"Noncommutative" Aleksandrov-Clark measures

Michael Jury

University of Florida

January 4, 2012

æ

< ≣ >

THE DISK: Fix $b \in Ball(H^{\infty})$, and a scalar $|\alpha| = 1$. Define:

• the de Branges-Rovnyak space $\mathcal{H}(b)$: RKHS with kernel

$$k^{b}(z,w) = rac{1-b(z)b(w)^{*}}{1-zw^{*}}$$

• the Aleksandrov-Clark measure μ_{α} :

۲

$$\frac{1+b(z)\alpha^*}{1-b(z)\alpha^*} = \int_{\mathbb{T}} \frac{1+z\zeta^*}{1-z\zeta^*} \, d\mu_{\alpha}(\zeta) + it$$

 $P^2(\mu) = \text{closure of analytic polynomials in } L^2(\mu)$

Facts:

- $\mathcal{H}(b) \subset H^2$ contractively
- (dB-R) $\mathcal{H}(b)$ is invariant under the backward shift

$$S^*f(z) = \frac{f(z) - f(0)}{z}$$

and if $X = S^*|_{\mathcal{H}(b)}$,

$$||Xf||_b^2 \le ||f||_b^2 - |f(0)|^2$$

• (Clark, Aleksandrov) The normalized Cauchy transform

$$(V_{\mu}f)(z) := (1-b(z)\alpha^*)\int_{\mathbb{T}} rac{f(\zeta)}{1-z\zeta^*} d\mu(\zeta)$$

extends to a unitary operator from $P^2(\mu)$ onto $\mathcal{H}(b)$.

More facts:

(Clark, ...) V_μ intertwines M^{*}_ζ on P²(μ) with a rank-one perturbation of X:

$$V_{\mu}M^*_{\zeta}V^*_{\mu}=X+(1-b(0))^{-1}(S^*b)\otimes k^b_0$$

If $P^2(\mu) = P^2_0(\mu)$, then M^*_{ζ} is unitary.

- (dB-R, Sarason) TFAE:
 - $\mathcal{H}(b)$ is *z*-invariant
 - b is NOT an extreme point of $Ball(H^{\infty})$
 - $b \in \mathcal{H}(b)$

(Reason: b IS extreme iff $P^2(\mu) = L^2(\mu)$, iff $P_0^2(\mu) = P^2(\mu)$, iff $\log(1 - |b|^2) \notin L^1$)

KEY IDENTITY: If |z|, |w| < 1 and $|\zeta| = 1$, $\frac{1 + z\zeta^*}{1 - z\zeta^*} + \frac{1 + w^*\zeta}{1 - w^*\zeta} = 2\frac{1 - zw^*}{(1 - z\zeta^*)(1 - w^*\zeta)}$

since

$$(z\zeta^*)(w^*\zeta) = zw^*$$

Integrating this $d\mu$ proves

$$\langle k_w, k_z
angle_\mu = (1 - b(z))^{-1} (1 - b(w)^*)^{-1} rac{1 - b(z)b(w)^*}{1 - zw^*}$$

Unitarity of V_{μ} follows.

個人 くほん くほん しほ

THE BALL $(\mathbb{B}^d \subset \mathbb{C}^d)$

• Drury-Arveson space H_d^2 : RKHS with kernel

$$k(z,w) = \frac{1}{1 - \langle z,w \rangle}$$

• de Branges-Rovnyak space $\mathcal{H}(b)$: RKHS with kernel

$$k^b(z,w)=rac{1-b(z)b(w)^*}{1-\langle z,w
angle}$$

(when $||bf|| \le ||f||$ for all $f \in H_d^2$)

• $\mathcal{H}(b) \subset H^2_d$ contractively.

Backward shift?

Look for solution operators for the Gleason problem:

$$f(z)-f(0)=\sum z_jf_j(z)$$

Theorem (Ball-Bolotnikov-Fang)

For all b, there exists a contractive solution to the Gleason problem: operators $X_1, \ldots X_d$ on $\mathcal{H}(b)$ such that

$$f(z)-f(0)=\sum z_j(X_jf)(z)$$

and

$$\sum \|X_j f\|_b^2 \leq \|f\|_b^2 - |f(0)|^2.$$

A structure theorem for the X's:

Theorem (J.)

A tuple (X_1, \ldots, X_d) is a contractive solution to the Gleason problem in $\mathcal{H}(b)$ if and only if it acts on kernels by

$$X_j k_w^b = w_j^* k_w^b - b(w)^* b_j$$

where the
$$b_j \in \mathcal{H}(b)$$
 satisfy
i) $b(z) - b(0) = \sum z_j b_j(z)$
ii) $\sum \|b_j\|_b^2 \le 1 - |b(0)|^2$

æ

イロン イ団 とくほと くほとう

Equivalently,

$$(X_j^*f)(z) = z_j f(z) - \langle f, b_j \rangle_b b(z)$$

Corollary (J.)

 $\mathcal{H}(b)$ is z_j -invariant for all $j = 1, \dots d$ if and only if $b \in \mathcal{H}(b)$.

When is $b \in \mathcal{H}(b)$? In the disk, if and only if b is not an extreme point of $Ball(H^{\infty})$.

In the ball?...

What is μ ?

Fix a Hilbert space H and a system of d isometries with orthogonal ranges:

$$L_i^* L_j = \delta_{ij} I_H$$

Let

$$\mathcal{A} = \overline{\mathsf{alg}\{I, L_1, \dots L_d\}}$$

(the noncommutative disk algebra; disk algebra when d = 1), and

$$\overline{\mathcal{A}+\mathcal{A}^*}$$

the Cuntz-Toeplitz operator system ($C(\mathbb{T})$ when d = 1).

