THE FREDHOLM INDEX FOR ELEMENTS OF
TOEPLITZ-COMPOSITION C*-ALGEBRAS

MICHAEL T. JURY

1. INTRODUCTION

The C*-algebras generated by Toeplitz operators have been much
studied, and have been shown to have a rich and interesting structure.
For example, the well-known theorem of Coburn shows that the C*-
algebra T generated by the Toeplitz operators with continuous symbol,
acting on the Hardy space of the unit disk H?(D), contains the C*-
algebra of compact operators I and there is an exact sequence of C*-
algebras

0—=K—=T—C(T)—0.

The quotient map takes a Toeplitz operator T’ to its symbol f. From
this can be deduced the Toeplitz index theorem, which says that T} is
Fredholm if and only if f is nonvanishing on the unit circle T, in which
case the Fredholm index of T} is equal to the winding number of f
about the origin. For these and other basic results concerning Toeplitz
operators we refer to the book of R. Douglas [6, Chapter 7).

In this paper we study the C*-algebras generated by 7 and a linear-
fractional composition operator on the Hardy space H? of the unit disk.
In particular we are interested in the C*-algebras 7C, = C*(S,C,)
where S denotes multiplication by z on H? (the unilateral shift) and
C, is a composition operator with ¢ : D — ID a linear fractional map,
either an automorphism or non-parabolic non-automorphism. In all of
these cases the quotient C*-algebra 7C,/K has a discernible structure,
and this structure can be used to attack the problem of deciding when
an element of 7C, is Fredholm, and in such cases computing its index.

Date: November 7, 2006.
1991 Mathematics Subject Classification. 47B33 (primary), 47A53, 47L80 (sec-
ondary) .
Key words and phrases. composition operator, Toeplitz operator, Fredholm op-
erator, Fredholm index.
1



2 MICHAEL T. JURY

This study is motivated by several results: first, earlier work on
algebras related to 7C, by the author in [7] (which considers the C*-
algebras generated by composition operators with symbols in a Fuch-
sian group) and by Kriete, MacCluer and Moorhouse [8] on the algebra
TC, for certain non-automorphic ¢. Second, the work of M.D. Choi
and F. Latrémoliére [3] on the C*-algebras C(D) x,, Z (for disk au-
tomorphisms ¢) describes the representation theory of these algebras
and is closely related to the C*-algebras C(T) x, Z which we obtain
as quotients of TC,. Finally, a theorem of E. Park [9] describes the
Fredholm index of operators in a Toeplitz-like extension of irrational
rotation C*-algebras. This extension turns out to be a special case of
the extensions of C(T) X, Z given by 7C,, and this index result gen-
eralizes readily to our situation. We thus have tools available to study
the Fredholm theory in 7C.,.

The paper is divided as follows: Section 2 treats results concerning
TC, common to all automorphisms ¢. We prove that for any automor-
phism ¢ there is an exact sequence of C*-algebras

0—=>K—=7TC,—C(T)x,Z — 0.

Using this exact sequence and a computation of the K-theory of C'(T)x,,
Z, we obtain an integral formula for the Fredholm index in 7C, which
generalizes a result of E. Park [9] for the irrational rotation algebras.
We also prove that for many automorphisms ¢, the inclusion of the
shift S" as a generator of 7C, is unnecessary, that is, we give a suf-
ficient condition on ¢ for S to be contained in C*(C,). Finally we
review some basic facts about analytic automorphisms of D needed in
the subsequent sections.

In Sections 3 through 5 we find conditions under which elements of
TC, are Fredholm, when ¢ is elliptic (of finite order), hyperbolic, or
parabolic respectively. By virtue of the exact sequence obtained in
Section 2, this amounts to a study of invertibility in C(T)x, Z. The
finite-order elliptic case, Section 3, can be handled by fairly elementary
methods, and we also obtain here a more topological form of the index
formula of Section 2. Section 4, the hyperbolic case, is the longest
of the three sections, and requires an analysis of representations of
C(T) %, Z which draws on recent related work of M.D. Choi and F.
Latrémoliere [3]. Since parabolic automorphisms can be viewed as
degenerate hyperbolics, the results of Section 5 are obtained by slight
modification of the arguments of Section 4.

It should be noted here that we do not consider invertibility in
C(T) %, Z when ¢ is elliptic of infinite order. This is the case of
the irrational rotation algebras 4y, and because these are known to be
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simple C*-algebras, there are no accessible “local” criteria for invert-
ibility as in the other cases. Indeed the problem of determining spectra
of elements of Ay is extremely difficult even for very simple symbols.
For example the elements of the form z 4% +u, + u, are the so-called
“almost Mathieu operators,” and the spectral theory even for these
self-adjoint operators is quite difficult and is the subject of a recent
book by F.-P. Boca [1].

Finally, Section 6 treats the non-automorphic linear fractional maps
considered by Kriete, MacCluer, and Moorhouse [8]. They obtain an
exact sequence

0—-K—=TC,—D—0,

where ¢ is a non-automorphic linear fractional map of D into itself
without a boundary fixed point (so that C; is compact) and D is an
explicitly described type I C*-algebra. They also provide an explicit
expression for the essential spectrum of elements of 7C, (which pro-
vides a characterization of the Fredholm operators in 7C,) and from
that expression we prove an index theorem. It turns out that the situ-
ation here is rather simpler than in the case of automorphisms; in fact
we prove that the C*-algebra D is homotopic to C(T), from which the
index results follow readily.

2. GENERAL CONSIDERATIONS

The Hardy space H? is defined to be the Hilbert space of functions
analytic in the open unit disk D such that
27
1717 = sup o= [ 1fGre ) o
0<r<1 27 Jo
is finite; the square root of this quantity defines the norm on H?. By
Fatou’s theorem, every f € H? has non-tangential limits f(e?) :=
lim,_; f(re®) for almost every 6 € [0,27], and the assignment f — f
defines a linear isometry between H? and a closed subspace of L?(T).
We let P : L? — H? denote the corresponding orthogonal projection.
For any f € L*™(T), the Toeplitz operator with symbol f is defined on
each g € H? by
Trg=P(fg).
Such an operator is always bounded, and ||T¢|| = || f||cc. For an analytic
map ¢ : D — D, the composition operator with symbol ¢ is defined by

Cog=gogp.
By the Littlewood subordination principle, Cy, is always bounded. In
this paper we are concerned with the C*-subalgebra of B(H?) generated
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by the unilateral shift S = T, and Cl, for ¢ either an automorphism
of D or a non-parabolic non-automorphism. We let 7C, denote this
C*-algebra. We observe that since 7T, is included as a generator, 7C,
always contains the C*-algebra of compact operators .

