Schur class functions on the unit ball in \mathbb{C}^n

Michael Jury

University of Florida

October 24, 2009

E ▶ < E ▶

Let f be holomorphic in the disk. TFAE:

Michael Jury Schur class functions on the unit ball in \mathbb{C}^n

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Let f be holomorphic in the disk. TFAE:

```
1) |f(z)| \leq 1 for all z \in \mathbb{D}.
```

Let f be holomorphic in the disk. TFAE:

- 1) $|f(z)| \leq 1$ for all $z \in \mathbb{D}$.
- 2) The Hermitian kernel

$$\frac{1-f(z)\overline{f(w)}}{1-z\overline{w}}$$

is positive semidefinite.

回 と く ヨ と く ヨ と …

Let f be holomorphic in the disk. TFAE:

- 1) $|f(z)| \leq 1$ for all $z \in \mathbb{D}$.
- 2) The Hermitian kernel

$$\frac{1-f(z)\overline{f(w)}}{1-z\overline{w}}$$

is positive semidefinite.

3) $||f(T)|| \le 1$ for all linear operators T on Hilbert space with ||T|| < 1.

Let f be holomorphic in the disk. TFAE:

- 1) $|f(z)| \leq 1$ for all $z \in \mathbb{D}$.
- 2) The Hermitian kernel

$$\frac{1-f(z)\overline{f(w)}}{1-z\overline{w}}$$

is positive semidefinite.

3) $||f(T)|| \le 1$ for all linear operators T on Hilbert space with ||T|| < 1.

(2) and (3) each imply (1) trivially.

→ ∃ →

Let f be holomorphic in the disk. TFAE:

- 1) $|f(z)| \leq 1$ for all $z \in \mathbb{D}$.
- 2) The Hermitian kernel

$$\frac{1-f(z)\overline{f(w)}}{1-z\overline{w}}$$

is positive semidefinite.

3) $||f(T)|| \le 1$ for all linear operators T on Hilbert space with ||T|| < 1.

(2) and (3) each imply (1) trivially.
(1) implies (2) since f multiplies H² into itself contractively.

Let f be holomorphic in the disk. TFAE:

- 1) $|f(z)| \leq 1$ for all $z \in \mathbb{D}$.
- 2) The Hermitian kernel

$$\frac{1-f(z)\overline{f(w)}}{1-z\overline{w}}$$

is positive semidefinite.

3) $||f(T)|| \le 1$ for all linear operators T on Hilbert space with ||T|| < 1.

(2) and (3) each imply (1) trivially.
(1) implies (2) since f multiplies H² into itself contractively.
(1) implies (3) is <u>von Neumann's inequality</u> (von Neumann, 1949).

I ≥ ≥

A (strict) row contraction is a *n*-tuple of commuting operators

$$T = (T_1, \ldots, T_n)$$

such that

$$r^2I - T_1T_1^* - \cdots - T_nT_n^* \ge 0$$

for some r < 1.

- 170

★ E ► ★ E ► E

A (strict) row contraction is a *n*-tuple of commuting operators

$$T=(T_1,\ldots,T_n)$$

such that

$$r^2I - T_1T_1^* - \cdots - T_nT_n^* \ge 0$$

for some r < 1.

Theorem (Drury, 1978)

Let f be holomorphic in the ball \mathbb{B}^n . TFAE:

1')
$$|f(z)| \leq 1$$
 for all $z \in \mathbb{B}^n$.

2') The Hermitian kernel

$$\frac{1-f(z)\overline{f(w)}}{1-\langle z,w\rangle}$$

is positive semidefinite.

3') $||f(T)|| \le 1$ for all strict row contractions T.

Theorem (Drury, 1978)

Let f be holomorphic in the ball \mathbb{B}^n . TFAE:

1') $|f(z)| \leq 1$ for all $z \in \mathbb{B}^n$.

2') The Hermitian kernel

$$\frac{1-f(z)\overline{f(w)}}{1-\langle z,w\rangle}$$

is positive semidefinite.

3') $||f(T)|| \leq 1$ for all strict row contractions T.

