
THE FREDHOLM INDEX FOR ELEMENTS OFTOEPLITZ-COMPOSITION C*-ALGEBRAS
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1. IntroductionThe C*-algebras generated by Toeplitz operators have been muchstudied, and have been shown to have a rich and interesting structure.For example, the well-known theorem of Coburn shows that the C*-algebra T generated by the Toeplitz operators with continuous symbol,acting on the Hardy space of the unit disk H2(D), contains the C*-algebra of compact operators K and there is an exact sequence of C*-algebras 0! K ! T ! C(T)! 0:
The quotient map takes a Toeplitz operator Tf to its symbol f . Fromthis can be deduced the Toeplitz index theorem, which says that Tf isFredholm if and only if f is nonvanishing on the unit circle T, in whichcase the Fredholm index of Tf is equal to the winding number of fabout the origin. For these and other basic results concerning Toeplitzoperators we refer to the book of R. Douglas [6, Chapter 7].In this paper we study the C*-algebras generated by T and a linear-fractional composition operator on the Hardy spaceH2 of the unit disk.In particular we are interested in the C*-algebras T C' = C�(S;C')where S denotes multiplication by z on H2 (the unilateral shift) andC' is a composition operator with ' : D! D a linear fractional map,either an automorphism or non-parabolic non-automorphism. In all ofthese cases the quotient C*-algebra T C'=K has a discernible structure,and this structure can be used to attack the problem of deciding whenan element of T C' is Fredholm, and in such cases computing its index.
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2 MICHAEL T. JURY
This study is motivated by several results: �rst, earlier work onalgebras related to T C' by the author in [7] (which considers the C*-algebras generated by composition operators with symbols in a Fuch-sian group) and by Kriete, MacCluer and Moorhouse [8] on the algebraT C' for certain non-automorphic '. Second, the work of M.D. Choiand F. Latr�emoli�ere [3] on the C*-algebras C(D) o' Z (for disk au-tomorphisms ') describes the representation theory of these algebrasand is closely related to the C*-algebras C(T)o' Z which we obtainas quotients of T C'. Finally, a theorem of E. Park [9] describes theFredholm index of operators in a Toeplitz-like extension of irrationalrotation C*-algebras. This extension turns out to be a special case ofthe extensions of C(T)o' Z given by T C', and this index result gen-eralizes readily to our situation. We thus have tools available to studythe Fredholm theory in T C'.The paper is divided as follows: Section 2 treats results concerningT C' common to all automorphisms '. We prove that for any automor-phism ' there is an exact sequence of C*-algebras0! K ! T C' ! C(T)o' Z! 0:Using this exact sequence and a computation of theK-theory of C(T)o'Z, we obtain an integral formula for the Fredholm index in T C' whichgeneralizes a result of E. Park [9] for the irrational rotation algebras.We also prove that for many automorphisms ', the inclusion of theshift S as a generator of T C' is unnecessary, that is, we give a suf-�cient condition on ' for S to be contained in C�(C'). Finally wereview some basic facts about analytic automorphisms of D needed inthe subsequent sections.In Sections 3 through 5 we �nd conditions under which elements ofT C' are Fredholm, when ' is elliptic (of �nite order), hyperbolic, orparabolic respectively. By virtue of the exact sequence obtained inSection 2, this amounts to a study of invertibility in C(T)o' Z. The�nite-order elliptic case, Section 3, can be handled by fairly elementarymethods, and we also obtain here a more topological form of the indexformula of Section 2. Section 4, the hyperbolic case, is the longestof the three sections, and requires an analysis of representations ofC(T)o' Z which draws on recent related work of M.D. Choi and F.Latr�emoli�ere [3]. Since parabolic automorphisms can be viewed asdegenerate hyperbolics, the results of Section 5 are obtained by slightmodi�cation of the arguments of Section 4.It should be noted here that we do not consider invertibility inC(T)o' Z when ' is elliptic of in�nite order. This is the case ofthe irrational rotation algebras A�, and because these are known to be
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simple C*-algebras, there are no accessible \local" criteria for invert-ibility as in the other cases. Indeed the problem of determining spectraof elements of A� is extremely di�cult even for very simple symbols.For example the elements of the form z+ z+ u'+ u�' are the so-called\almost Mathieu operators," and the spectral theory even for theseself-adjoint operators is quite di�cult and is the subject of a recentbook by F.-P. Boca [1].Finally, Section 6 treats the non-automorphic linear fractional mapsconsidered by Kriete, MacCluer, and Moorhouse [8]. They obtain anexact sequence 0! K ! T C' ! D ! 0;where ' is a non-automorphic linear fractional map of D into itselfwithout a boundary �xed point (so that C2' is compact) and D is anexplicitly described type I C*-algebra. They also provide an explicitexpression for the essential spectrum of elements of T C' (which pro-vides a characterization of the Fredholm operators in T C') and fromthat expression we prove an index theorem. It turns out that the situ-ation here is rather simpler than in the case of automorphisms; in factwe prove that the C*-algebra D is homotopic to C(T), from which theindex results follow readily.

2. General considerationsThe Hardy space H2 is de�ned to be the Hilbert space of functionsanalytic in the open unit disk D such that
kfk2 = sup0<r<1 12�

