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The setting:D = fjz j < 1g � CT = @D = fjz j = 1gdm=normalized Lebesgue measure on T' : D! D holomorphic (' 6= const.)H2= Hardy space, P : L2 ! H2 Riesz proj.Some operators on H2:Toeplitz operators: For f 2 L1(T), g 2 H2,

Tf g := P(fg)
Composition operators: For g 2 H2,

C'g = g � '
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General question: What can be said about the C*-algebragenerated by a set of composition operators? (or composition andToeplitz operators)?
We seek C*-algebraic relations that obtain between Toeplitz andcomposition operators (and their adjoints).
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One easy relation:
LemmaFor any ' 2 Hol(D) and f 2 H1,

C'Tf = Tf �'C'
Proof: From de�nitions|for any h 2 H2,

(C'Tf )h = C'(fh)= (f � ')(h � ')= (Tf �'C')h �
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Theorem (Bourdon-MacCluer '07)Let ' be inner. Then C �'C'
is Toeplitz, with symbol

F (z) = 1� j'(0)j2jz � '(0)j2
Proof: Recall the Brown-Halmos criterion: T is Toeplitz if andonly if S�TS = T .Now

S�C �'C'S = C �'T �'T'C'= C �'C'
To �nd symbol, apply to C �'C' to scalars... �Michael Jury C*-algebras, composition operators and dynamics
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Let now � be a group of automorphisms of D. What can we sayabout C� = C �fC' : ' 2 �g
E.g., how is it related to C*-algebras associated to �?
We will need the notion of a covariance algebra:Consider:X a compact Hausdor� spaceG a group of homeomorphisms of XIn the category of C*-algebras, these correspond toC (X ), a commutative unital C*-algebraC �(u(G )), where u : G ! U(H) is a unitary representation
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De�nitionGiven:X = compact Hausdor� spaceG = group of homeomorphisms of XG acts on C (X ) via (g � f )(x) = f (g�1 � x).A covariant representation of X ;G is a triple (�; u;H) with� : C (X )! B(H) a *-homomorphismu : G ! U(H) a unitary representationsatisfying u(g)��(f )u(g) = �(g � f )
A covariance algebra is a C*-subalgebra of B(H) generated by acovariant representation.
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Consider now ' 2 � � Aut(D). De�ne

U�' = C'(C �'C')�1=2
Suppose also that � is discrete and non-elementary (any orbitaccumulates at at least three points of T).Using the two relations proved so far, it can be shown thatU'U = U' + compactU�'Tf U' = Tf �'�1 + compactS 2 C �fC' : ' 2 �gfor all '; 2 � and all f 2 C (T).It follows that

C �fC' : ' 2 �g = C �fS ;U' : ' 2 �g
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Theorem (J., to appear)
Let � be a non-elementary Fuchsian group � � Aut(D). Let

C� = C �fC' : ' 2 �g
There is an exact sequence of C*-algebras

0 ����! K ����! C� ����! C (T)� � ����! 0
The quotient C�=K is generated by the images in the Calkin algebraof of Tf and U�' = C'(C �'C')�1=2. By previous slide, the quotientis thus a covariance algebra for (T; �). With more work it can beshown that it is isomorphic to the full crossed product C*-algebra

C (T)� �
which is \universal" among covariance algebras (any other is aquotient of this). Michael Jury C*-algebras, composition operators and dynamics
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Covariance algebras for endomorphismsAleksandrov-Clark measuresThe CP map induced by C'Transfer operatorsThe CP map redux