御 と く き と く き と

Theorem (Drury, 1978)

Let f be holomorphic in the ball \mathbb{B}^n . TFAE:

1') $|f(z)| \leq 1$ for all $z \in \mathbb{B}^n$.

2') The Hermitian kernel

$$\frac{1-f(z)\overline{f(w)}}{1-\langle z,w\rangle}$$

is positive semidefinite.

3') $||f(T)|| \leq 1$ for all strict row contractions T.

Trivially both (2') and (3') imply (1') as before, but now (1') implies neither of the others.

白 ト イヨト イヨト

2

Theorem (Drury, 1978)

Let f be holomorphic in the ball \mathbb{B}^n . TFAE:

1') $|f(z)| \leq 1$ for all $z \in \mathbb{B}^n$.

2') The Hermitian kernel

$$\frac{1-f(z)\overline{f(w)}}{1-\langle z,w\rangle}$$

is positive semidefinite.

3') $||f(T)|| \leq 1$ for all strict row contractions T.

Trivially both (2') and (3') imply (1') as before, but now (1') implies neither of the others.

Definition

Say f belongs to the <u>Schur class</u> if it satisfies the conditions of the theorem.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- 170

(2') implies (3'): Write the kernel as a <u>"sum of squares"</u> (Aronszajn/Bergman):

$$rac{1-f(z)f(w)}{1-\langle z,w
angle} = \sum_j g_j(z)\overline{g_j(w)}$$

□ > < E > < E > E - のへで

(2') implies (3'): Write the kernel as a <u>"sum of squares"</u> (Aronszajn/Bergman):

$$rac{1-f(z)f(w)}{1-\langle z,w
angle} = \sum_{j}g_{j}(z)\overline{g_{j}(w)}$$

Now

$$1-f(z)\overline{f(w)} = \sum_{j} g_{j}(z)(1-\langle z,w\rangle)\overline{g_{j}(w)}$$

□ > < E > < E > < E</p>

(2') implies (3'): Write the kernel as a <u>"sum of squares"</u> (Aronszajn/Bergman):

$$rac{1-f(z)f(w)}{1-\langle z,w
angle} = \sum_{j}g_{j}(z)\overline{g_{j}(w)}$$

Now

$$1-f(z)\overline{f(w)} = \sum_{j} g_{j}(z)(1-\langle z,w\rangle)\overline{g_{j}(w)}$$

Functional calculus:

$$I - f(T)f(T)^* = \sum_j g_j(T) \left[1 - \sum_j T_i T_i^*\right] g_j(T)^*$$
$$\geq 0$$

□ > < E > < E > < E</p>

(2') implies (3'): Write the kernel as a <u>"sum of squares"</u> (Aronszajn/Bergman):

$$rac{1-f(z)f(w)}{1-\langle z,w
angle} = \sum_{j}g_{j}(z)\overline{g_{j}(w)}$$

Now

$$1-f(z)\overline{f(w)} = \sum_{j} g_{j}(z)(1-\langle z,w\rangle)\overline{g_{j}(w)}$$

Functional calculus:

$$I - f(T)f(T)^* = \sum_j g_j(T) \left[1 - \sum_j T_i T_i^*\right] g_j(T)^*$$
$$\geq 0$$

(3') implies (2'): Hahn-Banach theorem and GNS construction.

- 170

◆ 臣 ▶ → ● 臣 ▶ ……

A: Being a "sum of squares" is a much more tractable condition than mere pointwise positivity (cf. Hilbert's seventeenth problem).

▶ < E > < E > ...

A: Being a "sum of squares" is a much more tractable condition than mere pointwise positivity (cf. Hilbert's seventeenth problem).

Example:

Theorem (Uniqueness in the Schwarz lemma in \mathbb{B}^n)

If f is Schur class, f(0) = 0 and $Df(0) = \zeta$ with $|\zeta| = 1$, then $f(z) = \sum z_j \zeta_j$.

向下 イヨト イヨト

A: Being a "sum of squares" is a much more tractable condition than mere pointwise positivity (cf. Hilbert's seventeenth problem).

Example:

Theorem (Uniqueness in the Schwarz lemma in \mathbb{B}^n)

If f is Schur class, f(0) = 0 and $Df(0) = \zeta$ with $|\zeta| = 1$, then $f(z) = \sum z_j \zeta_j$.