Z 2�
0 jf(rei�)j2 d�

is �nite; the square root of this quantity de�nes the norm on H2. ByFatou's theorem, every f 2 H2 has non-tangential limits ~f(ei�) :=limr!1 f(rei�) for almost every � 2 [0; 2�], and the assignment f ! ~fde�nes a linear isometry between H2 and a closed subspace of L2(T).We let P : L2 ! H2 denote the corresponding orthogonal projection.For any f 2 L1(T), the Toeplitz operator with symbol f is de�ned oneach g 2 H2 by Tfg = P (fg):Such an operator is always bounded, and kTfk = kfk1. For an analyticmap ' : D! D, the composition operator with symbol ' is de�ned byC'g = g � ':By the Littlewood subordination principle, C' is always bounded. Inthis paper we are concerned with the C*-subalgebra of B(H2) generated
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by the unilateral shift S = Tz and C', for ' either an automorphismof D or a non-parabolic non-automorphism. We let T C' denote thisC*-algebra. We observe that since Tz is included as a generator, T C'always contains the C*-algebra of compact operators K.In the remainder of this section we assume ' is an automorphism ofD. We will write 'n for the nth iterate of ' and '�n for the nth iterateof the inverse automorphism '�1.The basic result concerning the structure of the C*-algebras T C' isthe following:Theorem 2.1. There is an exact sequence of C*-algebras(2.1) 0! K ! T C' ! C(T)o' Z! 0:
Proof. The proof is essentially the same as the proof for discrete groupsof automorphisms given in [7]. Let U' denote the unitary operator(C'C�')�1=2C'. The calculations of [7] show that the following relationshold:� For all f 2 C(T), U�'TfU' � Tf�'�1 is compact.� For all integers m;n, Um' Un' � Um+n' is compact.It follows that, letting f and u' denote the images in the Calkin algebraof Tf and U' respectively, the quotient T C'=K is generated by a copyof C(T) and a unitary representation of Z satisfying the covariancerelation u�'fu' = f �'�1. Since the crossed product is the universal C*-algebra generated by these relations, the quotient T C'=K is thereforeisomorphic to a quotient of the crossed product C(T)o' Z. By thesame argument as in [7], since the action of ' on T is amenable andtopologically free, in fact T C'=K �= C(T)o' Z. �Lemma 2.2. The group K1(C(T)o' Z) is isomorphic to Z� Z, gen-
erated by [z]1 and [u�]1.
Proof. This result is proved using the Pimsner-Voiculescu six-term ex-act sequence, and is a simple generalization of the well-known result forthe irrational rotation algebras A� [5, Example VII.5.2]. The irrationalrotation algebras appear in our setting when '(z) = �z with � = e2�i�.The Pimsner-Voiculescu exact sequence isK1(C(T)) 1������! K1(C(T)) i����! K1(C(T)o' Z)�0x?? ??y�1

K0(C(T)o' Z) i� ��� K0(C(T)) 1��� ��� K0(C(T))The group K1(C(T)) is generated by [z]1, and by de�nition ��([z]1) =[']1. Since ' has winding number 1 about the origin, we have [']1 =
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[z]1. Moreover, ' �xes the unit which generates K0(C(T)) and hence�� induces the identity map on K�(C(T)). Thus, the maps 1� �� are0 and K1(C(T)o' Z) �ts into the short exact sequence
0 ���! K1(C(T)) i����! K1(C(T)o' Z) �1���! K0(C(T)) ���! 0:Since the K-groups of C(T) are both isomorphic to Z, the above se-quence splits and we obtain K1(C(T)o' Z) �= Z � Z. To �nd thegenerators, we observe that the �rst map is induced by inclusion, so[z]1 is a generator. The second map is the connecting map in the P-Vexact sequence, and by construction this map takes the class [u']1 tothe class of the unit in K0(C(T)), which is its generator. �With the exact sequence of Theorem 2.1 and the above descriptionof the K1 group of C(T)o' Z, we can now obtain an integral formulafor the index of Fredholm operators in T C' which is a straightforwardgeneralization of the formula obtained by E. Park [9] in the case of theirrational rotation algebras. In fact given Theorem 2.1 and Lemma 2.2the arguments used in [9] go through almost verbatim, so we only sketchthe details.To begin with, we de�ne a \smooth subalgebra" A1' of C(T)o' Zby
A1' = (Xk2Z fkuk' : fk 2 C1(T); fkfkkgk2Z rapidly decreasing )

and a space of \smooth 1-forms"

1(A1' ) =

(X
k2Z !kuk' : !k 2 
1(T); fk!kkgk2Z rapidly decreasing ) :

The left module action of A1' on 
1(A1' ) and the exterior derivative d :A1' ! 
1(A1' ) are de�ned exactly as in [9], using the di�eomorphism'. We then obtain a map � :Mn(
1(A1' ))! 
1(T)
� Xk2Z !kuk'

! = Tr !0
where Tr is the usual trace onMn. Finally we de�ne fCh : GL(n;A1' )!
1(T) by fCh(X) = � 12�i�(X�1dX):With these de�nitions, the proofs of Lemma 6 and Proposition 7 of [9]go through unchanged, so that the map fCh induces a group homomor-phism Ch : K1(A1' )! H1dR(T). Finally, for X in GL(n;A1' ) given by
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the series X =Xk2Z fkuk'(note that fk 2Mn(C1(T)) here), de�ne TX 2 T C' by

TX =Xk2Z TfkUk':
Using Theorem 2.1 and Lemma 2.2 we obtain the following generaliza-tion of Theorem 8 of [9], with the same proof:
Theorem 2.3. For every X in GL(n;A1' ),

ind TX = Z
T
Ch(X):

Proof. We prove that the two homomorphisms ind; RTCh(�) agree onthe generators of the group K1(C(T)o' Z). The map ind is the indexmap associated to the extension (2.1) and is computed on the genera-tors easily: ind([u']1) = 0, since by construction u' lifts to the unitaryU' 2 T C', and ind([z]1) = �1 since z lifts to the unilateral shift, whichhas Fredholm index �1. On the other hand, using the de�nition of Chwe �nd
Ch(u') = � 12�i1 � d1 and Ch(z) = � 12�i dzzso that RTCh(u') = 0 and RTCh(z) = �1. �

For the operators appearing in the later sections of the paper a moreconcrete expression of the above integral formula can be obtained. Ifwe consider an element of T C' of the form
TX = NX

k=0 TfkUk'
with each fk 2 C1(T), then we have X = PNk=0 fkuk' 2 A1' andX�1 2 A1' is expressible as the norm convergent series

X�1 =Xk2Z gkuk'with each gk 2 C1(T). The index formula then takes the form
(2.2) ind TX = � 12�i

NX
k=0
Z
T
g�k('k(z))dfk(z):
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From this description it is also apparent that the index homomorphismfrom K1(A1' ) �= K1(C(T)o' Z) to C given by [X]1 ! R