The L's give a NC Herglotz formula for b:

Theorem (McCarthy-Putinar; Popescu)

If b is a contractive multiplier of H_d^2 and $|\alpha| = 1$, there exists a positive linear functional (state) μ_{α} on $\mathcal{A} + \mathcal{A}^*$ such that

$$\frac{1+b(z)\alpha^*}{1-b(z)\alpha^*} = \mu_{\alpha}((I+\langle z,L\rangle)(I-\langle z,L\rangle)^{-1}) + it$$

where

$$\langle z,L\rangle=z_1L_1^*+\cdots+z_dL_d^*.$$

When d = 1, the measure μ_{α} is unique.

NOT unique (in general) for d > 1...

...to recover uniqueness, shrink the operator system.

Introduce the NC Cauchy-Fantappiè kernel

$$K_z = (I - \langle z, L \rangle)^{-1*}$$

and the symmetric part of the NC disk algebra;

$$\mathcal{B} = \overline{\mathsf{span}\{\mathcal{K}_z: z \in \mathbb{B}^d\}}$$

(not an algebra!!)

and the symmetric part of the Cuntz-Toeplitz operator system:

$$\mathcal{B}+\mathcal{B}^*\subset \mathcal{A}+\mathcal{A}^*$$

Define the μ_{α} as states on $\mathcal{B} + \mathcal{B}^*$; then uniqueness holds. These are the *NC-AC measures*.

Why "symmetric"? Expand K_z in a power series:

$$(I - \langle z, L \rangle)^{-1} = \sum_{\mathbf{n} \in \mathbb{N}^{d}} z^{\mathbf{n}} L^{*(\mathbf{n})}$$

Notation: *L* term with $z_1^2 z_2$ is

$$L_1^2 L_2 + L_1 L_2 L_1 + L_2 L_1^2.$$

So \mathcal{B} is spanned by symmetric combinations $L^{(n)}$ of the L's.

$$P^{2}(\mu)$$
:

Lemma

 $\mathcal{B}^*\mathcal{B} \subset \mathcal{B} + \mathcal{B}^*.$

Proof by example:

$$L_1^*(L_1^2L_2 + L_1L_2L_1 + L_2L_1^2) = L_1L_2 + L_2L_1$$

We can now define $P^2(\mu)$ as a GNS space: if $F, G \in \mathcal{B}$, define

$$\langle F,G\rangle_{\mu}=\mu(G^*F)$$

Close up etc. to get $P^2(\mu)$.

A⊒ ▶ ∢ ∃

NC version of KEY IDENTITY:

$$\langle {\cal K}_w, {\cal K}_z
angle_\mu = (1-b(z))^{-1}(1-b(w)^*)^{-1}rac{1-b(z)b(w)^*}{1-\langle z,w
angle}$$

This works because

$$\langle z,L\rangle\langle w,L\rangle^* = \sum_{i,j=1}^d z_i w_j^* L_i^* L_j = \langle z,w\rangle I$$

For the "vacuum state" m(I) = 1, $m(L^{(n)}) = 0$, get

$$\langle K_w, K_z \rangle_m = \frac{1}{1 - \langle z, w \rangle}$$

- 4 同 ト 4 三 ト 4

글 > 글

Immediately:

Theorem (J.)

The (normalized) NC Cauchy transform

$$V_{\mu}(F)(z) = (1 - b(z))\langle F, K_z
angle_{\mu}$$

extends to a unitary from $P^2(\mu)$ onto $\mathcal{H}(b)$.

イロン イヨン イヨン イヨン

Define

$$P_0^2(\mu) :=$$
 closed span of *F*'s in \mathcal{B} with no *I* term

Definition

Say b is quasi-extreme if
$$P^2(\mu) = P_0^2(\mu)$$
.

Theorem (J.)

TFAE:

- $b \in \mathcal{H}(b)$
- $\mathcal{H}(b)$ is z_j -invariant for each $j = 1, \dots d$
- b is NOT quasi-extreme.

CONJECTURE: *b* is quasi-extreme if and only if it is an extreme point of the unit ball of multipliers of H_d^2 . (True when d = 1.)

□ > < @ > < @ > < @ >

3

Theorem (J.)

If b is quasi-extreme, there exists a unique solution of the Gleason problem in $\mathcal{H}(b)$ satisfying

$$\sum X_j^* X_j = I - k_0^b \otimes k_0^b$$

For this choice of X's there is a Clark theorem...

Theorem (J.)

Let b be quasi-extreme; X the canonical solution to the Gleason problem. Then:

- i) the NC-AC measure μ has a unique positive extension ν to the full Cuntz-Toeplitz operator system $\mathcal{A} + \mathcal{A}^*$,
- ii) the rank one perturbation

$$U_j := X_j + (1 - b(0))^{-1} b_j \otimes k_0^b$$

is a row-coisometry-NOT unitary, but

iii) the minimal isometric dilation (V_1, \ldots, V_d) of the tuple (U_1, \ldots, U_d) is unitarily equivalent to the generators $\pi_{\nu}(L_i)$ of the GNS representation from ν .

(iii) says ν is the "spectral measure" of the V's.

Summary:

In the disk,

$$k(z,w) = rac{1}{1-zw^*} \xrightarrow{w o \partial \mathbb{D}} rac{1}{1-z\zeta^*} \in C(\mathbb{T})$$

In the ball, used "quantized" kernels instead:

$$\mathcal{K}_z = (1 - \langle z, L
angle)^{-1} \in \mathcal{B} + \mathcal{B}^*$$

• Conjecture: b is an extreme point of the contractive multipliers of H_d^2 if and only if $P^2(\mu) = P_0^2(\mu)$.