In the remainder of this section we assume ¢ is an automorphism of
D. We will write ¢™ for the n'" iterate of ¢ and ¢~ " for the n* iterate
of the inverse automorphism ¢ 1.

The basic result concerning the structure of the C*-algebras 7C,, is
the following:

Theorem 2.1. There is an exact sequence of C*-algebras
(2.1) 0—>K—=7TC,—C(T)x,Z — 0.

Proof. The proof is essentially the same as the proof for discrete groups
of automorphisms given in [7]. Let U, denote the unitary operator
(C,C2)~H2C,,. The calculations of [7] show that the following relations
hold:

e For all f € C(T), UsT{U, — Tyo,-1 is compact.

e For all integers m,n, UZUZ — UZ"™ is compact,
It follows that, letting f and u, denote the images in the Calkin algebra
of Ty and U, respectively, the quotient 7C,/K is generated by a copy
of C(T) and a unitary representation of Z satisfying the covariance
relation ug, fu, = fop~t. Since the crossed product is the universal C*-
algebra generated by these relations, the quotient 7C,/K is therefore
isomorphic to a quotient of the crossed product C(T) X, Z. By the

same argument as in [7], since the action of ¢ on T is amenable and
topologically free, in fact 7C,/K = C(T)x,, Z. O

Lemma 2.2. The group K,(C(T)x, Z) is isomorphic to Z @ Z, gen-
erated by 2|1 and [ug);.

Proof. This result is proved using the Pimsner-Voiculescu six-term ex-
act sequence, and is a simple generalization of the well-known result for
the irrational rotation algebras 4, [5, Example VII.5.2]. The irrational
rotation algebras appear in our setting when ¢(z) = Az with A = €27,
The Pimsner-Voiculescu exact sequence is

K(C(T) %% Ki(C(T) —— K\(C(T)x,Z)

o] s

Ko(C(T) %, Z) «— Ko(C(T)) «—=  Ko(C(T))

The group K(C(T)) is generated by [z];, and by definition «.([z];)
[¢]1. Since ¢ has winding number 1 about the origin, we have [¢];
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[2]1- Moreover, ¢ fixes the unit which generates K,(C(T)) and hence
a, induces the identity map on K,.(C(T)). Thus, the maps 1 — «, are
0 and K;(C(T)x, Z) fits into the short exact sequence

0 —— Ki(C(T)) —— Ki(C(T)x,Z) —2 Ko(C(T)) — 0.
Since the K-groups of C(T) are both isomorphic to Z, the above se-
quence splits and we obtain K;(C(T)x, Z) = Z & Z. To find the
generators, we observe that the first map is induced by inclusion, so
[2]1 is a generator. The second map is the connecting map in the P-V

exact sequence, and by construction this map takes the class [uy,]; to
the class of the unit in K¢(C(T)), which is its generator. O

With the exact sequence of Theorem 2.1 and the above description
of the K; group of C(T) %, Z, we can now obtain an integral formula
for the index of Fredholm operators in 7C,, which is a straightforward
generalization of the formula obtained by E. Park [9] in the case of the
irrational rotation algebras. In fact given Theorem 2.1 and Lemma 2.2
the arguments used in [9] go through almost verbatim, so we only sketch
the details.

To begin with, we define a “smooth subalgebra” A% of C(T) %, Z
by

A% = {Z fku’; . fe € C(T), {|| fell }xez rapidly decreasing }

keZ
and a space of “smooth 1-forms”

QY AY) = {Zwkui‘; twp € QYT), {||we ||} ez rapidly decreasing } .
keZ

The left module action of A% on Q'(AX) and the exterior derivative d :
AY — Q1 (A%) are defined exactly as in [9], using the diffeomorphism
¢. We then obtain a map v : M, (Q'(AY)) — QY(T)

v (Z wku’;) = Tr wy

keZ
where Tt is the usual trace on M,. Finally we define Ch : GL(n, AY) —
QY(T) by
—~— 1
Ch(X) = ——v(X'dX).
(X) = 5 (X ~ax)
With these definitions, the proofs of Lemma 6 and Proposition 7 of [9]

go through unchanged, so that the map Ch induces a group homomor-
phism Ch : K, (AY) — Hjp(T). Finally, for X in GL(n, AY) given by
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the series
X =2 fiug
keZ
(note that f € M, (C*°(T)) here), define Tx € TC, by
Tx =Y TnU;
keZ

Using Theorem 2.1 and Lemma 2.2 we obtain the following generaliza-
tion of Theorem 8 of [9], with the same proof:

Theorem 2.3. For every X in GL(n, AY),

zmn:/%@)
T

Proof. We prove that the two homomorphisms ind, [, Ch(-) agree on
the generators of the group K;(C(T)x, Z). The map ind is the index
map associated to the extension (2.1) and is computed on the genera-
tors easily: ind([uy)1) = 0, since by construction u,, lifts to the unitary
U, € TC,, and ind([z];) = —1 since z lifts to the unilateral shift, which
has Fredholm index —1. On the other hand, using the definition of Ch
we find

1 1 dz
so that [ Ch(u,) =0 and [.Ch(z) = —1. O

For the operators appearing in the later sections of the paper a more
concrete expression of the above integral formula can be obtained. If
we consider an element of 7C,, of the form

N
Tx =) T.U;
k=0

with each fi € C(T), then we have X = Y., frul € AY and
X-le A2 is expressible as the norm convergent series

=D g
kez
with each g, € C*°(T). The index formula then takes the form

(2.2) ind T'x ———Z/g k(9" (2))dfi(2).