TCh(X) co-incides with the homomorphism given by the character of the 1-traceconstructed by Connes [4, Theorem 1.5] for (reduced) crossed productsof actions of countable groups on T. In particular, the validity of theindex formula of Theorem 2.3 extends beyond the smooth subalgebraA1' to any symbol X 2 C(T)o'Z with the property that, in the natu-ral representation � of C(T)o' Z on L2(T), the commutator [P; �(X)]is compact (here P : L2 ! H2 is the Riesz projection).While we will work throughout the next three sections with the C*-algebra T C' = C�(S;C'), it is worth noting that the inclusion of theunilateral shift S as a generator is often unnecessary; that is, it is of-ten the case that S 2 C�(C'). Theorem 2.6 below gives a su�cientcondition on the dynamics of ' (in fact valid for any inner function ')for this to occur. This condition is satis�ed, for example, by all par-abolic automorphisms and by all hyperbolic automorphisms for whichthe �xed points are not the endpoints of a diameter.
Lemma 2.4. Let S denote the unilateral shift on H2. For any x 2 C,
let A = S + xSS�. Then S 2 C�(A; I).
Proof. We may obviously assume x 6= 0. We calculatejxj2SS� = I + xA� + xA� A�A 2 C�(A; I);and hence S = A� xSS� 2 C�(A; I). �

The forward direction of the following lemma was �rst proved byBourdon and MacCluer [2, Proposition 3]; we give here a di�erentproof which also suggests the proof of the converse.
Lemma 2.5. If ' is any inner function then

C�'C' = T �f Tf = Tjf j2 ;
where

f(z) = (1� j'(0)j2)1=21� '(0)z :
Conversely, if C�'C' is a Toeplitz operator, then ' is inner.

Proof. As before let S denote the unilateral shift, and recall that anoperator T 2 B(H2) is a Toeplitz operator if and only if S�TS = T .Since ' is inner, T' is an isometry and thus
S�C�'C'S = C�'T �'T'C' = C�'C';
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so C�'C' is Toeplitz. Let g be its symbol. To �nd g, we �rst observethat since C�'C' is positive, g must be positive, and the projection ofg into H2 is given byh = Tg1 = C�'C'1 = C�'1 = k'(0)(z) = (1� '(0)z)�1:Since g must be real-valued, it follows that g(z) = h(z)+h(z)�h(0) =jf(z)j2. The factorization Tjf j2 = T �f Tf is valid because f is analytic.To prove the converse, the assumption that C�'C' is Toeplitz impliesthat C�'C' = S�C�'C'S = C�'T �'T'C', or C�'(T �'T' � I)C' = 0. Wetherefore have 0 = hC�'(T �'T' � I)C'1; 1i= h(T �'T' � I)1; 1i= k'k2H2 � 1:Thus, the L2 norm (using normalized arc length measure) of j'j on thecircle is 1, but since ' is a self-map of D its L1 norm on the circle isat most 1, which implies that j'(z)j = 1 almost everywhere on T; thatis, ' is inner. �Theorem 2.6. Let ' be an inner function. If the orbit ('n(0))1n=1 does
not lie on a diameter of D, then S 2 C�(C').
Proof. By Lemma 2.5 we have, for each n, C�'nC'n = T �fnTfn wherefn(z) = (1� j'n(0)j2)1=2(1� 'n(0)z)�1. Now T �fnTfn is invertible, withinverse T 1

fn
T �1

fn
So C�(C') contains

(1� j'n(0)j2)T 1
fn
T �1

fn
= 1� 'n(0)S � 'n(0)S + j'n(0)j2SS�

for each n. By the hypothesis on the orbit, there exist n;m such thata = 'n(0) and b = 'm(0) are linearly independent over R. SinceC�(C') contains an invertible operator, it contains I, so we have theoperators aS+aS��jaj2SS� and bS+bS��jbj2SS� in C�(C'). Since aand b are linearly independent over R, we may �nd a linear combinationof these operators of the form S + xSS� for some scalar x. Applyingthe lemma, we �nd S 2 C�(C'). �The remainder of the paper concerns the Fredholm theory in T C'for various linear fractional maps '. When ' is an automorphism,the structure of the algebras T C' and of the quotients C(T)o' Z isdependent upon the �xed point behavior of '. We therefore divide ouranalysis into three sections, for ' elliptic, hyperbolic, and parabolicrespectively. This classi�cation of automorphisms and the propertiesof each class are well known, we brie
y recall the facts we require.
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Every (nontrivial) M�obius transformation of the Riemann sphereC [ f1g �xes exactly two points (counting multiplicity). A M�obiustransformation of the disk is called hyperbolic if it has two distinct�xed points in the closed disk D, these necessarily lie on the boundary@D. If ' has only one �xed point in D, then ' is called elliptic if the�xed point lies in the interior D, and parabolic if the �xed point lieson @D (in which case this point is a �xed point of multiplicity two forthe automorphism of the Riemann sphere given by '). Obviously, theautomorphism '�1 is of the same type as ', as are the iterates 'n of'. Every elliptic automorphism is conjugate to a rotation of D aboutthe origin. If we replace the disk by the upper half-plane, every hyper-bolic automorphism is conjugate to a dilation z ! rz of the upper halfplane (for some nonzero real r) and every parabolic automorphism isconjugate to a translation z ! z + r for some real r.When ' is hyperbolic, the �xed points can be distinguished by themodulus of the derivative: at one �xed point �+, called the attracting

�xed point, we have j'0(�+)j < 1 and at the repelling �xed point �� wehave j'0(��)j > 1. Moreover for each w 2 D n f��g, we havelimn!1'n(w) = �+:
When ' is replaced by '�1, the roles of the attracting and repelling�xed points are reversed; and in particular we have for all w 2 Dnf�+glimn!1'�n(w) = ��:When ' is parabolic the single �xed point � is called indi�erent, sinceit is neither attracting nor repelling in the topological sense, howeverwe do have for all w 2 D limn!�1'n(w) = �:
Finally, we recall that for any automorphism ' of the Riemann spherebC, its Fatou set (that is, the largest subset of bC on which the iteratesof ' are a normal family) is the complement of its �xed point set. Inparticular the set of iterates of ' is equicontinuous on T n f�+; ��g (inthe hyperbolic case) and T n f�g (in the parabolic case).

