Operator-valued Herglotz kernels and functions of positive real part on the ball

Michael Jury

University of Florida

July 24, 2008

イロン イヨン イヨン イヨン

Let
$$\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$$

Theorem (Riesz-Herglotz)

Let $f \in Hol(\mathbb{D})$. Then $\Re f \ge 0$ in \mathbb{D} iff \exists a postitive measure μ on $\partial \mathbb{D}$ such that

$$f(z) = \int_{\partial \mathbb{D}} rac{1+z\overline{\zeta}}{1-z\overline{\zeta}} d\mu(\zeta) + i\Im f(0)$$

for all $z \in \mathbb{D}$.

・ロン ・回と ・ヨン ・ヨン

Notation & definitions:

•
$$z = (z_1, \dots z_d) \in \mathbb{C}^d$$

• $\langle z, w \rangle = \sum z_j \overline{w_j}, \quad |z| = \sqrt{\langle z, z \rangle}$
• $\mathbb{B}^d = \{z \in \mathbb{C}^d : |z| < 1\}$
• $O = Hol(\mathbb{B}^d), \quad O^+ = \{f \in O : \Re f \ge 0\}$
• H_d^2 : the RKHS on \mathbb{B}^d with kernel
 $k(z, w) = \frac{1}{1 - \langle z, w \rangle}$

 $(H^2_d \subsetneq H^2(\mathbb{B}^d) ext{ when } d>1)$

< 口 > < 回 > < 回 > < 回 > < 回 > <

Э

Definition

A *positive class* on \mathbb{B}^d is a set of functions $\mathcal{P} \subset O^+$ with the following properties:

- \mathcal{P} is a closed, convex cone in $\mathcal{O}+$
- \mathcal{P} is closed under dilations: if $f \in \mathcal{P}$ then

$$f_r(z):=f(rz)$$

belongs to \mathcal{P} for all $0 \leq r \leq 1$.

We are interested in certain positive classes admitting a "noncommutative Herglotz representation."

Examples of positive classes:

٢

•
$$O^+ = \{f \in Hol(\mathbb{B}^d) : \Re f \ge 0\}$$

$$M^+$$
: $f(z) = \int_{\partial \mathbb{B}^d} rac{1 + \langle z, \zeta
angle}{1 - \langle z, \zeta
angle} d\mu(\zeta) + i\Im f(0),$

 μ a positive measure on $\partial \mathbb{B}^d$

• S^+ : the set of $f \in Hol(\mathbb{B}^d)$ such that

$$\frac{f(z) + \overline{f(w)}}{1 - \langle z, w \rangle}$$

is a positive semidefinite kernel.

・ロン ・回 と ・ ヨ と ・ ヨ と

Write $H(z,\zeta)$ for the Herglotz kernel on \mathbb{B}^d :

$$H(z,\zeta) = rac{1+\langle z,\zeta
angle}{1-\langle z,\zeta
angle}$$

Since

$$\frac{H(z,\zeta) + \overline{H(w,\zeta)}}{1 - \langle z,w \rangle} = 2\left(\frac{1}{1 - \langle z,\zeta \rangle}\right)\overline{\left(\frac{1}{1 - \langle w,\zeta \rangle}\right)} \frac{1 - \langle z,\zeta \rangle \overline{\langle w,\zeta \rangle}}{1 - \langle z,w \rangle}$$

is a positive kernel for all $\zeta \in \partial \mathbb{B}^d$, it follows that

$$M^+ \subseteq S^+ \subseteq O^+$$

When d = 1, all inclusions are equalities (Herglotz formula); when d > 1 all inclusions are strict [McCarthy-Putinar '05].

▲祠 → ▲ 臣 → ▲ 臣 →

Duality: let f and g have Taylor expansions $\sum c_{\alpha} z^{\alpha}$, $\sum d_{\alpha} z^{\alpha}$.

Definition

For $f, g \in Hol \mathbb{B}^d$ and $0 \leq r < 1$ define

$$Q_r(f,g) := \sum_{\alpha} c_{\alpha} \overline{d_{\alpha}} r^{\alpha} \frac{\alpha!}{|\alpha|!} + f(0) \overline{g(0)}$$
(1)

Motivation: the series defining Q_r converges for all r < 1, and if g is a Herglotz integral

$$g(z) = rac{1}{2} \int_{\partial \mathbb{B}^d} rac{1 + \langle z, \zeta
angle}{1 - \langle z, \zeta
angle} \, d\mu(\zeta)$$

then

$$Q_r(f,g) = \int_{\partial \mathbb{B}^d} f_r \, d\mu$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Definition

For $\mathcal{C} \subset O$ define

 $\mathcal{C}^* = \{g \in O \mid \Re Q_r(f,g) \ge 0 \text{ for all } f \in \mathcal{C} \text{ and all } r \in [0,1)\}$

It follows easily that

$$M^{+*}=O^+.$$

Main theorem on duality & positive classes:

Theorem (J. '07)

Let $M^+ \subset \mathcal{P} \subset O^+$ be a positive class. Then:

• \mathcal{P}^* is a positive class.

