Rank one perturbations of row unitaries

Michael Jury
University of Florida

JMM, January 10, 2013
shift invariant subspace $M=\theta H^{2} \subset H^{2}, \quad \theta$ inner, $\quad \theta(0)=0$
$K_{\theta}:=\left(\theta H^{2}\right)^{\perp}$
Consider $X=S^{*} \mid K_{\theta}$:

$$
\begin{equation*}
\operatorname{ker} X=[1] \quad \operatorname{coker} X=\left[S^{*} \theta\right] \quad\left(\text { note } S^{*} \theta \perp M\right) \tag{1}
\end{equation*}
$$

Fix $|\alpha|=1$. Define unitary $U_{\alpha}: K_{\theta} \rightarrow K_{\theta}$:

$$
\begin{equation*}
U_{\alpha}^{*}:=\left.S^{*}\right|_{K_{\theta}}+\alpha^{*}\left(S^{*} \theta \otimes 1\right) \tag{2}
\end{equation*}
$$

The vector 1 is cyclic for $U_{\alpha} \ldots$ spectral measure μ_{α} :

$$
\begin{equation*}
\int_{\mathbb{T}} \zeta^{n} d \mu_{\alpha}(\zeta)=\left\langle U_{\alpha}^{n} 1,1\right\rangle, \quad n \in \mathbb{Z} \tag{3}
\end{equation*}
$$

Theorem (Clark)

μ_{α} and θ are related by

$$
\begin{equation*}
\frac{1+\alpha^{*} \theta(z)}{1-\alpha^{*} \theta(z)}=\int_{\mathbb{T}} \frac{1+\zeta^{*} z}{1-\zeta^{*} z} d \mu_{\alpha}(\zeta) \tag{4}
\end{equation*}
$$

and $\mu_{\alpha} \perp m$.
Moreover, the operator

$$
\begin{equation*}
\left(V_{\alpha} f\right)(z):=\left(1-\alpha^{*} \theta(z)\right) \int_{\mathbb{T}} \frac{f(\zeta)}{1-\zeta^{*} z} d \mu_{\alpha}(\zeta) \tag{5}
\end{equation*}
$$

is unitary from $L^{2}\left(\mu_{\alpha}\right)$ to K_{θ}, and

$$
\begin{equation*}
U_{\alpha} V_{\alpha}=V_{\alpha} M_{\zeta} \tag{6}
\end{equation*}
$$

The NC setting:
H a Hilbert space
Consider row unitaries $\mathbf{U}: H^{d} \rightarrow H$

$$
\begin{equation*}
\mathbf{U}=\left(U_{1}, \ldots U_{d}\right)\left(h_{1}, \ldots h_{d}\right)^{T}=\sum_{j=1}^{d} U_{j} h_{j} \tag{7}
\end{equation*}
$$

\mathbf{U} is unitary iff U_{j} satisfy the Cuntz relations

$$
\begin{equation*}
U_{i}^{*} U_{j}=\delta_{i j} I, \quad \sum_{j=1}^{d} U_{j} U_{j}^{*}=I \tag{8}
\end{equation*}
$$

Row unitaries from backward shifts:
$\mathbf{F}_{\mathbf{d}}$ - set of all NC words in letters $\{1, \ldots d\}$ (including empty word \varnothing)

$$
\begin{equation*}
w=i_{1} i_{2} \cdots i_{m}, \quad|w|=m, \quad|\varnothing|=0 \tag{9}
\end{equation*}
$$

$F_{d}^{2}:=\ell^{2}\left(\mathbf{F}_{\mathbf{d}}\right) \quad$ (full Fock space) o.n. basis $\left\{\xi_{w}: w \in \mathbf{F}_{\mathbf{d}}\right\}$
Shifts on F_{d}^{2} : for $j=1, \ldots d$

$$
\begin{equation*}
L_{j} \xi_{w}=\xi_{j w} \tag{10}
\end{equation*}
$$

The L_{j} satisfy

$$
\begin{equation*}
L_{i}^{*} L_{j}=\delta_{i j} I, \quad \sum_{j=1}^{d} L_{j} L_{j}^{*}=I-\xi_{\varnothing} \otimes \xi_{\varnothing} \tag{11}
\end{equation*}
$$