3. Elliptic automorphisms of finite orderIn this section we assume ' is an elliptic automorphism of �niteorder, that is, there exists a nonnegative integer q such that 'q(z) = z.Conjugating by an automorphism if necessary, we may assume thatthe �xed point of ' is the origin, so that '(z) = �z where � = e2�i(p=q)with p=q in lowest terms. It is well-known that the crossed product
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C(T)o' Z is isomorphic to the subalgebra of Mq 
 C(T) consisting ofelements of the form0BBBBBBB@

f0 f1 � � � fq�1
fq�1 � ' f0 � ' � � � fq�2 � '
� � � � � � � � � � � �

f1 � '(q�1) � � � � � � f0 � '(q�1)

1CCCCCCCA
:

In particular, in the regular representation � of C(T)o' Z on L2(T)(q),we have �(f) = diag(Mf�'j) for all f 2 C(T) and �(u') is the permu-tation matrix with a 1 in the (i; j) entry if j� i � 1 mod q and zeroeselsewhere. With this description of C(T)o' Z the Fredholm theory inT C' is easily worked out, and we also obtain a more topological formof the index formula of Section 2.
Theorem 3.1. Let T =Pqj=1 TfjCj'+K and suppose each fj 2 C1(T).
Then T is Fredholm if and only if the C(T)-valued determinant

hT =
�������������

f0 f1 � � � fq�1
fq�1 � ' f0 � ' � � � fq�2 � '
� � � � � � � � � � � �

f1 � '(q�1) � � � � � � f0 � '(q�1)

�������������
is nonvanishing on T, in which case

(3.1) ind(T ) = �12�iq
Z
T

dhThT ;
that is, �1q times the winding number of hT about the origin.

Proof. By the exact sequence 2.1 the operator T is Fredholm if andonly if the element f = Pqj=0 fjuj' is invertible in C(T)o' Z, and bythe above description of the regular representation this is the case ifand only if hT is nonvanishing. To prove the index formula, we observethat it follows from the matrix-valued Toeplitz index theorem that ifH(z) is invertible in Mq 
 C(T) and h(z) = detH(z), the (integer)quantity
(3.2) �(h) = 12�i

Z
T

dhh
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is homotopy invariant. By restricting to the subalgebra C(T)o' Z �Mq 
 C(T) (identi�ed with its image in the regular representation),we obtain a homomorphism from K1(C(T)o' Z) to Z. To prove theindex formula we must show that this map agrees with the index mapof the extension 2.1. Since this K1 group is generated by the elementsw(z) = z and u', it su�ces to check that the two maps agree on thesegenerators. On w(z) = z, we have det �(w)(z) = Qqj=1 'j(z) so theformula (3.1) gives (�1=q) � q = �1, which is equal to the index of theunilateral shift Tz, which is the lifting of w(z) = z to T C'. On theother hand, applied to u' the formula (3.1) gives 0, which agrees withthe index map since u' lifts to the unitary U'. �

4. Hyperbolic automorphismsIn this section, ' is a hyperbolic automorphism with attracting �xedpoint �+ and repelling �xed point ��. While the problem of deter-mining the spectrum of an arbitrary element f 2 C(T)o' Z is likelyintractable, we can obtain some su�cient conditions for invertibility(and hence for Fredholmness in T C').
4.1. Localization in C(T)o' Z. Fix an orthonormal basis f�ngn2Zfor `2(Z). We let u denote the bilateral shift on this basis, that is,u�n = �n+1. For each x 2 T we de�ne a representation�x : C(T)o' Z! B(`2(Z))as follows: let �x(u') = u and for g 2 C(T) let �x(g)(�n) = g('n(x))�n.In this subsection we collect some results about the representations�x which we will require for our main theorems. The main result ofthis section is Theorem 4.4, which reduces the question of invertibilityin C(T)o' Z to invertibility in the \local" representations �x (by [3,Lemma 3.9], �x is irreducible for x 6= ��).
Lemma 4.1. For each f 2 C(T)o' Z, the function x ! �x(f) is
continuous in the point-norm topology from T n f�+; ��g to B(`2(Z)).
Proof. We prove the lemma for the \polynomial" expressions

f = nX
k=m fkuk':Since these are norm dense in C(T)o'Z, the general case follows by an\�=3" argument. Let f 2 C(T)o' Z be as above, �x x 2 T n f�+; ��g,and let � > 0 be given. Since each of the �nitely many functions fk is
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uniformly continuous, there exists �1 > 0 such that for all k = m; : : : nand all y; z 2 T such that jy � zj < �1,jfk(y)� fk(z)j < �n�m+ 1 :Since the iterates of ' are equicontinuous on T n f�+; ��g, there exists� > 0 such that for all jy � xj < �, we have supj j'j(y) � 'j(x)j < �1.Using the fact that �x(u') = �y(u') = u, we then have for all jy�xj < �

k�y(f)� �x(f)k � nX
k=m k�y(fk)� �x(fk)kkuk

= nX
k=m kdiag(fk('j(y))� fk('j(x)))k

= nX
k=m supj2Z jfk('j(y))� fk('j(x))j< �(4.1)where the last inequality holds because of the choices of � and �1. �Lemma 4.2. Let x1 and x2 be points in T n f�+; ��g. The represen-

