Nevanlinna-Pick interpolation in hypo-Dirichlet and related algebras

Michael Jury and Scott McCullough
University of Florida

November 6, 2010

Setting

- \mathcal{A} - uniform algebra
- \mathfrak{M} - maximal ideal space of \mathcal{A}
- X - Shilov boundary of \mathcal{A}
- $b \in \mathfrak{M}$ - fixed base point
- m - representing measure for b on X...so

$$
\int_{X} f d m=f(b) \quad \text { for all } f \in \mathcal{A}
$$

- H^{2} - closure of \mathcal{A} in $L^{2}(m) ; \quad H_{b}^{2}=\left\{f \in H^{2}: \int f d m=0\right\}$
- H^{∞} - wk-* clousre of \mathcal{A} in $L^{\infty}(m)$, or $H^{2} \cap L^{\infty}(m)$.

Additional assumptions

- N - space of real annihilating measures for \mathcal{A} is finite dimensional
- our rep. measure m lies in relative interior of rep. measures at b
- Gleason part containing b is non-trivial

Consequences [60's: Ahern-Sarason, Arens-Singer, Gamelin, Hoffman, Wermer,...]:

- each annihilating measure $\mu \in N$ has $d \mu=h d m$ with $h \in L^{\infty}(m)$
- orthogonal decomposition:

$$
L^{2}(m)=H^{2} \oplus\left(H_{b}^{2}\right)^{*} \oplus \mathcal{N}
$$

where \mathcal{N} is complexification of N.

Final assumptions

- $\mathfrak{M}_{b}:=$ set of bpe's for H^{2}, is determining for \mathcal{A}

Definition

Say \mathcal{A} has a divisor at $\lambda \in \mathfrak{M}_{b}$ if there exists $\varphi_{\lambda} \in H^{\infty}$ such that:

- $\log \left|\varphi_{\lambda}\right| \in L^{\infty}$, and
- $\varphi_{\lambda} H^{2}=H_{\lambda}^{2}$.
$\Omega:=$ set of divisors for \mathcal{A}.
Divisors are far from unique, however if $\varphi_{\lambda}, \psi_{\lambda}$ are both divisors at λ then

$$
\frac{\varphi_{\lambda}}{\psi_{\lambda}} \in\left(H^{\infty}\right)^{-1}
$$

Examples

hypo-Dirichlet algebras: $\log \left|\mathcal{A}^{-1}\right|$ is dense in $C_{\mathbb{R}}(X)$ and $\operatorname{Re} \mathcal{A}$ has finite codimension in $C_{\mathbb{R}}(X)$

- E.g. for R a g-holed planar domain, $\mathcal{A}=$ functions holo. on R, cns. on \bar{R}
- In this case fix $b \in R$, take $m=$ harmonic measure at b. The annihilating measures N are spanned by

$$
Q_{j}=\frac{\partial w_{j}}{\partial \nu} \frac{d s}{d m}
$$

where w_{j} is harmonic measure on $j^{t h}$ boundary component, $d s=$ arc length.

- Here $\mathfrak{M}_{b}=R$ and for each $\lambda \in R$,

$$
\varphi_{\lambda}(z)=z-\lambda
$$

is a divisor.

Examples

Finite codimension subalgebras of hypo-Dirichlets:

- Fix nonzero points $a \neq b$ in \mathbb{D}, put

$$
\mathcal{A}=\{f \in A(\mathbb{D}): f(a)=f(b)\}
$$

- Pick 0 for base point, $m=$ Lebesgue measure on \mathbb{T}
- N is spanned by real and imaginary parts of

$$
Q=\left(1-\bar{a} e^{i \theta}\right)^{-1}-\left(1-\bar{b} e^{i \theta}\right)^{-1}
$$

- $\mathfrak{M}=\mathfrak{M}_{0}$ is quotient of \mathbb{D} with a, b identified
- If $\lambda \neq a, b$ put

$$
\rho(\lambda)=\frac{1}{b-a} \log \left(\frac{a-\lambda}{b-\lambda}\right), \quad \varphi_{\lambda}(z)=(z-\lambda) \exp (\rho(\lambda) z)
$$

Then φ_{λ} is a divisor...but NO divisor at identified point $a \sim b$.

A family of H^{2} spaces

For each $n \in N$ form the inner product on \mathcal{A}

$$
\langle f, g\rangle_{n}=\int_{X} f g^{*} e^{-2 n} d m
$$

Closure is called $H^{2}(n)$.