211
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From this description it is also apparent that the index homomorphism
from K;(AY) = Ki(C(T)x, Z) to C given by [X]; — [, Ch(X) co-
incides with the homomorphism given by the character of the 1-trace
constructed by Connes [4, Theorem 1.5] for (reduced) crossed products
of actions of countable groups on T. In particular, the validity of the
index formula of Theorem 2.3 extends beyond the smooth subalgebra
A% to any symbol X € C(T)x, Z with the property that, in the natu-
ral representation 7 of C(T) ., Z on L*(T), the commutator [P, 7(X)]
is compact (here P : L? — H? is the Riesz projection).

While we will work throughout the next three sections with the C*-
algebra TC, = C*(S,C,), it is worth noting that the inclusion of the
unilateral shift S as a generator is often unnecessary; that is, it is of-
ten the case that S € C*(C,). Theorem 2.6 below gives a sufficient
condition on the dynamics of ¢ (in fact valid for any inner function ¢)
for this to occur. This condition is satisfied, for example, by all par-
abolic automorphisms and by all hyperbolic automorphisms for which
the fixed points are not the endpoints of a diameter.

Lemma 2.4. Let S denote the unilateral shift on H?. For any x € C,
let A=S+xSS*. Then S € C*(A,I).

Proof. We may obviously assume z # 0. We calculate
|2|2SS* =T + 2 A* +TA — A*A € C*(A, 1),
and hence S = A — 255* € C*(A, I). O

The forward direction of the following lemma was first proved by
Bourdon and MacCluer [2, Proposition 3]; we give here a different
proof which also suggests the proof of the converse.

Lemma 2.5. If ¢ is any inner function then
CoCp = T; Ty = Tigp2,
where
(L= lp(O)P)"*
1—(0)z
Conversely, if C,Cy, is a Toeplitz operator, then ¢ is inner.

f(z) =

Proof. As before let S denote the unilateral shift, and recall that an
operator T € B(H?) is a Toeplitz operator if and only if S*T'S = T.
Since ¢ is inner, T, is an isometry and thus

S*CLC,S = CXIIT,C, = CiC,,
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so C;C, is Toeplitz. Let g be its symbol. To find g, we first observe
that since CC, is positive, g must be positive, and the projection of
g into H? is given by

h=T,1 =CC,l =Cil = ky)(2) = (1 —p(0)2) .

Since g must be real-valued, it follows that g(z) = h(z) +h(z) — h(0) =
| f(2)]?. The factorization T}y = T;T} is valid because f is analytic.
'To prove the converse, the assumption that C;C,, is Toeplitz implies
that C3C, = S*C3C,S = CXT3T,C,, or C4(T3T, — 1)C,y = 0. We
therefore have
0 = (CH(T:T, — )C,1,1)

= (T,T, - D1, 1)

= llell> — 1.
Thus, the L? norm (using normalized arc length measure) of || on the
circle is 1, but since ¢ is a self-map of D its L* norm on the circle is

at most 1, which implies that |o(z)| = 1 almost everywhere on T; that
is, ¢ is inner. 0

Theorem 2.6. Let ¢ be an inner function. If the orbit (¢"(0))5, does
not lie on a diameter of D, then S € C*(C,,).

Proof. By Lemma 2.5 we have, for each n, C7.Cyn = T} Ty, where

fal2) = (1= "(0))Y2(1 = 97(0)2) . Now T3 Ty, is invertible, with
inverse 7'+ T% So C*(C,) contains

fn fn

(1= " O)F)TLTL =1 - ¢"(0)S = &"(0)S + " ()55

for each n. By the hypothesis on the orbit, there exist n, m such that
a = ¢"(0) and b = ¢™(0) are linearly independent over R. Since
C*(C,) contains an invertible operator, it contains I, so we have the
operators aS+aS* —|a|?SS* and bS+bS* — |b|2SS* in C*(C,,). Since a
and b are linearly independent over R, we may find a linear combination
of these operators of the form S + 55" for some scalar . Applying
the lemma, we find S € C*(C,,). O

The remainder of the paper concerns the Fredholm theory in 7C,
for various linear fractional maps ¢. When ¢ is an automorphism,
the structure of the algebras 7C, and of the quotients C(T) %, Z is
dependent upon the fixed point behavior of ¢. We therefore divide our
analysis into three sections, for ¢ elliptic, hyperbolic, and parabolic
respectively. This classification of automorphisms and the properties
of each class are well known, we briefly recall the facts we require.
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Every (nontrivial) Mobius transformation of the Riemann sphere
C U {oo} fixes exactly two points (counting multiplicity). A Mé&bius
transformation of the disk is called hyperbolic if it has two distinct
fixed points in the closed disk I, these necessarily lie on the boundary
OD. If ¢ has only one fixed point in D, then ¢ is called elliptic if the
fixed point lies in the interior I, and parabolic if the fixed point lies
on 0D (in which case this point is a fixed point of multiplicity two for
the automorphism of the Riemann sphere given by ¢). Obviously, the
automorphism ¢ ! is of the same type as ¢, as are the iterates ¢" of
. Every elliptic automorphism is conjugate to a rotation of D about
the origin. If we replace the disk by the upper half-plane, every hyper-
bolic automorphism is conjugate to a dilation z — 7z of the upper half
plane (for some nonzero real ) and every parabolic automorphism is
conjugate to a translation z — z + r for some real r.

When ¢ is hyperbolic, the fixed points can be distinguished by the
modulus of the derivative: at one fixed point A, called the attracting
fized point, we have |¢'(Ay)| < 1 and at the repelling fized point A_ we
have |¢'(A_)| > 1. Moreover for each w € D\ {\_}, we have

lim ¢"(w) = A;.

n—0o0
When ¢ is replaced by ¢!, the roles of the attracting and repelling
fixed points are reversed; and in particular we have for all w € D\ {\,}

A, ) = A

When ¢ is parabolic the single fixed point A is called indifferent, since
it is neither attracting nor repelling in the topological sense, however
we do have for all w € D

lim " (w) = A
n—=+oo
R Finally, we recall that for any automorphism © of the Riemann sphere
C, its Fatou set (that is, the largest subset of C on which the iterates
of ¢ are a normal family) is the complement of its fixed point set. In
particular the set of iterates of ¢ is equicontinuous on T\ {A;, A_} (in
the hyperbolic case) and T \ {\} (in the parabolic case).