tations �x1 and �x2 are equivalent if and only if x1 and x2 lie on the
same orbit of '.
Proof. This is a special case of [3, Lemma 3.9]. �Lemma 4.3. There exist closed arcs I1; I2 � T such that for eachx 2 T n f�+; ��g there is a y 2 I1 [ I2 such that �x is equivalent to �y.
Proof. Choose one point from each of the two open arcs of Tnf�+; ��g,call these points x1 and x2. Let Ii be the closed arc with endpoints xiand '(xi). Since the translates of I1 and I2 cover T n f�+; ��g, eachpoint of the latter set lies on the orbit of some point of I1 [ I2. Thelemma now follows from Lemma 4.2. �Theorem 4.4. Let f 2 C(T)o' Z. Then f is invertible if and only if�x(f) is invertible for each x 2 T.
Proof. The \only if" statement is immediate, so we must prove the \if"statement. Let I1 and I2 be the closed arcs provided by Lemma 4.3and let fxng be a countable dense subset of I = I1 [ I2 which includesthe endpoints of the intervals. We �rst claim that the representation� := ��+ � ��� � f�n�xngof C(T)o'Z is faithful. Since the action of ' on T is topologically free,a nontrivial ideal in C(T)o' Z must have nontrivial intersection with
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C(T). It therefore su�ces to show that the restriction of �x to C(T) isfaithful. Let g 2 C(T) be a nonzero function. If ���(g) is nonzero, weare done. Otherwise, let x 2 Tnf�+; ��g with g(x) nonzero. Then g isnonvanishing in a neighborhood U of x, and by Lemma 4.3 there existsan integer k such that 'k(U) \ I 6= ;. For any x in this intersection�x(g) 6= 0, and by Lemma 4.1 �xn(g) 6= 0 for some xn.Now let f 2 C(T)o' Z and suppose �x(f) is invertible for eachx 2 T. Since the representation � is faithful, it su�ces to prove that�(f) is invertible, and to prove this it su�ces to show that the sequencek�xn(f)�1k is bounded. By Lemma 4.1 and the continuity of the holo-morphic functional calculus, for each n there is a neighborhood Un ofxn such that k�x(f)�1 � �xn(f)�1k < 1for all x 2 Un. By compactness, I is covered by �nitely many of theseUn, say Un1 ; : : : Unk . Then for all x 2 I (and in particular for all xn)

k�x(f)�1k � maxk fk�xnk (f)�1k+ 1g;
so the sequence k�xn(f)�1k is bounded. �

4.2. Fredholm criteria. From the exact sequence 2.1 we know thatan element of T C' of the form
T = NX

n=0 TfnUn'
is Fredholm if and only if

f = NX
n=0 fnun'is invertible in C(T)o' Z. Under the simplifying assumption that theleading coe�cient f0 is nonvanishing on T (in other words, invertiblein C(T)), we obtain a necessary and su�cient condition for the invert-ibility of f . The �xed point polynomials of f , de�ned below, play acentral role in this analysis.

De�nition 4.5. For a �nite sum

f = NX
n=0 fnun';
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we de�ne the �xed point polynomials �+f and ��f by

�+f (z) = NX
n=0 fn(�+)zn; ��f (z) = NX

n=0 fn(��)zn:Before stating and proving the next theorem we introduce some no-tation. For each n 2 Z we let H+n be the closed span of f�k : k �ng, and Q+n the orthogonal projection from `2(Z) onto Hn. Simi-larly, we let H�n be the closed span of f�k : k � ng and Q�n thecorresponding orthogonal projection. (Note that Q�n = I � Q+n+1.)We de�ne a unitary operator Un : H+n ! H2(T) by sending the or-thonormal basis f�n; �n+1; : : : ; �n+k; : : : g for Hn to the orthonormal ba-sis f1; z; : : : zk : : : g for H2. Similarly, Vn is the unitary operator takingH�n to H2 via �k ! zn�k. Finally, for an operator A 2 B(`2(Z)), wewrite [A]ij = hA�i; �jifor the matrix elements of A.Throughout this section we �x an element f =PNn=0 fnun' 2 C(T)o'Z. We �rst examine matricial structure of the operator �x(f) withrespect to the orthonormal basis f�ng. From the de�nition of the rep-resentation �x, the matrix elements of �x(f) are
[�x(f)]ij = (fi�j('j(x)) 0 � i� j � N;0 otherwise.Note that if x is a �xed point of ' then the matrix of �x(f) is abi-in�nite Toeplitz matrix, with fk(x) on the kth subdiagonal. In par-ticular, this shows that for x = �� the operator ���(f) is unitarilyequivalent to multiplication by ��f on L2(T), since the latter operatorsare represented, with respect to the basis fe2�ik�g of L2(T), by thesame Toeplitz matrix as ���(f). The following lemma tells us that forx not a �xed point, the matrix of �x(f) has an \asymptotic" Toeplitzstructure.Lemma 4.6. Let f =PNn=0 fnun' 2 C(T)o' Z with �xed point polyno-

mials ��f . For each � > 0 and each x 2 T, there exists an integer N+x
such that kQ+n�x(f)Q+n � U�nT�+f Unk < �
for all n � N+x .

Similarly, for each � > 0 and each x 2 T there is an integer N�x such
that kQ�n�x(f)Q�n � V �n T ���f Vnk < �
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for all n � N�x .

Moreover, each of these di�erences is compact.

Proof. Since limn!1 fk('n(x)) = fk(�+)for all x 2 T n f�+; ��g and all 0 � k � N , it follows that given any� > 0 there exists an integer N+x such that
(4.2) max0�k�N supn�N+

x

jfk('n(x))� fk(�+)j < �N + 1 :Now, �x n � N+x . Each of the operators Q+n�x(f)Q+n , U�nT�+f Un has itsmatrix elements supported in the band 0 � i� j � N , and within thisband we have[Q+n�x(f)Q+n ]ij = fi�j('j(x)); [U�nT�+f Un]ij = fi�j(�+):It follows that the di�erence of these operators is also supported in theband 0 � i� j � N , and by (4.2) each of its nonzero matrix elementsis less that �=(N +1) in absolute value. It follows that the norm of thisdi�erence is less than �. Moreover since the di�erence is supported ina �nite band and its matrix elements tend to 0 on each subdiagonal, itis compact.The proof for Q�n�x(f)Q�n is entirely analogous. �Lemma 4.7. If the �xed point polynomials ��f do not vanish in D, then
for each x 2 T there exists integers N�x such that for all n � N+x , the
operator Q+n�x(f)Q+n
is invertible, and for all n � N�x the operatorQ�n�x(f)Q�n
is invertible.

