Nevanlinna-Pick interpolation in hypo-Dirichlet and related algebras

Michael Jury and Scott McCullough

University of Florida

November 6, 2010

3 N

Setting

- \mathcal{A} uniform algebra
- ${\mathfrak M}$ maximal ideal space of ${\mathcal A}$
- X Shilov boundary of \mathcal{A}
- $b\in\mathfrak{M}$ fixed base point
- *m* representing measure for *b* on *X*...so

$$\int_X f \, dm = f(b) \quad \text{ for all } f \in \mathcal{A}$$

- H^2 closure of \mathcal{A} in $L^2(m)$; $H^2_b = \{f \in H^2 : \int f \, dm = 0\}$
- H^{∞} wk-* clousre of \mathcal{A} in $L^{\infty}(m)$, or $H^2 \cap L^{\infty}(m)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Additional assumptions

- *N* space of real annihilating measures for \mathcal{A} is <u>finite</u> dimensional
- our rep. measure *m* lies in <u>relative interior</u> of rep. measures at *b*
- Gleason part containing b is non-trivial

Consequences [60's: Ahern-Sarason, Arens-Singer, Gamelin, Hoffman, Wermer,...]:

- each annihilating measure $\mu \in N$ has $d\mu = hdm$ with $h \in L^{\infty}(m)$
- orthogonal decomposition:

$$L^2(m) = H^2 \oplus (H^2_b)^* \oplus \mathcal{N}$$

向下 イヨト イヨト

where \mathcal{N} is complexification of N.

• $\mathfrak{M}_b :=$ set of bpe's for H^2 , is determining for \mathcal{A}

Definition

Say \mathcal{A} has a divisor at $\lambda \in \mathfrak{M}_b$ if there exists $\varphi_\lambda \in H^\infty$ such that:

• log
$$|arphi_{\lambda}| \in L^{\infty}$$
, and

•
$$\varphi_{\lambda}H^2 = H_{\lambda}^2$$
.

$$\Omega := set of divisors for A.$$

Divisors are far from unique, however if $\varphi_{\lambda}, \psi_{\lambda}$ are both divisors at λ then

$$\frac{\varphi_{\lambda}}{\psi_{\lambda}} \in (H^{\infty})^{-1}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Examples

hypo-Dirichlet algebras: $\log |\mathcal{A}^{-1}|$ is dense in $C_{\mathbb{R}}(X)$ and $\operatorname{Re}\mathcal{A}$ has finite codimension in $C_{\mathbb{R}}(X)$

- E.g. for R a g-holed planar domain, $\mathcal{A} =$ functions holo. on R, cns. on \overline{R}
- In this case fix b ∈ R, take m = harmonic measure at b. The annihilating measures N are spanned by

$$Q_j = \frac{\partial w_j}{\partial \nu} \frac{ds}{dm}$$

where w_j is harmonic measure on j^{th} boundary component, ds = arc length.

• Here $\mathfrak{M}_b = R$ and for each $\lambda \in R$,

$$\varphi_{\lambda}(z) = z - \lambda$$

向下 イヨト イヨト

is a divisor.

Examples

Finite codimension subalgebras of hypo-Dirichlets:

- Fix nonzero points $a \neq b$ in \mathbb{D} , put $\mathcal{A} = \{f \in \mathcal{A}(\mathbb{D}) : f(a) = f(b)\}$
- Pick 0 for base point, m = Lebesgue measure on $\mathbb T$
- N is spanned by real and imaginary parts of

$$Q=(1-\overline{a}e^{i heta})^{-1}-(1-\overline{b}e^{i heta})^{-1}$$

- $\mathfrak{M} = \mathfrak{M}_0$ is quotient of $\mathbb D$ with a, b identified
- If $\lambda \neq a, b$ put

$$\rho(\lambda) = rac{1}{b-a} \log(rac{a-\lambda}{b-\lambda}), \quad \varphi_{\lambda}(z) = (z-\lambda) \exp(\rho(\lambda)z)$$

Then φ_{λ} is a divisor...but NO divisor at identified point $a \sim b$.