3. ELLIPTIC AUTOMORPHISMS OF FINITE ORDER

In this section we assume ¢ is an elliptic automorphism of finite
order, that is, there exists a nonnegative integer ¢ such that ¢9(z) = 2.
Conjugating by an automorphism if necessary, we may assume that
the fixed point of ¢ is the origin, so that ¢(z) = Az where \ = ¢?™(¢/d)
with p/q in lowest terms. It is well-known that the crossed product
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C(T)», Z is isomorphic to the subalgebra of M, ® C(T) consisting of
elements of the form

fo fi o fo—1
fq—lOSO fOOQO fq—QOQO
fl O Sp(qfl) . o oo fO le) SO(Q*U

In particular, in the regular representation 7 of C(T)x, Z on L?(T)@),
we have 7(f) = diag(M/oys) for all f € C(T) and 7(uy) is the permu-
tation matrix with a 1 in the (4,7) entry if j —¢ =1 mod ¢ and zeroes
elsewhere. With this description of C'(T) %, Z the Fredholm theory in
TC, is easily worked out, and we also obtain a more topological form
of the index formula of Section 2.

Theorem 3.1. Let T =31 Ty, CI+ K and suppose each f; € C'(T).
Then T is Fredholm if and only if the C(T)-valued determinant

Jo fio fo—1
fq_1090 fOOSO fq—QOQD
hy =
f1 o) gp(qfl) . e oo fO le) gp(qfl)

s nonvanishing on T, in which case

-1 dh
(3.1) ind(T) = —— [ ==L,

2miq Jo hr

that is, ’Tl times the winding number of hr about the origin.

Proof. By the exact sequence 2.1 the operator T is Fredholm if and
only if the element f = Y79, fyul, is invertible in C(T) x,, Z, and by
the above description of the regular representation this is the case if
and only if hr is nonvanishing. To prove the index formula, we observe
that it follows from the matrix-valued Toeplitz index theorem that if
H(z) is invertible in M, ® C(T) and h(z) = det H(z), the (integer)
quantity

1 dh
3.2 h)y=— [ —
(32) X =5- [ 5
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is homotopy invariant. By restricting to the subalgebra C(T)x, Z C
M, ® C(T) (identified with its image in the regular representation),
we obtain a homomorphism from K;(C(T) x, Z) to Z. To prove the
index formula we must show that this map agrees with the index map
of the extension 2.1. Since this K; group is generated by the elements
w(z) = z and u,, it suffices to check that the two maps agree on these
generators. On w(z) = 2, we have det7(w)(z) = [[I_, ¢/(2) so the
formula (3.1) gives (—1/¢) - ¢ = —1, which is equal to the index of the
unilateral shift T, which is the lifting of w(z) = 2z to TC,. On the
other hand, applied to u, the formula (3.1) gives 0, which agrees with
the index map since u,, lifts to the unitary U,. U

4. HYPERBOLIC AUTOMORPHISMS

In this section, ¢ is a hyperbolic automorphism with attracting fixed
point A, and repelling fixed point A_. While the problem of deter-
mining the spectrum of an arbitrary element f € C(T) %, Z is likely
intractable, we can obtain some sufficient conditions for invertibility
(and hence for Fredholmness in 7C,).

4.1. Localization in C(T) x, Z. Fix an orthonormal basis {&,}nez
for ¢2(Z). We let u denote the bilateral shift on this basis, that is,
u&, = &,q. For each € T we define a representation

T 2 C(T) %, Z — B(*(Z))

as follows: let m,(u,) = uw and for g € C(T) let m,(g9)(&,) = g(¢"(x))&,.

In this subsection we collect some results about the representations
7, which we will require for our main theorems. The main result of
this section is Theorem 4.4, which reduces the question of invertibility
in C(T) 1, Z to invertibility in the “local” representations 7, (by [3,
Lemma 3.9], 7, is irreducible for z # \%).

Lemma 4.1. For each f € C(T) %, Z, the function x — m,(f) s
continuous in the point-norm topology from T \ {\y, A_} to B(¢*(Z)).

Proof. We prove the lemma for the “polynomial” expressions
n
f= 2 fu
k=m

Since these are norm dense in C(T)x, Z, the general case follows by an
“e/3” argument. Let f € C(T)x, Z be as above, fix x € T\ {\,A_},
and let € > 0 be given. Since each of the finitely many functions f; is
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uniformly continuous, there exists d; > 0 such that for all k =m,...n
and all y, z € T such that |y — z| < dy,
€

|fe(y) — fu(2)] < Tl

Since the iterates of ¢ are equicontinuous on T\ {\;, A_}, there exists
d > 0 such that for all |y — z| < &, we have sup; [¢/(y) — ¢’ (z)] < 1.
Using the fact that 7, (u,) = m,(u,) = u, we then have for all |y—z| < §

Iy (f) = 7 (DN < D My () = mo(fi) [l
= > Ildiag(fu(¢ (v)) — fu( (@)

Z sup ‘fk(@j(y)) - fk:(%f’j(ﬁ))‘

N k=m JEL
(4.1) <€
where the last inequality holds because of the choices of § and é;. O

Lemma 4.2. Let x; and x4 be points in T \ {A;,A\_}. The represen-
tations w,, and m., are equivalent if and only if x1 and x5 lie on the
same orbit of .

Proof. This is a special case of [3, Lemma 3.9]. O

Lemma 4.3. There exist closed arcs 11,15 C T such that for each
r € T\ {Ay, A_} there is ay € Iy ULy such that 7, is equivalent to m,.