Proof. Since the �xed point polynomial �+f does not vanish in D, theToeplitz operator T�+f is invertible. It follows that for any n, any suf-�ciently small perturbation of U�nT�+f Un will also be invertible. By theprevious lemma we may choose the integerN+x to makeQ+n�x(f)Q+n , forall n � N+x , as close in norm to U�nT�+f Un as we like. The claimed invert-ibility follows, and an identical argument works for Q�n�x(f)Q�n . �

Theorem 4.8. Let f = NX
n=0 fnun' 2 C(T)o' Z, and suppose the �xed

point polynomials �+f (z) and ��f (z) have no zeroes in the closed unit
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disk. Then for each x 2 T, �x(f) is invertible if and only if f0 does not
vanish on the orbit Ox.
Proof. Since the polynomials ��f do not vanish in D, we have in partic-ular ��f (0) = f0(��) 6= 0;that is, f0 does not vanish at the �xed points of ', so we assume x 2Tnf�+; ��g and that f0(y) = 0 for some y 2 Ox; that is, f0('n(x)) = 0for some n 2 Z.Since f0 is continuous, it is nonvanishing in neighborhoods of �+ and��. Hence for all x 2 T n f�+; ��g,limn!�1[�x(f)]nn = limn!�1 f0('n(x)) = f0(��) 6= 0
and thus [�x(f)]nn = f0('n(x)) is nonzero for all n su�ciently large inabsolute value. It follows that �x(f) has only �nitely many zeroes onthe diagonal, and hence there is some largest m such that [�x(f)]mm =0. By Lemma 4.7, the compression Q+M�x(f)Q+M is invertible for allsu�ciently large M > m. We may now write Q+m�x(f)Q+m in blockdiagonal form as

Q+m�x(f)Q+m = �A 0K B
�

where B = Q+M�x(f)Q+M is invertible and A is an (M �m)� (M �m)lower triangular matrix whose �rst row is 0. Thus we can �nd v 2H+m 	H+M such that Av = 0. It follows that the vector v � (�B�1Kv)lies in the kernel of Q+m�x(f)Q+m, and hence 0� v � (�B�1Kv) lies inthe kernel of �x(f) and hence �x(f) is not invertible.Conversely, if f does not vanish on Ox then we may decompose �x(f)into a block lower triangular form with each diagonal block invertible.Indeed choose M according to Lemma 4.7 so that Q+M�x(f)Q+M is in-vertible, and similarly we choose L 2 Z; L < M so that Q�L�x(f)Q�L isinvertible. The operator �x(f) thus admits a block triangular decom-position
�x(f) =

0@Q�L�x(f)Q�L 0 0� C 0� � Q+M�x(f)Q+M
1A ;

where the matrix C is an (M � L)� (M � L) lower triangular matrixwhich does not vanish on the diagonal, and is hence invertible. Thus�x(f) admits a block triangular form with invertible diagonal blocks,and is hence invertible. �
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Theorem 4.9. Let T = NX

n=0 TfnUn' +K. If the �xed point polynomials

�+f and ��f have no zeroes in the closed unit disk, then T is Fredholm
if and only if Tf0 is Fredholm. Furthermore, in this case ind(T ) =
ind(Tf0).
Proof. T is Fredholm if and only if its symbol

�(T ) = NX
n=0 fnun'is invertible. By Theorems 4.8 and 4.4, �(T ) is invertible if and onlyif f0 does not vanish on T. This is the case if and only if the Toeplitzoperator Tf0 is Fredholm.To prove the statement about the indices, we will construct an ex-plicit homotopy between the symbols f and f0 through invertible ele-ments of C(T)o'Z. Since T and Tf0 are liftings of f and f0 respectively,the equality of the indices follows.To construct the homotopy, we �rst observe that since the �xed pointpolynomials have no zeroes in D, each is homotopic to a nonzero con-stant polynomial, and the homotopy may be taken through polynomialswithout zeroes in D. Indeed, for 0 � t � 1 putp�t (z) = ��f (tz)and observe that if the zeroes of ��f have modulus greater than one thenthe same is true for each p�t . We now de�ne the homotopy between fand f0 by

g(t) = NX
n=0 fntnun':For each t, the �xed point polynomials of g(t) are p+t and p�t respec-tively. Thus, by Theorem 4.8, g(t) is invertible for all t. By constructiong(0) = f0 and g(1) = f . �This result can be restated as a spectral inclusion theorem:Corollary 4.10. Let f =PNn=0 fnun' 2 C(T)o' Z, with ' hyperbolic.

Then �(f) � f0(T) [ �+f (D) [ ��f (D):
Proof. Suppose � 2 C does not belong to the above union of sets. Thenthe leading coe�cient f0 � � of f � � has no zeroes on the circle, andsince the �xed point polynomials of f � � are ��f � �, these have nozeroes in the closed disk. Therefore f � � is invertible. �
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In general this inclusion is strict (in the example following Theo-rem 4.12, we have 0 2 �+f (D) [ ��f (D) but f is invertible). A morere�ned spectral inclusion will follow from that theorem.Under the assumption that f0 is invertible, but now allowing zeroesof the �xed point polynomials in D, we characterize the invertibility off =P fnun' in terms of the invertibility of an additional matrix-valuedfunction on T. Again, we �x x 2 T and examine invertibility in therepresentation �x.First, we observe that since �+f is an analytic polynomial with dzeroes in D, the Toeplitz operator T�+f has a d-dimensional cokerneland trivial kernel (and hence Fredholm index �d). By Lemma 4.6 thesame will be true of Q+M�x(f)Q+M for all su�ciently large M .We now �x some notation: for a �xed M as above, putF+(x) = Q+M�x(f)Q+M ; F�(x) = Q�M�x(f)Q�M ; K(x) = Q+M�x(f)Q�Mand note that K(x) is �nite rank and hence compact.With this notation �x(f) has the block triangular form

�x(f) = �F�(x) 0K(x) F+(x)
� :

Observe also that by compactness, we may choose a single M so thatthis decomposition is valid for all x 2 I1 [ I2 (see subsection 4.1).Lemma 4.11. Suppose the �xed point polynomials �+f ; ��f are nonvan-
ishing on @D and have d+ and d� zeroes in D, respectively. Then for
each x 2 @Dnf�+; ��g, the operator �x(f) is Fredholm and ind(�x(f)) =d� � d+. Furthermore, if f0 does not vanish on Ox then kerF�(x)� =f0g.
Proof. By Lemma 4.6 and the above triangular form of �x(f), we seethat �x(f) is unitarily equivalent to a compact perturbation of theoperator  T ���f 00 T�+f