イロン 不良 とうせん ほうし

A family of H^2 spaces

For each $n \in N$ form the inner product on \mathcal{A}

$$\langle f,g\rangle_n = \int_X fg^* e^{-2n} \, dm$$

Closure is called $H^2(n)$.

- Each bpe for H² is also a bpe for H²(n), so each H²(n) is a RKHS on M_b; write k(s, t; n) for its kernel
- some redundancy: let $L \subset N$ be those *n* for which

$$\exp(2n) = ff^*$$

for some $f \in (H^{\infty})^{-1}$. If $n_1 - n_2 \in L$ then

$$f(s)k(s,t;n_1)f(t)^* = k(s,t;n_2)$$

Let $S \subset \mathfrak{M}_b \cap \Omega$ be a finite set and suppose $f : S \to \mathbb{C}$. If the kernel

$$S \times S \ni (s,t) \mapsto (1 - f(s)f(t)^*)k(s,t;n)$$

is positive semi-definite for every $n \in N/L$, then there exists a function $a: \Omega \to \mathbb{C}$ such that the kernel

$$S \times S \ni (s,t) \mapsto (1-a(s)a(t)^*)k(s,t;n)$$

is positive semi-definite for every $n \in N$. Further, if Ω is dense in \mathfrak{M}_b , then there is an $a \in H^\infty$ such that $||a|| \leq 1$ and $a|_S = f$.

高 とう モン・ く ヨ と

Idea of proof

• Introduce a much bigger family of (vector-valued) H_P^2 spaces-take $P \in M_d(L^{\infty})$ and form \mathbb{C}^d -valued spaces

$$\|F\|_P^2 = \int_X F^* PF \, dm, \quad F \in \mathcal{A} \otimes \mathbb{C}^d$$

- The family of kernels K_P of these spaces is an <u>Agler family</u> (closed under direct sums and one-point compressions) -existence of divisors is used here
- By the Pick theorem of [JKM '09], can interpolate if data are positive against all K_P's
- "Cyclic vector trick" Look at repn. of H[∞] on H²_P, restrict to cyclic invariant subspace, show each restricted representation is equivalent to the repn. from some k(·, ·; n)....key is

$$\log F^*PF = g + g^* + n$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Suppose $\lambda \in \Omega$ with divisor φ_{λ} , and let $n \in N$. Let

$$\log|\varphi_{\lambda}| = f + f^* + 2n_{\lambda}$$

be the decomposition with respect to $H^2 \oplus (H_b^2)^* \oplus \mathcal{N}$. Then $n_\lambda \in N$, $e^{-f} \in (H^\infty)^{-1}$, and the operator

$$U_{\lambda}: h \to e^{-f} \varphi_{\lambda} h$$

is a unitary transformation from $H^2(n - n_{\lambda})$ onto $H^2_{\lambda}(n)$.

伺 とう ヨン うちょう

Clearly $e^{-f}\varphi_{\lambda}h$ vanishes at λ . From

$$\log|\varphi_{\lambda}| = f + f^* + 2n_{\lambda},$$

we get

$$|\varphi_{\lambda}|^2 = e^{2\Re f} e^{2n_{\lambda}}$$

Thus,

$$\int |e^{-f}\varphi_{\lambda}h|^2 e^{-2n} dm = \int |h|^2 e^{-2(n-n_{\lambda})} dm.$$

This says U_{λ} is isometric. Surjectivity follows from invertibility of e^{-f} and divisor property of φ_{λ} .

向下 イヨト イヨト

2

We get a map $\lambda \rightarrow n_{\lambda}$ which measures how representations move when restricted to codim 1 subspaces...BUT this depends on choices of φ_{λ} ...

...however, from def. of divisor we had

$$rac{arphi_\lambda}{\psi_\lambda}\in (H^\infty)^{-1}$$

if φ_{λ} , ψ_{λ} are both divisors. From this we get that the map

$$\Omega \ni \lambda \to [n_{\lambda}] \in N/L$$

is independent of the choice of divisors, and is (the real part of) an Abel-Jacobi map...

伺い イヨト イヨト 三日