- Each bpe for H^{2} is also a bpe for $H^{2}(n)$, so each $H^{2}(n)$ is a RKHS on \mathfrak{M}_{b}; write $k(s, t ; n)$ for its kernel
- some redundancy: let $L \subset N$ be those n for which

$$
\exp (2 n)=f f^{*}
$$

for some $f \in\left(H^{\infty}\right)^{-1}$. If $n_{1}-n_{2} \in L$ then

$$
f(s) k\left(s, t ; n_{1}\right) f(t)^{*}=k\left(s, t ; n_{2}\right)
$$

The Pick interpolation theorem

Let $S \subset \mathfrak{M}_{b} \cap \Omega$ be a finite set and suppose $f: S \rightarrow \mathbb{C}$. If the kernel

$$
S \times S \ni(s, t) \mapsto\left(1-f(s) f(t)^{*}\right) k(s, t ; n)
$$

is positive semi-definite for every $n \in N / L$, then there exists a function $a: \Omega \rightarrow \mathbb{C}$ such that the kernel

$$
S \times S \ni(s, t) \mapsto\left(1-a(s) a(t)^{*}\right) k(s, t ; n)
$$

is positive semi-definite for every $n \in N$.
Further, if Ω is dense in \mathfrak{M}_{b}, then there is an $a \in H^{\infty}$ such that $\|a\| \leq 1$ and $\left.a\right|_{s}=f$.

Idea of proof

- Introduce a much bigger family of (vector-valued) H_{P}^{2} spaces-take $P \in M_{d}\left(L^{\infty}\right)$ and form \mathbb{C}^{d}-valued spaces

$$
\|F\|_{P}^{2}=\int_{X} F^{*} P F d m, \quad F \in \mathcal{A} \otimes \mathbb{C}^{d}
$$

- The family of kernels K_{P} of these spaces is an Agler family (closed under direct sums and one-point compressions) -existence of divisors is used here
- By the Pick theorem of [JKM '09], can interpolate if data are positive against all K_{P} 's
- "Cyclic vector trick" - Look at repn. of H^{∞} on H_{P}^{2}, restrict to cyclic invariant subspace, show each restricted representation is equivalent to the repn. from some $k(\cdot, \cdot ; n) \ldots$....ey is

$$
\log F^{*} P F=g+g^{*}+n
$$

Key observation

Suppose $\lambda \in \Omega$ with divisor φ_{λ}, and let $n \in N$. Let

$$
\log \left|\varphi_{\lambda}\right|=f+f^{*}+2 n_{\lambda}
$$

be the decomposition with respect to $H^{2} \oplus\left(H_{b}^{2}\right)^{*} \oplus \mathcal{N}$. Then $n_{\lambda} \in N, e^{-f} \in\left(H^{\infty}\right)^{-1}$, and the operator

$$
U_{\lambda}: h \rightarrow e^{-f} \varphi_{\lambda} h
$$

is a unitary transformation from $H^{2}\left(n-n_{\lambda}\right)$ onto $H_{\lambda}^{2}(n)$.

Clearly $e^{-f} \varphi_{\lambda} h$ vanishes at λ. From

$$
\log \left|\varphi_{\lambda}\right|=f+f^{*}+2 n_{\lambda},
$$

we get

$$
\left|\varphi_{\lambda}\right|^{2}=e^{2 \Re f} e^{2 n_{\lambda}}
$$

Thus,

$$
\int\left|e^{-f} \varphi_{\lambda} h\right|^{2} e^{-2 n} d m=\int|h|^{2} e^{-2\left(n-n_{\lambda}\right)} d m
$$

This says U_{λ} is isometric. Surjectivity follows from invertibility of e^{-f} and divisor property of φ_{λ}.

We get a map $\lambda \rightarrow n_{\lambda}$ which measures how representations move when restricted to codim 1 subspaces...BUT this depends on choices of $\varphi_{\lambda} \ldots$
...however, from def. of divisor we had

$$
\frac{\varphi_{\lambda}}{\psi_{\lambda}} \in\left(H^{\infty}\right)^{-1}
$$

if $\varphi_{\lambda}, \psi_{\lambda}$ are both divisors. From this we get that the map

$$
\Omega \ni \lambda \rightarrow\left[n_{\lambda}\right] \in N / L
$$

is independent of the choice of divisors, and is (the real part of) an Abel-Jacobi map...

