A NOTE ON HOMOTOPIES OF RATIONAL MATRIX INNER FUNCTIONS

MICHAEL T. JURY

ABSTRACT. We show that when m > n, the space of m X n-matrix-valued rational inner functions is path
connected.

A matrix-valued rational function is an m X n matrix W (z) each of whose entries is a rational function
w;;(2) of the complex variable z. Thus W(z) is an m x n matrix valued function defined at all but (at most)
finitely many points of the complex plane C.

We let |W||o denote the supremum of ||W(z)|| over the open unit disk |z| < 1, here ||W(z)|| is the usual
operator norm of the linear transformation W (z) acting between the Euclidean spaces C" and C™. If W is
rational and ||W||o < 00, then W extends continuously to the closed disk |z] < 1, and conversely. (Evidently
this occurs if and only if W has no poles in |z] < 1, we will be working only with such functions.) We say
an m x n rational matrix function is inner if |W o < 1 and W (e?)*W (e?) = I, for all 6 € [0,27]. (Note
that this condition forces m > n.) We will let RZF(m,n) denote the set of all m x n matrix rational inner
functions. The set RZF(m,n) is equipped with the (metric) topology induced by the norm || - ||, Which
it inherits as a subset of the continuous m x n matrix valued functions in the disk, this coincides with the
topology of uniform convergence in the closed disk |z| < 1. The purpose of this note is to prove the following:

Theorem. If m > n then the metric space RZF(m,n) is path connected.

Remark: It is easy to see that in the square case, RZF(m,m) is not path connected. Indeed, by
considering the winding number of the function det ¥ (e??) about the origin, one sees that, for example,
W (z) = zI, cannot be joined to I,,, by a path lying within RZF (m,m).

Proof. Since we are assuming m > n, it will be helpful to write elements of RZF(m,n) in block form as

columns W(z) = (;(((ED

where X (z) is an n x n rational matrix function and Y(z) is (m — n) x n. The fact that W is inner is then
expressed by the condition X (e?)* X (%) + Y (e¥)*Y (e¥) = I,,.

X) € RZF(m,n) can be joined to < In ) by a path in RZF(m,n),
Y O(m—n)xn

this evidently proves the theorem. This in turn is accomplished in two steps: first we prove that for any
W € RZF(m,n), there is a square matrix rational inner function ®(z) € RZF(n,n) such that there is a

We will prove that every W =

path in RZF(m,n) joining W to (g) (Here O is the (m —n) X n zero matrix, henceforth we will drop the

size subscripts when they are clear from context.) Then we will show that any such <(I)> can be joined to

0

( é) in RIF(m,n).

Since W*W = I on the circle, the matrix W (e?) has full rank n for each 6 € [0,2n). In particular, the
matrix W (1) has n linearly independent rows, and by continuity this same set of rows is independent in
W (e') for # in a neighborhood of 0. Multiplying W on the left by an m x m permutation matrix, we may
arrange that these are the first n rows. Since the unitary group U(m) is path connected, and a unitary times
a matrix RIF is again a RIF| it follows that the new W with permuted rows is connected by a path in
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X
Y
for 6 in a neighborhood of 0. The rational matrix function X admits an inner-outer factorization X = ®F,
where ® is projection-valued on the circle and F is a matrix outer function satisfying F*F = X*X on the
unit circle; F' will be unique if we additionally impose the condition that F'(0) be positive definite (which we
do). From the theory of matrix inner-outer factorizations, F' is also rational.[2, Section 6.8] Since X (1) has
full rank, it follows that ®(1) has full rank n, but then by continuity rank(®(e?)) = trace(®(e??)*®(e'?)) is
constantly equal to n. Thus ® € RZF(n,n). We may then write

3) =0 1))

Since F*F = X*X on the circle, it follows that V := (}F/) is inner, i.e. belongs to RZF(m,n). If we

RZIF(m,n) to the original W. So, we may assume W = ( € RIF(m,n) with X(e?) having full rank

show that V' can be joined to (é), then (since multiplication by diag(®, I) will carry RZF (m,n) into itself

continuously) it will follow that W can be joined to (?)

Now, for 0 < t < 1 the n x n matrix function Q;(e??) = I —t?Y (e?)*Y (¢%?) takes positive semidefinite
values on the unit circle (in fact positive definite values when 0 < ¢ < 1). Since Y is a rational matrix
function, we can choose a polynomial p of minimal degree with the property that Y (z) := p(2)Y(2) is a
polynomial matrix function. (That is, p is a common denominator for the entries of Y.) Since Y has no
poles in |z| < 1, this minimal degree common denominator will have no zeroes in |z| < 1, and we may
normalize so that p(0) > 0. We then consider the nonnegative matrix-valued trigonometric polynomials Q;
given by

Qu(e”) = p(e?)p(e) I, — Y ()Y ().