Proof. Choose one point from each of the two open arcs of T\ {\,, A_},
call these points x; and x,. Let I; be the closed arc with endpoints z;
and ¢(z;). Since the translates of I; and I cover T \ {Ay, A_}, each
point of the latter set lies on the orbit of some point of Iy U I5. The
lemma now follows from Lemma 4.2. O

Theorem 4.4. Let f € C(T)x, Z. Then f is invertible if and only if
7 (f) is invertible for each x € T.

Proof. The “only if” statement is immediate, so we must prove the “if”
statement. Let I; and I be the closed arcs provided by Lemma 4.3
and let {x,} be a countable dense subset of I = I; U I, which includes
the endpoints of the intervals. We first claim that the representation

TI= Ty Dy D {@n’ﬂxn}

of C(T)x, Z is faithful. Since the action of ¢ on T is topologically free,
a nontrivial ideal in C(T) x, Z must have nontrivial intersection with
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C(T). It therefore suffices to show that the restriction of 7, to C(T) is
faithful. Let g € C(T) be a nonzero function. If 7, (g) is nonzero, we
are done. Otherwise, let x € T\ {A;, A\_} with g(z) nonzero. Then g is
nonvanishing in a neighborhood U of x, and by Lemma 4.3 there exists
an integer k such that ¢x(U) N1 # (). For any x in this intersection
m:(g) # 0, and by Lemma 4.1 7, (g) # 0 for some z,,.

Now let f € C(T)x, Z and suppose m,(f) is invertible for each
x € T. Since the representation 7 is faithful, it suffices to prove that
7(f) is invertible, and to prove this it suffices to show that the sequence
|72, (f)7!|] is bounded. By Lemma 4.1 and the continuity of the holo-
morphic functional calculus, for each n there is a neighborhood U,, of
T, such that

7 (/)™ = ma, (H) M < 1

for all z € U,,. By compactness, I is covered by finitely many of these
Upn, say Uy,,...U,,. Then for all x € I (and in particular for all z,,)

7 (F) ] < max{[l,, (F) 7+ 1},

so the sequence |7, (f) '] is bounded. O

4.2. Fredholm criteria. From the exact sequence 2.1 we know that
an element of 7C, of the form

N
T=3 1,03
n=0

is Fredholm if and only if

is invertible in C(T)x,, Z. Under the simplifying assumption that the
leading coefficient f; is nonvanishing on T (in other words, invertible
in C(T)), we obtain a necessary and sufficient condition for the invert-
ibility of f. The fized point polynomials of f, defined below, play a
central role in this analysis.

Definition 4.5. For a finite sum
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we define the fixed point polynomials p}’ and py by

TIOED S B ENHC ) S ACHED

Before stating and proving the next theorem we introduce some no-
tation. For each n € Z we let H be the closed span of {& : k >
n}, and Q; the orthogonal projection from (*(Z) onto H,. Simi-
larly, we let H be the closed span of {& : k& < n} and @, the
corresponding orthogonal projection. (Note that @, = I — Q' ;.)
We define a unitary operator U, : H — H?(T) by sending the or-
thonormal basis {&,, &1, - - -5 &nk, - - - } for H,, to the orthonormal ba-
sis {1,2,...2%F ...} for H%. Similarly, V,, is the unitary operator taking
H- to H? via & — 2"7%. Finally, for an operator A € B(*(Z)), we
write

[Alij = (A&, &)
for the matrix elements of A.

Throughout this section we fix an element f = SV faul, € C(T)x,,
Z. We first examine matricial structure of the operator m,(f) with
respect to the orthonormal basis {£,}. From the definition of the rep-
resentation 7., the matrix elements of 7, (f) are

malls = {f”(wj(z)) 0<i=j< M,

0 otherwise.

Note that if x is a fixed point of ¢ then the matrix of m,(f) is a
bi-infinite Toeplitz matrix, with fi(x) on the k* subdiagonal. In par-
ticular, this shows that for x = Ay the operator m,, (f) is unitarily
equivalent to multiplication by p]jf on L*(T), since the latter operators
are represented, with respect to the basis {e?™*%} of L?(T), by the
same Toeplitz matrix as 7y, (f). The following lemma tells us that for
z not a fixed point, the matrix of m,(f) has an “asymptotic” Toeplitz
structure.

Lemma 4.6. Let f = Ziv:o faul, € C(T)x, Z with fived point polyno-
mials p]jf. For each € > 0 and each x € T, there exists an integer N
such that

||Q7—;—7Tm(f)Q7—; - Un*ij{UnH <€

for alln > N;.
Similarly, for each € > 0 and each x € T there is an integer N, such
that
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foralln < N .
Moreover, each of these differences is compact.

Proof. Since

lim fi(¢"(@) = (M)
forall z € T\ {A4,A_} and all 0 < £ < N, it follows that given any
€ > 0 there exists an integer N such that

n B €
(4.2) Og;g;,niu%!fk(w (@) = e < 7

Now, fix n > N, . Each of the operators Q' m,(f)Q;, U;Tp;Un has its

matrix elements supported in the band 0 < ¢ — j < N, and within this
band we have

Qo ()QFi; = fimi(¢ (2)); [U;Tp}rUn]ij = fii(Ay)-

It follows that the difference of these operators is also supported in the
band 0 <i— j < N, and by (4.2) each of its nonzero matrix elements
is less that ¢/(N +1) in absolute value. It follows that the norm of this
difference is less than e. Moreover since the difference is supported in
a finite band and its matrix elements tend to 0 on each subdiagonal, it
is compact.

The proof for @, 7.(f)Q;, is entirely analogous. Il

Lemma 4.7. If the fized point polynomials p? do not vanish in D, then
for each x € T there exists integers NX such that for all n > N, the
operator

Qna(f)Qn

is invertible, and for all n < N the operator

Qnma(f)Qn
15 tnvertible.
Proof. Since the fixed point polynomial ,0}’ does not vanish in D, the
Toeplitz operator T+ is invertible. It follows that for any n, any suf-
ficiently small perturbation of U;;Tp}r U, will also be invertible. By the

previous lemma we may choose the integer N, to make Q7. (f)Q,!, for
alln > N, as close in norm to U,’{Tp;r U, as we like. The claimed invert-

ibility follows, and an identical argument works for Q, 7.(f)Q,. O

N

Theorem 4.8. Let [ = anu’; € C(T)xy, Z, and suppose the fized
n=0

point polynomials py(z) and pj(z) have no zeroes in the closed unit
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disk. Then for each v € T, 7, (f) is invertible if and only if fo does not
vanish on the orbit O,.