$\mathbf{L}:=\left(L_{1}, \ldots L_{d}\right)-$ NC d-shift

Row unitaries from backward shifts:
Suppose $M \subset F_{d}^{2}$ is L-invariant $\quad\left(L_{j} M \subset M\right.$ all $\left.j\right)$...and cyclic.
Then (Davidson/Pitts, Popescu) there is a wandering vector $\theta \in M$ such that

$$
\begin{equation*}
M={\overline{\operatorname{span}\left\{L^{w} \theta: w \in \mathbf{F}_{\mathbf{d}}\right\}}}^{\|\cdot\|} \tag{12}
\end{equation*}
$$

Write

$$
\begin{equation*}
\theta=\sum \widehat{\theta}(w) \xi_{w}, \quad \sum_{w}|\widehat{\theta}(w)|^{2}=1 \tag{13}
\end{equation*}
$$

Row unitaries from backward shifts:
If $X_{1}, \ldots X_{d}$ are operators in some $B(K)$ with $\left\|\sum X_{j} X_{j}^{*}\right\|<1$, then (Popescu)

$$
\begin{equation*}
\theta(X):=\sum_{w} \widehat{\theta}(w) X^{w} \tag{14}
\end{equation*}
$$

is norm convergent and $\|\theta(X)\| \leq 1$ (so θ is a free holomorphic function).
Since also $\sum_{w}|\widehat{\theta}(w)|^{2}=1$, call θ a free inner function.

Motivation:
"repeated interaction model" for atom-photon interactions (Gohm et al.)

NC stationary process
\Longrightarrow Cuntz scattering system (Ball/Vinnikov)
\Longrightarrow free inner function θ

Row unitaries from backward shifts:
Recall

$$
\begin{equation*}
M=\overline{\operatorname{span}\left\{L^{w} \theta: w \in \mathbf{F}_{\mathbf{d}}\right\}}{ }^{\|\cdot\|} \tag{15}
\end{equation*}
$$

Write $K_{\theta}=M^{\perp}$. Assume $\hat{\theta}(\varnothing)=0$. Then $\xi_{\varnothing} \in K_{\theta}$. Wandering property of θ implies

$$
\begin{equation*}
L_{j}^{*} \theta \in M^{\perp} \quad \text { all } j \tag{16}
\end{equation*}
$$

Form the column vector $\mathbf{y} \in K_{\theta}^{d}$

$$
\begin{equation*}
\mathbf{y}=\left(L_{1}^{*} \theta, \ldots L_{d}^{*} \theta\right)^{T} \tag{17}
\end{equation*}
$$

Since $\theta(0)=0$,

$$
\begin{equation*}
\|\boldsymbol{y}\|^{2}=\left\langle\sum_{j=1}^{d} L_{j} L_{j}^{*} \theta, \theta\right\rangle=\|\theta\|^{2}=1 \tag{18}
\end{equation*}
$$

Conclusion: $\left.\mathbf{L}^{*}\right|_{K_{\theta}}$ is a column contraction with rank one defects. Identify defect spaces to get a row unitary:

$$
\begin{equation*}
U_{j}^{\alpha *}:=L_{j}^{*} \mid k_{\theta}+\alpha^{*} y_{j} \otimes \xi_{\varnothing} \tag{19}
\end{equation*}
$$

Theorem (J)

For each $|\alpha|=1, \mathbf{U}^{\alpha}:=\left(U_{1}^{\alpha}, \ldots U_{d}^{\alpha}\right)$ is a cyclic row unitary on K_{θ} with cyclic vector ξ_{\varnothing}.

So: every free inner function determines a family of cyclic row unitaries.

Q: Which row unitaries arise this way?

Theorem (J)

A cyclic row unitary (cyclic vector x) arises as above if and only if for

$$
\begin{equation*}
\mathbf{T}:=\left(P_{x}^{\perp} U_{1}, \ldots P_{x}^{\perp} U_{d}\right) \tag{20}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{|w|=n} T^{w *}=0 \quad \text { (SOT) } \tag{21}
\end{equation*}
$$

Proof.