(Utterly false assuming only $\|f\|_{\infty} \leq 1.$)

• 3 > 1

The bidisk \mathbb{D}^2 :

◆□ > ◆□ > ◆ 目 > ◆目 > ● 目 ● の < ⊙

The bidisk \mathbb{D}^2 :

Theorem (Cole-Wermer)

Let $q(z_1, z_2)$ be a rational inner function in \mathbb{D}^2 . Then there exist rational functions $A_1, \ldots A_m$ and $B_1, \ldots B_n$ such that

$$1-q(z)\overline{q(w)}=(1-z_1\overline{w_1})\sum A_i(z)\overline{A_i(w)}+(1-z_2\overline{w_2})\sum B_j(z)\overline{B_j(w)}.$$

(ロ) (同) (E) (E) (E)

The bidisk \mathbb{D}^2 :

Theorem (Cole-Wermer)

Let $q(z_1, z_2)$ be a rational inner function in \mathbb{D}^2 . Then there exist rational functions $A_1, \ldots A_m$ and $B_1, \ldots B_n$ such that

$$1-q(z)\overline{q(w)}=(1-z_1\overline{w_1})\sum A_i(z)\overline{A_i(w)}+(1-z_2\overline{w_2})\sum B_j(z)\overline{B_j(w)}.$$

This is essentially equivalent to Ando's inequality: if f is analytic in \mathbb{D}^2 and $\|f\|_{\infty} \leq 1$, then

$$\|f(T_1, T_2)\| \le 1$$
 for all $\|T_i\| < 1$. (*)

同 と く ヨ と く ヨ と

Theorem (Cole-Wermer)

Let $q(z_1, z_2)$ be a rational inner function in \mathbb{D}^2 . Then there exist rational functions $A_1, \ldots A_m$ and $B_1, \ldots B_n$ such that

$$1-q(z)\overline{q(w)}=(1-z_1\overline{w_1})\sum A_i(z)\overline{A_i(w)}+(1-z_2\overline{w_2})\sum B_j(z)\overline{B_j(w)}.$$

This is essentially equivalent to Ando's inequality: if f is analytic in \mathbb{D}^2 and $\|f\|_\infty \leq 1$, then

$$\|f(T_1, T_2)\| \le 1 \text{ for all } \|T_i\| < 1.$$
 (*)

Similarly, every f bounded by 1 in \mathbb{D}^2 admits a SOS decomposition (Agler), but not so in \mathbb{D}^n for $n \ge 3$.

Admitting SOS is equivalent to the *n*-variable version of (*).

(日本) (日本) (日本)

A function $\varphi : \mathbb{B}^d \to \mathbb{C}^d$ belongs to the <u>Schur class</u> on \mathbb{B}^d if the Hermitian kernel $1 = \langle \varphi(z), \varphi(w) \rangle$

$$rac{1-\langle arphi(z),arphi(w)
angle}{1-\langle z,w
angle}$$

is positive semidefinite.

御 と く 思 と く 思 と

A function $\varphi : \mathbb{B}^d \to \mathbb{C}^d$ belongs to the <u>Schur class</u> on \mathbb{B}^d if the Hermitian kernel $1 = \langle \varphi(z), \varphi(w) \rangle$

$$rac{1-\langle arphi(z),arphi(w)
angle}{1-\langle z,w
angle}$$

is positive semidefinite.

If φ is Schur class, then φ is automatically holomorphic and bounded by 1.

The converse holds when d = 1 but fails when d > 1.

• 3 3 4

A function $\varphi : \mathbb{B}^d \to \mathbb{C}^d$ belongs to the <u>Schur class</u> on \mathbb{B}^d if the Hermitian kernel $1 = \langle \varphi(z), \varphi(w) \rangle$

$$rac{1-\langle arphi(z),arphi(w)
angle}{1-\langle z,w
angle}$$

is positive semidefinite.

If φ is Schur class, then φ is automatically holomorphic and bounded by 1.

The converse holds when d = 1 but fails when d > 1.