!
on H2�H2. The assumption on the zeroes of ��f then implies that theoperators T ���f and T�+f are Fredholm of index d� and �d+, respectively.This proves the �rst statement.For the second statement, we consider a further block decompositionof F�(x). By Lemma 4.6 we can choose L < M so that Q�L�x(f)Q�Lis unitarily equivalent to an arbitrarily small perturbation of T ���f . Sincethis latter operator has trivial cokernel, we can choose L so thatQ�L�x(f)Q�L
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also has trivial cokernel. We then obtain a block triangular form forF�(x): F�(x) = �Q�L�x(f)Q�L 0X C

�
where X is �nite rank and C is an (M �L)� (M �L) lower triangularmatrix which does not vanish on the diagonal, and is hence invertible.We now consider kerF�(x)�: suppose v; w are vectors such that�(Q�L�x(f)Q�L)� X�0 C���vw

� = �00
� :

Then w = 0 since C� is invertible, and therefore v = 0 since (Q�L�x(f)Q�L)�has trivial kernel. Thus kerF�(x)� is trivial. �We now return to the triangular form of �x(f). Assume now that the�xed point polynomials each have d zeroes in D (and are nonvanishingon @D) and that f0 does not vanish on Ox. In the block decompositionof �x(f), the operator F+(x) has trivial kernel and, by the previouslemma, F�(x) has trivial cokernel. Since these operators are also Fred-holm, they have closed range and we can de�ne two projection-valuedfunctions on I1 [ I2 byP+(x) � 1� F+(F �+F+)�1F �+; P�(x) � 1� F ��(F�F ��)�1F�(here we have suppressed the x-dependence on the right-hand side). Inother words, P+(x) is the projection onto the cokernel of F+(x), andP�(x) is the projection onto the kernel of F�(x). We are now ready tostate and prove our main result about the invertibility of �x(f).Theorem 4.12. Let f = P fnun' with f0 nonvanishing and suppose

the �xed point polynomials ��f each have d zeroes in D (and are non-
vanishing on the boundary). Then f is invertible if and only if for allx 2 @D n f�+; ��g, the matrix-valued functionD(x) � P+(x)K(x)P�(x)
is invertible from kerF�(x) to kerF+(x)�.
Proof. By the assumptions on ��f , Lemma 4.11 shows that �x(f) isFredholm of index 0. It is therefore invertible if and only if it hastrivial kernel. Considering the block triangular form of �x(f), sup-pose a nonzero vector v � w lies in the kernel of �x(f). Then, sincekerF+ is trivial, v 2 kerF� must be nonzero, and we must have Kv 2ranF+. In other words, v must be a nonzero vector in the kernel ofP+(x)K(x)P�(x). Conversely, given any such v we may solve for wsuch that Kv+F+(x)w = 0, whence v�w lies in ker�x(f). Thus �x(f)
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is invertible if and only if D(x) is invertible. The theorem then followsfrom Theorem 4.4. �Exactly as in the case of Theorem 4.9, this result can be statedas a spectral inclusion. To account for the necessary condition thatthe �xed point polynomials have the same number of zeroes in D, letW� � C denote the set of all points w such that either 1) �+f and ��fhave di�erent winding numbers about w, or 2) w 2 �+f (T) [ ��f (T)(that is, at least one of the winding numbers is unde�ned). It is nothard to see that W� is compact. Finally, let WD denote the subset ofthe complement of f0(T)[W� such that the matrix-valued function Dconstructed fromf � w in the manner above is not invertible.Corollary 4.13. Let f =PNn=0 fnun' 2 C(T)o' Z. Then�(f) � f0(T) [W� [WD:Unlike in Theorem 4.8, it is possible to have the symbol of a Fredholmoperator satisfy the hypotheses of Theorem 4.12 but ind(T ) 6= ind(Tf0):Example: Let 0 < r < 1 and putT = rTz + U':Then f = �(T ) = rz + u' is invertible, since u' is unitary and kf �u'k = krzk1 < 1. We have f0(z) = rz nonvanishing on the unit circle,and the �xed point polynomials are�+f (w) = r�+ + w; ��f (w) = r�� + w;each of which has one zero in D and is nonvanishing on the unit circle.Thus f satis�es the hypotheses of Theorem 4.12. However, since kf �u'k < 1, the symbol f is homotopic to u'. It follows that ind(T ) =ind(U') = 0 while ind(Tf0) = ind(Trz) = �1.If a Toeplitz operator Tg is Fredholm and ind(Tg) = 0, then Tg isinvertible. We do not know if the corresponding statement is true inT C', even for the Fredholm operators described by the theorems inthis section:Question: If T 2 T C' is Fredholm and ind(T ) = 0, is T invertible?

5. Parabolic automorphismsFor the present purposes, it is best to view a parabolic automorphismas a degenerate hyperbolic automorphism, for which the attracting andrepelling �xed points coalesce. Taking this point of view, the maintheorems of the previous section are easily modi�ed to apply to the
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parabolic case, with essentially the same proofs. We will therefore onlysketch the proofs in this section, taking care to highlight the necessarychanges.We let ' now denote a parabolic automorphism of D, with �xedpoint � 2 T. As before we consider operators of the form

f = NX
n=0 fnun'and de�ne the �xed point polynomial �f by

�f (z) = NX
n=0 fn(�)zn:In the hyperbolic case, the �xed points �+ and �� are attracting for 'and '�1, respectively. Now that ' is parabolic, the point � is attractingfor both ' and '�1, in the sense that for any x 2 T, x 6= �, we havelimn!1'n(x) = limn!1'�n(x) = �:

With this fact in mind, the obvious modi�cations to the proof ofLemma 4.6 show that the conclusion of that lemma holds for parabolic' if we replace both �+f and ��f with �f . The statement of Lemma 4.7 isthen also valid in the parabolic case. With these substitute lemmas inhand, the following theorem is proved in the same way as Theorem 4.8,
mutatis mutandis.
Theorem 5.1. For a parabolic automorphism ', let f = NX

n=0 fnun' 2 C(T)o' Z,
and suppose the �xed point polynomial �f (z) has no zeroes in the closed
unit disk. Then for each x 2 T, �x(f) is invertible if and only if f0
does not vanish on the orbit Ox.In turn, using this result, the following analog of Theorem 4.9 is seento be true, by letting �+f = ��f = �f in its proof:
Theorem 5.2. Let T = NX

n=0 TfnUn' +K. If the �xed point polynomial

�f has no zeroes in the closed unit disk, then T is Fredholm if and only
if Tf0 is Fredholm. Furthermore, in this case ind(T ) = ind(Tf0).Continuing as in the discussion following Theorem 4.9 for each x 2 T,x 6= �, we have the block triangular form for the matrix

