∞, which
it inherits as a subset of the continuous m × n matrix valued functions in the disk, this coincides with the
topology of uniform convergence in the closed disk |z| ≤ 1. The purpose of this note is to prove the following:

Theorem. If m > n then the metric space RIF(m,n) is path connected.

Remark: It is easy to see that in the square case, RIF(m,m) is not path connected. Indeed, by
considering the winding number of the function detW (eiθ) about the origin, one sees that, for example,
W (z) = zIm cannot be joined to Im by a path lying within RIF(m,m).

Proof. Since we are assuming m > n, it will be helpful to write elements of RIF(m,n) in block form as
columns

W (z) =

(
X(z)
Y (z)

)
where X(z) is an n× n rational matrix function and Y (z) is (m− n)× n. The fact that W is inner is then
expressed by the condition X(eiθ)∗X(eiθ) + Y (eiθ)∗Y (eiθ) ≡ In.

We will prove that every W =

(
X
Y

)
∈ RIF(m,n) can be joined to

(
In

O(m−n)×n

)
by a path in RIF(m,n),

this evidently proves the theorem. This in turn is accomplished in two steps: first we prove that for any
W ∈ RIF(m,n), there is a square matrix rational inner function Φ(z) ∈ RIF(n, n) such that there is a

path in RIF(m,n) joining W to

(
Φ
O

)
. (Here O is the (m−n)×n zero matrix, henceforth we will drop the

size subscripts when they are clear from context.) Then we will show that any such

(
Φ
O

)
can be joined to(

I
O

)
in RIF(m,n).

Since W ∗W ≡ I on the circle, the matrix W (eiθ) has full rank n for each θ ∈ [0, 2π). In particular, the
matrix W (1) has n linearly independent rows, and by continuity this same set of rows is independent in
W (eiθ) for θ in a neighborhood of 0. Multiplying W on the left by an m×m permutation matrix, we may
arrange that these are the first n rows. Since the unitary group U(m) is path connected, and a unitary times
a matrix RIF is again a RIF , it follows that the new W with permuted rows is connected by a path in
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RIF(m,n) to the original W . So, we may assume W =

(
X
Y

)
∈ RIF(m,n) with X(eiθ) having full rank

for θ in a neighborhood of 0. The rational matrix function X admits an inner-outer factorization X = ΦF ,
where Φ is projection-valued on the circle and F is a matrix outer function satisfying F ∗F = X∗X on the
unit circle; F will be unique if we additionally impose the condition that F (0) be positive definite (which we
do). From the theory of matrix inner-outer factorizations, F is also rational.[2, Section 6.8] Since X(1) has
full rank, it follows that Φ(1) has full rank n, but then by continuity rank(Φ(eiθ)) = trace(Φ(eiθ)∗Φ(eiθ)) is
constantly equal to n. Thus Φ ∈ RIF(n, n). We may then write

(
X
Y

)
=

(
Φ 0
0 I

)(
F
Y

)

Since F ∗F = X∗X on the circle, it follows that V :=

(
F
Y

)
is inner, i.e. belongs to RIF(m,n). If we

show that V can be joined to

(
I
0

)
, then (since multiplication by diag(Φ, I) will carry RIF(m,n) into itself

continuously) it will follow that W can be joined to

(
Φ
0

)
.

Now, for 0 ≤ t ≤ 1 the n × n matrix function Qt(e
iθ) = I − t2Y (eiθ)∗Y (eiθ) takes positive semidefinite

values on the unit circle (in fact positive definite values when 0 ≤ t < 1). Since Y is a rational matrix

function, we can choose a polynomial p of minimal degree with the property that Ỹ (z) := p(z)Y (z) is a
polynomial matrix function. (That is, p is a common denominator for the entries of Y .) Since Y has no
poles in |z| ≤ 1, this minimal degree common denominator will have no zeroes in |z| ≤ 1, and we may
normalize so that p(0) > 0. We then consider the nonnegative matrix-valued trigonometric polynomials Qt

given by

Q̃t(e
iθ) = p(eiθ)p(eiθ)In − t2Ỹ (eiθ)∗Ỹ (eiθ).

By the Fejer-Riesz theorem for matrix valued trigonometric polynomials [2, Section 6.6], there is an outer
(analytic) polynomial matrix function Gt(z), with degGt = degQt ≤ max(deg p,deg Y ), such that

p(eiθ)p(eiθ)In − t2Ỹ (eiθ)∗Ỹ (eiθ) = Gt(e
iθ)∗Gt(e

iθ).

