Rank one perturbations of row unitaries

Michael Jury

University of Florida

JMM, January 10, 2013

∃ >

shift invariant subspace $M = \theta H^2 \subset H^2$, θ inner, $\theta(0) = 0$ $K_{\theta} := (\theta H^2)^{\perp}$ Consider $X = S^*|_{K_{\theta}}$:

$$\ker X = [1] \quad \operatorname{coker} X = [S^*\theta] \quad (\text{note } S^*\theta \perp M) \tag{1}$$

Fix $|\alpha| = 1$. Define unitary $U_{\alpha} : K_{\theta} \to K_{\theta}$:

$$U_{\alpha}^* := S^*|_{\mathcal{K}_{\theta}} + \alpha^*(S^*\theta \otimes 1)$$
(2)

The vector 1 is cyclic for U_{α} ...spectral measure μ_{α} :

$$\int_{\mathbb{T}} \zeta^n \, d\mu_\alpha(\zeta) = \langle U_\alpha^n 1, 1 \rangle, \quad n \in \mathbb{Z}$$
(3)

白 と く ヨ と く ヨ と …

2

Theorem (Clark)

 μ_{α} and θ are related by

$$\frac{1+\alpha^*\theta(z)}{1-\alpha^*\theta(z)} = \int_{\mathbb{T}} \frac{1+\zeta^*z}{1-\zeta^*z} \, d\mu_\alpha(\zeta) \tag{4}$$

and $\mu_{\alpha} \perp m$.

Moreover, the operator

$$(V_{\alpha}f)(z) := (1 - \alpha^*\theta(z)) \int_{\mathbb{T}} \frac{f(\zeta)}{1 - \zeta^* z} \, d\mu_{\alpha}(\zeta) \tag{5}$$

is unitary from $L^2(\mu_{\alpha})$ to K_{θ} , and

$$U_{\alpha}V_{\alpha} = V_{\alpha}M_{\zeta}.$$
 (6)

The NC setting:

H a Hilbert space

Consider row unitaries $\mathbf{U}: H^d \to H$

$$\mathbf{U} = (U_1, \dots, U_d)(h_1, \dots, h_d)^T = \sum_{j=1}^d U_j h_j$$
(7)

 \mathbf{U} is unitary iff U_j satisfy the *Cuntz relations*

$$U_i^* U_j = \delta_{ij} I, \quad \sum_{j=1}^d U_j U_j^* = I$$
 (8)

- ∢ ≣ >

 F_d – set of all NC words in letters $\{1, \ldots d\}$ (including empty word \emptyset)

$$w = i_1 i_2 \cdots i_m, \quad |w| = m, \quad |\varnothing| = 0 \tag{9}$$

 $F_d^2 := \ell^2(\mathbf{F_d})$ (full Fock space) o.n. basis $\{\xi_w : w \in \mathbf{F_d}\}$ Shifts on F_d^2 : for $j = 1, \dots d$

$$L_j \xi_w = \xi_{jw} \tag{10}$$

通 と く ヨ と く ヨ と

The L_j satisfy

$$L_i^* L_j = \delta_{ij} I, \quad \sum_{j=1}^d L_j L_j^* = I - \xi_{\varnothing} \otimes \xi_{\varnothing}$$
(11)

 $L := (L_1, \ldots L_d) - NC d$ -shift

Suppose $M \subset F_d^2$ is **L**-invariant $(L_j M \subset M \text{ all } j)$...and cyclic.

Then (Davidson/Pitts, Popescu) there is a wandering vector $\theta \in M$ such that

$$M = \overline{\operatorname{span}\{L^{w}\theta : w \in \mathbf{F}_{\mathbf{d}}\}}^{\|\cdot\|}$$
(12)

伺 と く き と く き と

Write

$$\theta = \sum \widehat{\theta}(w)\xi_w, \quad \sum_{w} |\widehat{\theta}(w)|^2 = 1$$
 (13)

If X_1, \ldots, X_d are operators in some B(K) with $\|\sum X_j X_j^*\| < 1$, then (Popescu)

$$\theta(X) := \sum_{w} \widehat{\theta}(w) X^{w}$$
(14)

is norm convergent and $\|\theta(X)\| \leq 1$ (so θ is a *free holomorphic function*).

Since also $\sum_{w} |\hat{\theta}(w)|^2 = 1$, call θ a *free inner function*.

Motivation:

"repeated interaction model" for atom-photon interactions (Gohm et al.)