What are the \next" examples?Analogy between dynamics of groups and rational functions on theRiemann sphere (\Sullivan's dictionary") suggests replacing
� = Fuchsian group = group leaving T invariant

with
f'ng = iterates of rational function leaving T invariant

That is: replace C� with the C*-algebra generated by C' with ' a�nite Blaschke product. Then look for
0 ����! K ����! C �(C') ����! ?? ����! 0

where ?? is some kind of \covariance algebra" for the dynamicalsystem (T; '). Michael Jury C*-algebras, composition operators and dynamics
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ConsiderX = compact Hausdor� space' : X ! X continuous, surjectiveSuppose L : C (X )! C (X ) is a positive linear map satisfying
L(f1 � (f2 � ')) = L(f1) � f2

for all f1; f2 2 C (X ) (examples later).The Exel crossed product for the triple (X ; ';L) is the universalC*-algebra generated by C (X ) and an operator V satisfying(f � ')V = VfV �fV = L(f )\redundancies"...Thinking f = Tf ;V = C' (mod K) leads us to consider theoperators C �'Tf C'Michael Jury C*-algebras, composition operators and dynamics
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TheoremSuppose ' : D! D is inner and f 2 L1(T). Then
C �'Tf C'

is a Toeplitz operator.
Proof: Brown-Halmos again:

S�C �'Tf C'S = C �'T �'Tf T'C'= C �'Tf j'j2C' (' analytic)
= C �'Tf C' (' inner)

Which Toeplitz operator is it?
Michael Jury C*-algebras, composition operators and dynamics
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Given ' : D! D, � 2 T,
Re��+ '(z)�� '(z)

� = 1� j'(z)j2j�� '(z)j2 = Z 1� jz j2j� � z j2 d��(�)
The measures �� are the Aleksandrov-Clark measures for '.
De�nition (The Aleksandrov operator)Let f be a Borel function on T. De�ne

A'(f )(�) = Z f (�) d��(�)
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Theorem (Aleksandrov '87)The Aleksandrov operator
A'(f )(�) = Z f d��

extends to a well-de�ned, bounded operator onC (T)Lp(T), 1 � p � 1; also Hp if '(0) = 0BMO, VMO, Besov spaces...
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The Cauchy transform of ��:
Assume now '(0) = 0. Then for j�j < 1; j�j = 1,

A'(k�)(�) = Z 11� �� d��(�) = 11� '(�)� = C �'(k�)(�)
Since A' is bounded on H2, this proves
Theorem (inner case: Lotto-McCarthy '93; general case{?)
If '(0) = 0, then C �' = A'
Application: we can now compute the symbol of C �'Tf C'...
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Theorem (J., in progress)
Let ' : D! D be inner and f 2 L1(T). Then

C �'Tf C'
is Toeplitz, with symbol A'(f ).
There is an \asymptotic" version for general ':
De�nition
Say A 2 B(H2) is (weakly) asymptotically Toeplitz if

limn!1 S�nASn
exists (WOT). If so, limit is a Toeplitz operator Tg ; g is called theasymptotic symbol of A.
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Theorem (J., in progress)If ' : D! D, f 2 L1, then
C �'Tf C'

is asymptotically Toeplitz, with asymptotic symbol
As'(f )(�) :=

Z f d��
(recall �� = h�m + ��).Moreover if E = f� : j'(�)j = 1g
and f = 0 a.e. on E c , then C �'Tf C' is Toeplitz. (Converse holds iff � 0.)

Michael Jury C*-algebras, composition operators and dynamics
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Returning to the case of �nite Blaschke products, it is not hard toshow that the Clark measures are given by
�� = X

'(�)=�
1j'0(�)j��

So A'(f )(�) is a certain weighted average of f over the preimagesof �.For general inner ', the set
f� 2 T : '(�) = �g

is a carrier for �� but �� has atoms only at points where ' has anangular derivative.
Michael Jury C*-algebras, composition operators and dynamics
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De�nition (the transfer operator)' : X ! X continuous, surjective, �nitely valentg : X ! R, continuous
De�ne for f 2 C (X )

Lg (f )(x) = X
'(y)=x exp(g(y))f (y)

Lg is called the transfer operator or Perron-Frobenius-Ruelleoperator; it is bounded and completely positive on C (X ).
For all f1; f2 2 C (X ) we have