By the Fejer-Riesz theorem for matrix valued trigonometric polynomials [2 Section 6.6], there is an outer
(analytic) polynomial matrix function G¢(z), with deg G; = deg @ < max(degp, degY), such that

p(eD)p(e) I — Y (€)Y () = Gi(e)"Gi(e”).

This G will be unique if we impose the requirement that G;(0) be positive definite. Doing this, in particular
we will have Go(z) = p(2)I,, and G1(z) = p(2)F(z). Moreover, the outer factor G; is determined as the
unique matrix function H analytic in |z| < 1 which satisfies H*H < Q, and which maximizes H(0)* H(0)
[2, Theorem C, Section 3.10]. In addition, since all the G; have full rank and are outer, it follows that
det G¢(z) is nonvanishing in |z| < 1 for all 0 < ¢t < 1. With these facts in hand we can prove that the
map t — G; is norm continuous on [0,1]. We must show that if ¢, — ¢ then G, — G uniformly.
Since the norms and degrees of the polynomials G; are uniformly bounded, by compactness there will
be a subsequence Gy, which converges uniformly in |z[ < 1 to some polynomial matrix function H(z).
Since G¢(0)*G+(0) > G1(0)*G1(0) = |p(0)|*F(0)*F(0) for all ¢, and F(0) is positive definite, it follows that
det H(0) = limgdet Gy, (0) # 0, and hence from Hurwitz’s theorem that det H(z) = limdet Gy, (z) is
nonvanishing in |z| < 1, so (since H is polynomial) H(z) is outer. But by uniform convergence it follows
that H(0) > 0 and p(e?®)p(e’)I,, — t2Y (e')*Y (&) = H(e?)*H(e™?) for all #, so by uniqueness we must
have H = F;. Thus, for each fixed sequence ¢,, — t, every subsequence of GG;, has a subsequence converging
to Gy, so the full sequence converges to Gy, and thus ¢ — G is continuous. If we now put F; = p~'G,, then
each F} is a rational matrix function satisfying

Fi(e”) Fy (") + Y ()Y () = I,
(with F3(0) positive definite) for 0 < ¢ < 1, and the path ¢ — F} is continuous. By construction we have
Fy =1, and F; = F. Thus, the columns (Ft) will belong to RZF(m,n), and form a path joining (}F,> to

tY
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(é) Finally, if we put X; = ®F}, then W, := (gﬁ

) is a continuous path in RZF(m,n) joining Wy = (?)

to Wy = (‘;{) as desired.

To carry out the second step of the proof, let & € RZF(n,n). By [I] ® can be factored as a Blaschke-
Potapov product

N
®(2) =U <H (br(2) Py + (I — Pk))) 4

k=1

where U, V are constant unitary matrices, each by (2) is a finite Blaschke product, and each Py, is a projection
matrix. Each factor by (z) Py + (I — Pg) belongs to RZF(n,n). As noted above, since the unitary group is
path connected we may assume U =V = I,,. Now let us write

<(I)éz)) _ (bl(Z)Pl +O(I— P1>) (ﬂ(bk(z)Pk +(I - Pk))>

k=2

Let us work with

(0.1) <51(Z)P1 76(1 = P1)>

Conjugating by a unitary we may assume b1(z)P; + (I — P;) has the diagonal form
bl(Z)

Note that now, each column belongs to RZF(n,1). Within RZF(n + 1,1) there is a path
(1—t)by(z) + ¢

0
t— :
0
(Vi —12)(1 = bi(2))
joining (bi(z) 0 --- 0 O)T to(l 0 -+ 0 O)T. Doing this in the first column of the matrix ||

leaves the other columns unaffected and the whole path will lie in RZF(m,n) (adding additional zeroes to
the bottom of the column, if needed, to bring the size from n 4+ 1 up to m). We may thus successively move

each diagonal entry b;(z) to 1. Thus, our original (<I>

0> is now joined by a path in RZF(m,n) to

N
(I(;L) (H(bk(z)Pk +(I - Pk)))

k=2

We may then absorb the next Blaschke-Potapov factor into the column:

N
<b2(Z)P2 ‘B(I— PQ)) (H(bk(Z)Pk + (I—Pk))>

k=3

and repeat the process, so that in the end we see that (%) is joined to <I(;L) in RZF(m,n) as desired. O
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