Proof. Since the polynomials ,ojjf do not vanish in D, we have in partic-
ular

pr(0) = fo(As) #0,

that is, fo does not vanish at the fixed points of ¢, so we assume x €
T\ {A+, A_} and that fy(y) = 0 for some y € O,; that is, fo(p™(z)) =0
for some n € Z.

Since fj is continuous, it is nonvanishing in neighborhoods of A, and
A_. Hence for all x € T\ {\;,A_},

lim [7(f)]nn = lim fo(¢"(2)) = fo(Az) # 0
n—£oo n—=£o0

and thus [7,(f)]nn = fo(™(x)) is nonzero for all n sufficiently large in
absolute value. Tt follows that 7, (f) has only finitely many zeroes on
the diagonal, and hence there is some largest m such that [7,(f)]mm =
0. By Lemma 4.7, the compression Q,m.(f)Q}, is invertible for all
sufficiently large M > m. We may now write Q;f7,(f)@; in block
diagonal form as

amne=(x )

where B = Q,7.(f)Q,, is invertible and A is an (M —m) x (M —m)
lower triangular matrix whose first row is 0. Thus we can find v €
H,} & H}, such that Av = 0. It follows that the vector v & (—B ' Kwv)
lies in the kernel of Q) 7,(f)Q,, and hence 0 & v @ (—B ' Kwv) lies in
the kernel of 7, (f) and hence 7,(f) is not invertible.

Conversely, if f does not vanish on O, then we may decompose 7, (f)
into a block lower triangular form with each diagonal block invertible.
Indeed choose M according to Lemma 4.7 so that Q1,7 (f)Q5 is in-
vertible, and similarly we choose L € Z, L < M so that Q, 7,(f)Q; is
invertible. The operator m,(f) thus admits a block triangular decom-
position

Qum(/)Q, 0 0
Wm(f) — * C 0 ,

* Qum(f)Qu

where the matrix C'is an (M — L) x (M — L) lower triangular matrix
which does not vanish on the diagonal, and is hence invertible. Thus
7.(f) admits a block triangular form with invertible diagonal blocks,
and is hence invertible. 0J
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N

Theorem 4.9. Let T = Z Ty, Uy + K. If the fized point polynomials
n=0

p]f and p; have no zeroes in the closed unit disk, then T' is Fredholm

if and only if Ty, is Fredholm. Furthermore, in this case ind(T) =

ind(TfO).

Proof. T is Fredholm if and only if its symbol

N
x(T) = Z fnUZ
n=0

is invertible. By Theorems 4.8 and 4.4, x(T) is invertible if and only
if fy does not vanish on T. This is the case if and only if the Toeplitz
operator 1Y, is Fredholm.

To prove the statement about the indices, we will construct an ex-
plicit homotopy between the symbols f and fy through invertible ele-
ments of C(T)x,Z. Since T and T, are liftings of f and f; respectively,
the equality of the indices follows.

To construct the homotopy, we first observe that since the fixed point
polynomials have no zeroes in D, each is homotopic to a nonzero con-
stant polynomial, and the homotopy may be taken through polynomials
without zeroes in D. Indeed, for 0 < ¢ < 1 put

pi () = py (t2)
and observe that if the zeroes of pf have modulus greater than one then

the same is true for each p°. We now define the homotopy between f
and fy by

N
g(t) = Z fntnug
n=0

For each ¢, the fixed point polynomials of g(t) are p; and p, respec-
tively. Thus, by Theorem 4.8, ¢(¢) is invertible for all ¢. By construction

9(0) = fo and g(1) = f. O

This result can be restated as a spectral inclusion theorem:

Corollary 4.10. Let f = Ziv:o faul, € C(T) %, Z, with o hyperbolic.
Then B B
o(f) € fo(T) U p; (D) U p; (D).

Proof. Suppose A € C does not belong to the above union of sets. Then
the leading coefficient fy — A of f — A has no zeroes on the circle, and
since the fixed point polynomials of f — A are pf — A, these have no
zeroes in the closed disk. Therefore f — A is invertible. O
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In general this inclusion is strict Qn the example following Theo-
rem 4.12, we have 0 € pj (D) U p; (D) but f is invertible). A more
refined spectral inclusion will follow from that theorem.

Under the assumption that fy is invertible, but now allowing zeroes
of the fixed point polynomials in D, we characterize the invertibility of
f=> Jnuy, in terms of the invertibility of an additional matrix-valued
function on T. Again, we fix x € T and examine invertibility in the
representation .

First, we observe that since p}’ is an analytic polynomial with d
zeroes in I, the Toeplitz operator Tp? has a d-dimensional cokernel

and trivial kernel (and hence Fredholm index —d). By Lemma 4.6 the
same will be true of Q7. (f)Q7; for all sufficiently large M.
We now fix some notation: for a fixed M as above, put

Fi(2) = Qure(NQu,  F(2) =Quma(NQyy,  K(7) = Quma(f)Qy
and note that K(z) is finite rank and hence compact.
With this notation m,(f) has the block triangular form

F (z) 0 )
T.(f) = .
() (K(az) Fy ()
Observe also that by compactness, we may choose a single M so that
this decomposition is valid for all « € I; U I, (see subsection 4.1).

Lemma 4.11. Suppose the fixed point polynomials p}', py are nonvan-
ishing on 0D and have dy and d_ zeroes in D, respectively. Then for
each x € OD\{ Ay, A_}, the operator . (f) is Fredholm and ind(m,(f)) =
d_ —d.. Furthermore, if fy does not vanish on O, then ker F_(x)* =

{0}.