�x(f) = �F�(x) 0K(x) F+(x)
� :
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From this follows a simpler version of Lemma 4.11:Lemma 5.3. Suppose the �xed point polynomial �f is nonvanishing
on @D. Then for each x 2 @D n f�g, the operator �x(f) is Fredholm
and ind(�x(f)) = 0. Furthermore, if f0 does not vanish on Ox thenkerF�(x)� = f0g.
Proof. Using the block triangular form of �x(f) and the parabolic ver-sion of Lemma 4.6, we �nd that �x(f) is unitarily equivalent to a com-pact perturbation of �T ��f 00 T�f

�
on H2�H2. This operator is Fredholm of index 0. The second part ofthe lemma is proved as in the hyperbolic case. �Finally, since we have now shown that �x(f) is always Fredholm ofindex 0 when ' is parabolic, using the same notation as in Theorem 4.12we have a parabolic version of that theorem and its correspondingspectral inclusion:Theorem 5.4. Let f =P fnun' with f0 nonvanishing and suppose the
�xed point polynomial �f is nonvanishing on T. Then f is invertible if
and only if for all x 2 T, x 6= �, the matrix-valued functionD(x) � P+(x)K(x)P�(x)
is invertible from kerF�(x) to kerF+(x)�.Since we have only a single �xed point polynomial, the correspondingspectral inclusion theorem is somewhat simpler in the parabolic case.We here let WD denote those points w of the complement of f0(T) [�f (T) for which the function D associated to f � w is not invertible.Corollary 5.5. Let f =P fnun' 2 C(T)o' Z. Then�(f) � f0(T) [ �f (T) [WD:

6. Non-automorphic linear fractional mapsIn this section we consider the extension(6.1) 0! K ! T C' ! D ! 0constructed by Kriete, MacCluer and Moorhouse [8]. We �rst recallthe notation and results of [8]. Throughout this section, ' is a non-automorphic linear fractional map ' : D ! D such that '(�) = � forsome � 6= � 2 @D. The compact Hausdor� space � consists of thedisjoint union of @D and the closed interval [0; 1] with the points �; �
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and 0 identi�ed, so that � is homeomorphic to a �gure eight with aclosed interval attached by one endpoint to the vertex, which we denotep.The C*-algebra D consists of all functions b : �!M2(C) satisfyingthe following conditions: there exist w 2 C(@D) and G 2M2(C([0; 1]))such that� For � 2 C(@D) n f�; �g,

b(�) = �w(�) 00 w(�)
� :

� For � 2 [0; 1], b(�) = G(�).� At the vertex p,
b(p) = G(0) = �w(�) 00 w(�)

� :
The set of such functions is a C*-algebra when equipped with the supre-mum norm, pointwise operations, and the obvious involution. We willdenote elements of D by (w;G) where w and G are as above. Notethat in this description products and adjoints are taken entrywise:(w1; G1) � (w2; G2) = (w1w2; G1G2), and (w;G)� = (w;G�).For the next theorem, we recall two de�nitions: �rst, if A and B areC*-algebras and �; � : A! B are *-homomorphisms, we say that � and� are homotopic if there exists a path of *-homomorphisms �t : A! B,0 � t � 1, with � = �0 and � = �1. The path is required to be contin-uous in the sense that for each a 2 A, the map t! �t(a) is continuousfrom [0; 1] to B (equipped with the norm topology). Secondly, a pairof C*-algebras A and B are called homotopy equivalent if there exist *-homomorphisms � : A! B and  : B ! A such that the compositions� �  and  � � are homotopic to idA and idB respectively.Theorem 6.1. The C*-algebras D and C(T) are homotopy equivalent.

Proof. For w 2 C(T), let W be the M2(C)-valued function on [0; 1]which is identically equal to diag(w(�); w(�)). We de�ne *-homomorphisms� : C(T)! D and  : D ! C(T) by�(w) = (w;W );  (w;G) = w:Obviously  � � = idC(T). We have� �  (w;G) = (w;W ):Note that W (�) = G(0) for all � 2 [0; 1]. For t 2 [0; 1] de�ne the*-homomorphism �t : D ! D by�t(w;G) = (w;Gt)
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where Gt(�) = G(t�). Thus �t is a homotopy between �1 = idD and�0 = � �  . �Theorem 6.2. Let T = Tw +C +K 2 T C'. If T is Fredholm then Tw
is Fredholm and ind(T ) = ind(Tw).
Proof. Since the image of T in D is of the form (w;G), T is Fredholm ifand only if w and G are pointwise invertible, so if T is Fredholm thenw is invertible and the Toeplitz operator Tw is Fredholm. To prove theindex statement, it su�ces to prove that the images of T and Tw arehomotopic through invertibles in D. Using the homotopy (w;Gt) ofthe previous theorem, we see that (w;G) is homotopic to (w;W ), andsince G is assumed invertible each Gt is invertible, and hence (w;Gt)is invertible in D for all t 2 [0; 1]. Finally, the element (w;W ) is byconstruction the image of Tw in D. �Combining the previous two theorems we get the following corollary:Corollary 6.3. The group Ext(D) is isomorphic to Z and is generated
by the class of the extension (6.1).

Proof. The �rst statement follows from Theorem 6.1 and the homotopyinvariance of the Ext functor. Since Ext(T) �= Z is generated by theclass of an extension for which the function w(z) = z lifts to an operatorof index �1, the group Ext(D) will be generated by an extension forwhich the element �(w) = (w;W ) lifts to an operator of index �1. ByTheorem 6.2 the extension (6.1) has this property ((w;W ) lifts to theunilateral shift). �
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