Lg (f1 � (f2 � ')) = Lg (f1) � f2
In particular if Lg (1) � 1 then Lg is a left inverse for C'.Michael Jury C*-algebras, composition operators and dynamics
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Proto-"Perron-Frobenius"-theorem: (unital version, forsimplicity) Suppose Lg (1) � 1. With suitable hypotheses on('; g), Lng (f )! c � 1
uniformly, where c is a scalar. The assignment f ! c determines aprobability measure � satisfying

L�g� = �
Under good conditions such � is unique; it describes theasymptotic distribution of the (weighted) backward orbits of '.
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Recall that for a rational map  of the Riemann sphere, its Juliaset J is the complement of the maximal open set on which theiterates of  are a normal family. (For a �nite Blaschke productJ � T; either J = T or J is a Cantor set.)
Theorem (Denker-Urba�nski '91 (simpli�ed version))Given: rational with Julia set Jg : J ! R H�older continuous, Lg (1) � 1Then there is a unique measure � with support equal to J suchthat 8f 2 C (J),

Lng (f )!
�Z

J f d�
� � 1

uniformly.
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Now �x a �nite Blaschke product ' and a H�older continuousfunction g : X ! R. We have a transfer operator
Lg (f )(z) = X

'(�)=z exp(g(�))f (�)
de�ned on C (T). For simplicity we assume Lg (1) � 1; we call suchg an admissible weight.
TheoremLet g be an admissible weight. Then there exists h 2 A(D) suchthat V := ThC'
satis�es V �Tf V = TLg (f )for all f 2 C (T) .
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By suitably modifying Przytycki's proof of the Denker-Urba�nskiresult, we obtain:
TheoremGiven:' a �nite Blaschke productg : T! R an admissible weightThen for all f 2 C (T),

Lng (f )!
�Z f d�g

� � 1
uniformly, where �g is the unique exp(g)�conformal measuresupported on the Julia set of '.
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For a �xed admissible weight g , we earlier obtained a weightedcomposition operator V := ThC'
such that V �Tf V = TLg (f )for all f 2 C (T). Using the Perron-Frobenius result for Lg weobtain
TheoremFix an admissible weight g and V as above. For all f 2 C (T),

V �nTf V n ! �Z f d�g
� � I

in norm.
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In general some weight is needed to obtain convergence; forexample let
'(z) = �3z + 13 + z

�2
The orbit of 0 under ' tends radially to 1; using this one can show

kC �n' Cn'k ! 1:
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Since the measure �g always has support equal to the Julia set of', the composition operator C' can \see" the Julia set viaiteration of the completely positive map:
CorollaryLet ' be a �nite Blaschke product, g an admissible weight andV = ThC' as above. Let f 2 C (T); f � 0. Then f vanishes on theJulia set J � T of ' if and only if

V �nTf V n ! 0
in norm.
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Let ' be inner, with Clark measures f��g. Consider thenormalized Aleksandrov operator
fA'(f )(�) = Z f d��k��k

In the rational case this corresponds to the admissible weight
g(�) = � log �j'0(�)j � k�'(�)k�
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Conjecture: For any inner function ' and all f 2 C (T), thesequence fA'n(f )
converges uniformly to a scalar c .
If so, c = R f d� and � describes the (weighted) \asymptoticdistribution" of the backwards orbits of ' on T. This would beparticularly interesting when ' has an attracting �xed point on T;presumably supp(�) ( T (a \Julia set" for ' on T).
Where does H�older continuity come in? (Possibly via Matheson'ssmoothness theorem; which implies that A' is bounded on theH�older classes.)
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TheoremLet ' be a �nite Blaschke product (deg' � 2), with �xed point inDg : T! R H�older continuousC (T)o';L N the Exel crossed productThen there is an exact sequence of C*-algebras
0 ����! K ����! C �(S ;C') ����! C (T)o';L N ����! 0
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