Proof. By Lemma 4.6 and the above triangular form of 7,(f), we see
that m,.(f) is unitarily equivalent to a compact perturbation of the

operator
T 0
Py
0 Tp?

on H?@® H?. The assumption on the zeroes of p]jf then implies that the
operators T:, and Tp}r are Fredholm of index d_ and —d, respectively.

This proves the first statement.
For the second statement, we consider a further block decomposition
of F_(z). By Lemma 4.6 we can choose L < M so that Q, 7,.(f)Q

is unitarily equivalent to an arbitrarily small perturbation of 7' :_. Since
f
this latter operator has trivial cokernel, we can choose L so that Q7 7,.(f)Q7
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also has trivial cokernel. We then obtain a block triangular form for

F_(x):
_(Qrm(f)Q 0
Paw=(0m0% ¢
where X is finite rank and C'is an (M — L) x (M — L) lower triangular
matrix which does not vanish on the diagonal, and is hence invertible.

We now consider ker F_(z)*: suppose v, w are vectors such that

(@mher %) (r)- ()

Then w = 0 since C* is invertible, and therefore v = 0 since (Q 7. (f)Q)*
has trivial kernel. Thus ker F'_(x)* is trivial. O

We now return to the triangular form of 7, (f). Assume now that the
fixed point polynomials each have d zeroes in D (and are nonvanishing
on 0D) and that f, does not vanish on O,. In the block decomposition
of 7,(f), the operator F(z) has trivial kernel and, by the previous
lemma, F_(z) has trivial cokernel. Since these operators are also Fred-
holm, they have closed range and we can define two projection-valued
functions on 1; U Iy by

P (z)=1—F,(F:F.)'F*; P (z)=1-F(F.F)'F

(here we have suppressed the z-dependence on the right-hand side). In
other words, Py (z) is the projection onto the cokernel of F, (x), and
P_(z) is the projection onto the kernel of F_(z). We are now ready to
state and prove our main result about the invertibility of 7, (f).

Theorem 4.12. Let f = anug with fo nonvanishing and suppose
the fixed point polynomials p? each have d zeroes in D (and are non-
vanishing on the boundary). Then f is invertible if and only if for all
z € D\ { A\, \_}, the matriz-valued function

D) = Py (@)K ()P_(2)
is tnvertible from ker F_(x) to ker F (x)*.

Proof. By the assumptions on p?, Lemma 4.11 shows that m,(f) is
Fredholm of index 0. It is therefore invertible if and only if it has
trivial kernel. Considering the block triangular form of 7,(f), sup-
pose a nonzero vector v @ w lies in the kernel of 7, (f). Then, since
kerF', is trivial, v € kerF". must be nonzero, and we must have Kv €
ranf’.. In other words, v must be a nonzero vector in the kernel of
P (z)K(z)P_(x). Conversely, given any such v we may solve for w
such that Kv+ I (z)w = 0, whence v@w lies in kerm, (f). Thus 7, (f)
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is invertible if and only if D(z) is invertible. The theorem then follows
from Theorem 4.4. O

Exactly as in the case of Theorem 4.9, this result can be stated
as a spectral inclusion. To account for the necessary condition that
the fixed point polynomials have the same number of zeroes in D, let
W, C C denote the set of all points w such that either 1) p;f and py
have different winding numbers about w, or 2) w € p;(T) U p, (T)
(that is, at least one of the winding numbers is undefined). It is not
hard to see that W, is compact. Finally, let Wp denote the subset of
the complement of fo(T)U W, such that the matrix-valued function D
constructed fromf — w in the manner above is not invertible.

Corollary 4.13. Let f = 3N foul, € O(T) %, Z. Then
a(f) C fo(T)UW, U Wp.

Unlike in Theorem 4.8, it is possible to have the symbol of a Fredholm
operator satisfy the hypotheses of Theorem 4.12 but ind(1") # ind(1,):

Example: Let 0 < r < 1 and put

T =0T, +U,.
Then f = x(T') = rz + u, is invertible, since u,, is unitary and || f —
Uyl = [|72|lc < 1. We have fy(z) = rz nonvanishing on the unit circle,

and the fixed point polynomials are
pf(w) =7y +w, Py (w) =rA_ +w;

each of which has one zero in D and is nonvanishing on the unit circle.
Thus f satisfies the hypotheses of Theorem 4.12. However, since ||f —
u,|| < 1, the symbol f is homotopic to u,. It follows that ind(T) =
ind(U,) = 0 while ind(Ty,) = ind(T,,) = —1.

If a Toeplitz operator T, is Fredholm and ind(T,) = 0, then T is
invertible. We do not know if the corresponding statement is true in
TC,, even for the Fredholm operators described by the theorems in
this section:

Question: If 7' € TC,, is Fredholm and ind(T") = 0, is 1" invertible?

5. PARABOLIC AUTOMORPHISMS

For the present purposes, it is best to view a parabolic automorphism
as a degenerate hyperbolic automorphism, for which the attracting and
repelling fixed points coalesce. Taking this point of view, the main
theorems of the previous section are easily modified to apply to the
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parabolic case, with essentially the same proofs. We will therefore only
sketch the proofs in this section, taking care to highlight the necessary
changes.

We let ¢ now denote a parabolic automorphism of D, with fixed
point A € T. As before we consider operators of the form

N
=Y foul
n=0

and define the fized point polynomial py by

pr(z) =D N2

In the hyperbolic case, the fixed points A\, and \_ are attracting for ¢
and ¢!, respectively. Now that ¢ is parabolic, the point \ is attracting
for both ¢ and ¢!, in the sense that for any z € T, x # ), we have
A, #"0) = g eie) =2
With this fact in mind, the obvious modifications to the proof of
Lemma 4.6 show that the conclusion of that lemma holds for parabolic
© if we replace both pjf and p, with py. The statement of Lemma 4.7 is
then also valid in the parabolic case. With these substitute lemmas in
hand, the following theorem is proved in the same way as Theorem 4.8,
mutatis mutandis.
N
Theorem 5.1. For a parabolic automorphism o, let f = Z foul, € C(T) %, Z,
n=0
and suppose the fized point polynomial ps(z) has no zeroes in the closed
unit disk. Then for each x € T, m,(f) is invertible if and only if fo
does not vanish on the orbit O,.