NC stationary process

 \implies Cuntz scattering system (Ball/Vinnikov)

 \implies free inner function θ

ヨト イヨト イヨト

Recall

$$M = \overline{\operatorname{span}\{L^{w}\theta : w \in \mathbf{F_d}\}}^{\|\cdot\|}$$
(15)

Write $K_{\theta} = M^{\perp}$. Assume $\hat{\theta}(\emptyset) = 0$. Then $\xi_{\emptyset} \in K_{\theta}$. Wandering property of θ implies

$$L_j^* \theta \in M^\perp$$
 all j (16)

Form the column vector $\mathbf{y} \in K^d_{\theta}$

$$\mathbf{y} = (L_1^*\theta, \dots L_d^*\theta)^T \tag{17}$$

ゆ く き と く き と

Since $\theta(0) = 0$,

$$\|\mathbf{y}\|^2 = \langle \sum_{j=1}^d L_j L_j^* \theta, \theta \rangle = \|\theta\|^2 = 1.$$
(18)

Conclusion: $\mathbf{L}^*|_{\mathcal{K}_{\theta}}$ is a column contraction with rank one defects. Identify defect spaces to get a row unitary:

$$U_j^{\alpha*} := L_j^*|_{K_\theta} + \alpha^* y_j \otimes \xi_{\varnothing}$$
(19)

Theorem (J)

For each $|\alpha| = 1$, $\mathbf{U}^{\alpha} := (U_1^{\alpha}, \dots, U_d^{\alpha})$ is a cyclic row unitary on K_{θ} with cyclic vector ξ_{\emptyset} .

So: every free inner function determines a family of cyclic row unitaries.

Q: Which row unitaries arise this way?

Theorem (J)

A cyclic row unitary (cyclic vector x) arises as above if and only if for

$$\mathbf{T} := (P_x^{\perp} U_1, \dots P_x^{\perp} U_d)$$
(20)

satisfies

$$\lim_{n \to \infty} \sum_{|w|=n} T^{w*} = 0 \quad (SOT) \tag{21}$$

æ

Proof.

The NC characteristic function θ_{T} is free inner (Popescu)

States (NC measures) and a Clark theorem:

Recall the NC *d*-shift \mathbf{L} and form the *Cuntz-Toeplitz operator* system

$$\mathcal{S} = \operatorname{span}\{L^{w}, L^{v*} : w, v \in \mathbf{F}_{\mathbf{d}}\}$$
(22)

A "free" Herglotz formula:

Theorem (Popescu)

If b is a contractive free holomorphic function, then there is a unique positive functional $\mu : S \to \mathbb{C}$ such that

$$(I+b(X))(I-b(X))^{-1} = (id \otimes \mu)((I+\sum X_j \otimes L_j^*)(I-\sum X_j \otimes L_j)^{-1})$$

for all
$$X = (X_1, \ldots X_d) \in B(H)$$
 with $\|\sum X_j X_j^*\| < 1$

States from cyclic row unitaries:

Given cyclic (\mathbf{U}, x) , define a state μ on \mathcal{S} by

$$\mu(L^w) := \langle U^w x, x \rangle \tag{23}$$

A Clark-type theorem:

Theorem (J)

Suppose θ is a free inner function with associated row unitaries \mathbf{U}^{α} and states μ_{α} . Then

$$(I+\theta(X))(I-\theta(X))^{-1}=(id\otimes\mu_{\alpha})\Big((I+\sum X_{j}\otimes L_{j}^{*})(I-\sum X_{j}\otimes L_{j}^{*})^{-1}\Big)$$

Example ("point masses"): Fix a point $\eta = (\eta_1, \dots, \eta_d)$ on the unit sphere in \mathbb{C}^d . Define

$$\delta_{\eta}(L^{w}) = \eta^{w} = \eta_{i_{1}}\eta_{i_{2}}\cdots\eta_{i_{m}}$$
(24)

(the Cuntz states). These arise from the free inner function

$$\theta_{\eta}(X) = \sum_{j=1}^{d} \eta_j^* X_j.$$
(25)

ヨット イヨット イヨッ

æ

Q: Which states give free inner functions? (call these *quasi-singular*)

(1日) (日) (日)

æ

Q: Which states give free inner functions? (call these *quasi-singular*)

Example: by brute force, convex combinations of pairs of Cuntz states give free inner functions. So e.g.

$$\theta(X_1, X_2) = I - (I - X_1) \left(I - \frac{X_1 + X_2}{2}\right)^{-1} (I - X_2)$$

is free inner (coming from $\frac{1}{2}(\delta_{e_1} + \delta_{e_2})$)

(a sort of free version of
$$\frac{x_1 + x_2 - 2x_1x_2}{2 - x_1 - x_2}$$
)

Q: Which states give free inner functions? (call these *quasi-singular*)

Example: by brute force, convex combinations of pairs of Cuntz states give free inner functions. So e.g.

$$\theta(X_1, X_2) = I - (I - X_1) \left(I - \frac{X_1 + X_2}{2}\right)^{-1} (I - X_2)$$

is free inner (coming from $\frac{1}{2}(\delta_{e_1} + \delta_{e_2})$)

(a sort of free version of
$$\frac{x_1 + x_2 - 2x_1x_2}{2 - x_1 - x_2}$$
)

Q: Is the set of quasi-singular states on S convex???