This Gt will be unique if we impose the requirement that Gt(0) be positive definite. Doing this, in particular
we will have G0(z) = p(z)In and G1(z) = p(z)F (z). Moreover, the outer factor Gt is determined as the

unique matrix function H analytic in |z| < 1 which satisfies H∗H ≤ Q̃t and which maximizes H(0)∗H(0)
[2, Theorem C, Section 3.10]. In addition, since all the Gt have full rank and are outer, it follows that
detGt(z) is nonvanishing in |z| < 1 for all 0 ≤ t ≤ 1. With these facts in hand we can prove that the
map t → Gt is norm continuous on [0, 1]. We must show that if tn → t then Gtn → Gt uniformly.
Since the norms and degrees of the polynomials Gt are uniformly bounded, by compactness there will
be a subsequence Gtnk

which converges uniformly in |z| ≤ 1 to some polynomial matrix function H(z).

Since Gt(0)
∗Gt(0) ≥ G1(0)

∗G1(0) = |p(0)|2F (0)∗F (0) for all t, and F (0) is positive definite, it follows that
detH(0) = limk detGtnk

(0) ̸= 0, and hence from Hurwitz’s theorem that detH(z) = limdetGtnk
(z) is

nonvanishing in |z| < 1, so (since H is polynomial) H(z) is outer. But by uniform convergence it follows

that H(0) > 0 and p(eiθ)p(eiθ)In − t2Ỹ (eiθ)∗Ỹ (eiθ) = H(eiθ)∗H(eiθ) for all θ, so by uniqueness we must
have H = Ft. Thus, for each fixed sequence tn → t, every subsequence of Gtn has a subsequence converging
to Gt, so the full sequence converges to Gt, and thus t → Gt is continuous. If we now put Ft = p−1Gt, then
each Ft is a rational matrix function satisfying

Ft(e
iθ)∗Ft(e

iθ) + t2Y (eiθ)∗Y (eiθ) ≡ In

(with Ft(0) positive definite) for 0 ≤ t ≤ 1, and the path t → Ft is continuous. By construction we have

F0 = In and F1 = F . Thus, the columns

(
Ft

tY

)
will belong to RIF(m,n), and form a path joining

(
F
Y

)
to
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(
I
0

)
. Finally, if we put Xt = ΦFt, then Wt :=

(
Xt

tY

)
is a continuous path in RIF(m,n) joining W0 =

(
Φ
0

)
to W1 =

(
X
Y

)
as desired.

To carry out the second step of the proof, let Φ ∈ RIF(n, n). By [1] Φ can be factored as a Blaschke-
Potapov product

Φ(z) = U

(
N∏

k=1

(bk(z)Pk + (I − Pk))

)
V

where U, V are constant unitary matrices, each bk(z) is a finite Blaschke product, and each Pk is a projection
matrix. Each factor bk(z)Pk + (I − Pk) belongs to RIF(n, n). As noted above, since the unitary group is
path connected we may assume U = V = In. Now let us write(

Φ(z)
0

)
=

(
b1(z)P1 + (I − P1)

0

)( N∏
k=2

(bk(z)Pk + (I − Pk))

)
Let us work with

(0.1)

(
b1(z)P1 + (I − P1)

0

)
Conjugating by a unitary we may assume b1(z)P1 + (I − P1) has the diagonal form

b1(z)
. . .

b1(z)
1

. . .

1


Note that now, each column belongs to RIF(n, 1). Within RIF(n+ 1, 1) there is a path

t →


(1− t)b1(z) + t

0
...
0

(
√
t− t2)(1− b1(z))


joining

(
b1(z) 0 · · · 0 0

)T
to
(
1 0 · · · 0 0

)T
. Doing this in the first column of the matrix (0.1)

leaves the other columns unaffected and the whole path will lie in RIF(m,n) (adding additional zeroes to
the bottom of the column, if needed, to bring the size from n+ 1 up to m). We may thus successively move

each diagonal entry b1(z) to 1. Thus, our original

(
Φ
0

)
is now joined by a path in RIF(m,n) to

(
In
0

)( N∏
k=2

(bk(z)Pk + (I − Pk))

)
We may then absorb the next Blaschke-Potapov factor into the column:(

b2(z)P2 + (I − P2)
0

)( N∏
k=3

(bk(z)Pk + (I − Pk))

)

and repeat the process, so that in the end we see that

(
Φ
0

)
is joined to

(
In
0

)
in RIF(m,n) as desired. □
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