In turn, using this result, the following analog of Theorem 4.9 is seen
to be true, by letting p; = p; = py in its proof:

N
Theorem 5.2. Let T = ZTfn U, + K. If the fized poinl polynomial

n=0
pt has no zeroes in the closed unit disk, then T is Fredholm if and only

if Ty, is Fredholm. Furthermore, in this case ind(T) = ind(Ty,).

Continuing as in the discussion following Theorem 4.9 for each z € T,
x # A, we have the block triangular form for the matrix

mo(f) = (1;(((5)) F+0(x)> '
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From this follows a simpler version of Lemma 4.11:

Lemma 5.3. Suppose the fized point polynomial py is nonvanishing
on OD. Then for each x € 0D \ {\}, the operator 7, (f) is Fredholm
and ind(r(f)) = 0. Furthermore, if fo does not vanish on O, then
ker F_ (x)* = {0}.

Proof. Using the block triangular form of 7, (f) and the parabolic ver-
sion of Lemma 4.6, we find that 7, (f) is unitarily equivalent to a com-

pact perturbation of
1 f 0
0 T,

on H?@® H?. This operator is Fredholm of index 0. The second part of
the lemma is proved as in the hyperbolic case. O

Finally, since we have now shown that 7, (f) is always Fredholm of
index 0 when ¢ is parabolic, using the same notation as in Theorem 4.12
we have a parabolic version of that theorem and its corresponding
spectral inclusion:

Theorem 5.4. Let f =) fouy with fo nonvanishing and suppose the
fized point polynomial ps is nonvanishing on T. Then f is invertible if
and only if for all x € T, x # A, the matriz-valued function

D(z) = Py (2)K(z)P_(x)
is invertible from ker F_(x) to ker F (x)*.

Since we have only a single fixed point polynomial, the corresponding
spectral inclusion theorem is somewhat simpler in the parabolic case.
We here let Wp denote those points w of the complement of fo(T) U
ps(T) for which the function D associated to f — w is not invertible.

Corollary 5.5. Let f =3 fyul, € C(T)x, Z. Then
o(f) € fo(T) U ps(T) U Wp.

6. NON-AUTOMORPHIC LINEAR FRACTIONAL MAPS

In this section we consider the extension
(6.1) 0—-K—=TC,—D—=0

constructed by Kriete, MacCluer and Moorhouse [8]. We first recall
the notation and results of [8]. Throughout this section, ¢ is a non-
automorphic linear fractional map ¢ : D — D such that ¢(¢) = n for
some ( # n € 0D. The compact Hausdorff space A consists of the
disjoint union of 9D and the closed interval [0, 1] with the points ,n
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and 0 identified, so that A is homeomorphic to a figure eight with a
closed interval attached by one endpoint to the vertex, which we denote
p.
The C*-algebra D consists of all functions b : A — M, (C) satisfying
the following conditions: there exist w € C(9D) and G € M,(C([0, 1]))
such that

e For A\ € C(0D) \ {¢,n},

e For )\ € [0,1], b(\) = G(N).
e At the vertex p,

The set of such functions is a C*-algebra when equipped with the supre-
mum norm, pointwise operations, and the obvious involution. We will
denote elements of D by (w,G) where w and G are as above. Note
that in this description products and adjoints are taken entrywise:
(wl,Gl) . (U)Q, GQ) = (wlwg, GlGQ), and (U), G)* = (@, G*)

For the next theorem, we recall two definitions: first, if A and B are
C*-algebras and p, o : A — B are *-homomorphisms, we say that p and
o are homotopic if there exists a path of *-homomorphisms p; : A — B,
0 <t <1, with p=py and o = p;. The path is required to be contin-
uous in the sense that for each a € A, the map t — p;(a) is continuous
from [0,1] to B (equipped with the norm topology). Secondly, a pair
of C*-algebras A and B are called homotopy equivalent if there exist *-
homomorphisms # : A — B and ¢y : B — A such that the compositions
0 o 1) and v o O are homotopic to id4 and idg respectively.

Theorem 6.1. The C*-algebras D and C(T) are homotopy equivalent.

Proof. For w € C(T), let W be the My(C)-valued function on [0, 1]
which is identically equal to diag(w((), w(n)). We define *-homomorphisms
0:C(T) - D and ¢: D — C(T) by

O(w) = (w, W), (w,G) = w.
Obviously v o 8 = id¢(r). We have
0op(w,G) = (w, W).

Note that W(X) = G(0) for all A € [0,1]. For ¢ € [0,1] define the
*-homomorphism p; : D — D by

pi(w, G) = (w,Gy)
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where G(A) = G(tA). Thus p; is a homotopy between p; = idp and
Po = 6o 1/} [

Theorem 6.2. Let T =T, +C+ K € TC,. If T is Fredholm then T,
is Fredholm and ind(T) = ind(Ty).

Proof. Since the image of T'in D is of the form (w, G), T is Fredholm if
and only if w and G are pointwise invertible, so if 1" is Fredholm then
w is invertible and the Toeplitz operator 1}, is Fredholm. To prove the
index statement, it suffices to prove that the images of 7" and T, are
homotopic through invertibles in D. Using the homotopy (w,G;) of
the previous theorem, we see that (w,G) is homotopic to (w, W), and
since G is assumed invertible each G is invertible, and hence (w, Gy)
is invertible in D for all ¢ € [0,1]. Finally, the element (w, W) is by
construction the image of T, in D. OJ

Combining the previous two theorems we get the following corollary:

Corollary 6.3. The group Ext(D) is isomorphic to Z and is generated
by the class of the extension (6.1).

Proof. The first statement follows from Theorem 6.1 and the homotopy
invariance of the Fxt functor. Since Fxt(T) = Z is generated by the
class of an extension for which the function w(z) = z lifts to an operator
of index +1, the group Ext(D) will be generated by an extension for
which the element §(w) = (w, W) lifts to an operator of index £1. By
Theorem 6.2 the extension (6.1) has this property ((w, W) lifts to the
unilateral shift). O
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