The NC characteristic function $\theta_{\mathbf{T}}$ is free inner (Popescu)

States (NC measures) and a Clark theorem:
Recall the NC d-shift \mathbf{L} and form the Cuntz-Toeplitz operator system

$$
\begin{equation*}
\mathcal{S}=\operatorname{span}\left\{L^{w}, L^{v *}: w, v \in \mathbf{F}_{\mathbf{d}}\right\} \tag{22}
\end{equation*}
$$

A "free" Herglotz formula:

Theorem (Popescu)

If b is a contractive free holomorphic function, then there is a unique positive functional $\mu: \mathcal{S} \rightarrow \mathbb{C}$ such that
$(I+b(X))(I-b(X))^{-1}=(i d \otimes \mu)\left(\left(I+\sum X_{j} \otimes L_{j}^{*}\right)\left(I-\sum X_{j} \otimes L_{j}\right)^{-1}\right)$
for all $X=\left(X_{1}, \ldots X_{d}\right) \in B(H)$ with $\left\|\sum X_{j} X_{j}^{*}\right\|<1$

States from cyclic row unitaries:
Given cyclic (\mathbf{U}, x), define a state μ on \mathcal{S} by

$$
\begin{equation*}
\mu\left(L^{w}\right):=\left\langle U^{w} x, x\right\rangle \tag{23}
\end{equation*}
$$

A Clark-type theorem:

Theorem (J)

Suppose θ is a free inner function with associated row unitaries \mathbf{U}^{α} and states μ_{α}. Then
$(I+\theta(X))(I-\theta(X))^{-1}=\left(i d \otimes \mu_{\alpha}\right)\left(\left(I+\sum X_{j} \otimes L_{j}^{*}\right)\left(I-\sum X_{j} \otimes L_{j}^{*}\right)^{-1}\right)$

Example ("point masses"): Fix a point $\eta=\left(\eta_{1}, \ldots \eta_{d}\right)$ on the unit sphere in \mathbb{C}^{d}. Define

$$
\begin{equation*}
\delta_{\eta}\left(L^{w}\right)=\eta^{w}=\eta_{i_{1}} \eta_{i_{2}} \cdots \eta_{i_{m}} \tag{24}
\end{equation*}
$$

(the Cuntz states). These arise from the free inner function

$$
\begin{equation*}
\theta_{\eta}(X)=\sum_{j=1}^{d} \eta_{j}^{*} X_{j} \tag{25}
\end{equation*}
$$

Q: Which states give free inner functions? (call these quasi-singular)

Q: Which states give free inner functions? (call these quasi-singular)

Example: by brute force, convex combinations of pairs of Cuntz states give free inner functions. So e.g.

$$
\theta\left(X_{1}, X_{2}\right)=I-\left(I-X_{1}\right)\left(I-\frac{X_{1}+X_{2}}{2}\right)^{-1}\left(I-X_{2}\right)
$$

is free inner (coming from $\frac{1}{2}\left(\delta_{e_{1}}+\delta_{e_{2}}\right)$)
(a sort of free version of $\frac{x_{1}+x_{2}-2 x_{1} x_{2}}{2-x_{1}-x_{2}}$)

Q: Which states give free inner functions? (call these quasi-singular)

Example: by brute force, convex combinations of pairs of Cuntz states give free inner functions. So e.g.

$$
\theta\left(X_{1}, X_{2}\right)=I-\left(I-X_{1}\right)\left(I-\frac{X_{1}+X_{2}}{2}\right)^{-1}\left(I-X_{2}\right)
$$

is free inner (coming from $\frac{1}{2}\left(\delta_{e_{1}}+\delta_{e_{2}}\right)$)
(a sort of free version of $\frac{x_{1}+x_{2}-2 x_{1} x_{2}}{2-x_{1}-x_{2}}$)
Q: Is the set of quasi-singular states on \mathcal{S} convex???