•
$$\mathcal{P}^{**} = \mathcal{P}$$
.

• If $\mathcal{P} \subset \mathcal{P}^*$ then \exists a positive class \mathcal{W} with

$$\mathcal{P} \subset \mathcal{W} \subset \mathcal{P}^*$$
 and $\mathcal{W} = \mathcal{W}^*.$

Operator-valued Herglotz kernels and functions of positive real

Theorem (McCarthy-Putinar '05)

• $M^{+*} = O^+$

•
$$O^{+*} = M^+$$

•
$$S^{+*} \subseteq S^+$$

Question: Is $S^{+*} = S^+$ *?*

It turns out the answer is "No," but we can identify S^{+*} explicitly...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Row contratctions and operator-valued Herglotz kernels:

Definition

A row contraction is a *d*-tuple of bounded operators $T = (T_1, \dots, T_d)$ on a Hilbert space \mathcal{H} such that

$$I - T_1 T_1^* - \dots - T_d T_d^* \ge 0$$

If T is a row contraction, then for all |z| < 1 the operator

$$\langle z, T \rangle := z_1 T_1^* + \cdots + z_d T_d^*$$

is a strict contraction. Define

$$H(z, T) = (I + \langle z, T \rangle)(I - \langle z, T \rangle)^{-1}$$

・ロト ・回ト ・ヨト ・ヨト

Row contractions and positive classes:

$$\Re H(z,T) = 2(I - \langle z,T \rangle)^{-1}(I - \langle z,T \rangle \langle z,T \rangle^*)(I - \langle z,T \rangle^*)^{-1} \geq 0$$

This shows

Lemma

If ρ is a positive linear functional on the C*-algebra generated by T, the holomorphic function

 $\rho(H(z,T))$

has positive real part on \mathbb{B}^d .

For many choices of T, the set

$$\mathcal{P}_{\mathcal{T}} := \{ \rho(\mathcal{H}(z, \mathcal{T})) + i\lambda : \rho \text{ positive }, \lambda \in \mathbb{R} \}$$

is a positive class [Sufficient condition: T dilates rT for all r < 1]

Row contractions of interest:

• Spherical contractions: $Z = (Z_1, \dots, Z_d)$

$$Z_j = \pi(\zeta_j), \qquad j = 1, \dots d$$

where π is any representation of the commutative C*-algebra $C(\partial \mathbb{B}^d)$ on $\mathcal{B}(\mathcal{H})$

• Cuntz isometries: $V = (V_1, \dots, V_d)$

$$V_i^* V_j = \delta_{ij} I; \qquad \sum_{j=1}^d V_j V_j^* = I$$

• Coordinate multipliers on H_d^2 : $S = (S_1, \dots S_d)$

$$S_j = M_{z_j}$$

・ロン ・回 と ・ 回 と ・ 回 と

We have defined for each row contraction T

 $\mathcal{P}_{\mathcal{T}} := \{ \rho(\mathcal{H}(z, \mathcal{T})) + i\lambda : \rho \text{ positive }, \lambda \in \mathbb{R} \}$

For the row contractions Z, V, S we have:

Theorem • $\mathcal{P}_Z = M^+$ (definition of M^+ , more or less) • $\mathcal{P}_V = S^+$ [McCarthy-Putinar '05; Popescu '07] • $\mathcal{P}_S := R^+ = S^{+*}$ [J. '07]

Theorem (J. '07)

$$M^+ \subset R^+ \subset S^+ \subset O^+$$

and each inclusion is proper.

For a *d*-tuple $T = (T_1, \ldots, T_d)$ and a monomial z^{α} , define

$$(z^{\alpha})^{sym}(T) := rac{lpha!}{|lpha|!} \sum T_{i_1} T_{i_2} \cdots T_{i_{|lpha|}}$$

Corollary

Let p be a d-variable polynomial. Then

 $\Re p^{sym}(T) \geq 0$

for all row contractions T if and only if $p \in R^+$.

Compare: $p \in S^+$ iff

 $\Re p(T) \geq 0$

for all *commuting* row contractions *T*.

Questions:

1. Given a positive class \mathcal{P} , let \mathcal{P}_0 denote the subclass of \mathcal{P} for which f(0) = 1; this set is compact and convex. It is not hard to show that the Herglotz kernels

$$H(z,\zeta)=rac{1+\langle z,\zeta
angle}{1-\langle z,\zeta
angle}$$

are extreme in S_0^+ ; but by Krein-Milman there must be others when d > 1. (The Herglotz kernels are *not* extreme in O^+ when d > 1 [Rudin].)

PROBLEM: find all extreme points of R_0^+ , S_0^+ .

イロト イポト イヨト イヨト

2. Since $R^+ = S^{+*} \subsetneq S^+$, main theorem says there is a self-dual class in between.

PROBLEM: Find it!

・ロン ・回 と ・ 回 と ・ 回 と

-