E.g. $\varphi(z_1, z_2) = (2z_1z_2, 0)$ is bounded by 1, but NOT Schur class.

A function $\varphi : \mathbb{B}^d \to \mathbb{C}^d$ belongs to the <u>Schur class</u> on \mathbb{B}^d if the Hermitian kernel $1 = \langle \varphi(z), \varphi(w) \rangle$

$$rac{1-\langle arphi(z),arphi(w)
angle}{1-\langle z,w
angle}$$

is positive semidefinite.

If φ is Schur class, then φ is automatically holomorphic and bounded by 1.

The converse holds when d = 1 but fails when d > 1.

E.g. $\varphi(z_1, z_2) = (2z_1z_2, 0)$ is bounded by 1, but NOT Schur class.

Every linear fractional map of \mathbb{B}^d is Schur class.

$$\varphi(z) = \frac{Az+B}{\langle z, C \rangle + D}$$

Define

$$C_{\varphi}f := f \circ \varphi$$

(ロ) (回) (目) (目) (日) (の)

Define

$$C_{\varphi}f := f \circ \varphi$$

Theorem (Littlewood, 1925)

Let φ be a holomorphic self-map of \mathbb{D} with $\varphi(0) = 0$. Then

$$\int_0^{2\pi} |f(arphi(e^{i heta}))|^2\,d heta\leq \int_0^{2\pi} |f(e^{i heta})|^2\,d heta$$

for all $f \in H^2$. Equivalently,

$$\|\mathcal{C}_{\varphi}\|\leq 1.$$

回 と く ヨ と く ヨ と …

Define

$$C_{\varphi}f:=f\circ\varphi$$

Theorem (Littlewood, 1925)

Let φ be a holomorphic self-map of \mathbb{D} with $\varphi(0) = 0$. Then

$$\int_0^{2\pi} |f(arphi(e^{i heta}))|^2\,d heta\leq \int_0^{2\pi} |f(e^{i heta})|^2\,d heta$$

for all $f \in H^2$. Equivalently,

$$\|C_{\varphi}\| \leq 1.$$

The analogous result is utterly false when d > 1; in fact C_{φ} is not even bounded on $H^2(\mathbb{B}^d)$ in general, and even for very nice φ .

E.g. $\varphi(z_1, z_2) = (2z_1z_2, 0)$ (More examples: Cima-Wogen et al.)

Proof (J., 2007):

Two observations:

• Since |arphi(z)| < 1 for all $z \in \mathbb{D}$, the kernel

$$\frac{1}{1-\varphi(z)\overline{\varphi(w)}}$$

is positive semidefinite.

Proof (J., 2007):

Two observations:

• Since |arphi(z)| < 1 for all $z \in \mathbb{D}$, the kernel

$$\frac{1}{1-\varphi(z)\overline{\varphi(w)}}$$

is positive semidefinite.

• Since φ is a contractive multiplier of H^2 , the kernel

$$k_arphi(z,w) = rac{1-arphi(z)\overline{arphi(w)}}{1-z\overline{w}}$$

is positive semidefinite; and since $\varphi(0) = 0$ the kernel

$$k_arphi(z,w) - rac{k_arphi(z,0)k_arphi(0,w)}{k_arphi(0,0)} = rac{1-arphi(z)\overline{arphi(w)}}{1-z\overline{w}} - 1$$

is also positive (Schur complement theorem)

000

Proof, continued.

Consider the Szegő kernel

$$k_w(z) = rac{1}{1-z\overline{w}}$$

Note that $C_{\varphi}^* k_w = k_{\varphi(w)}$.

(4日) (日)

Proof, continued.

Consider the Szegő kernel

$$k_w(z) = \frac{1}{1 - z\overline{w}}$$

Note that $C_{\varphi}^* k_w = k_{\varphi(w)}$. We must show $||C_{\varphi}|| \le 1$; or equivalently $I - C_{\varphi}C_{\varphi}^* \ge 0$. Test against k:

$$\begin{split} \langle (I - C_{\varphi} C_{\varphi}^*) k_w, k_z \rangle &= \langle k_w, k_z \rangle - \langle k_{\varphi(w)}, k_{\varphi(z)} \rangle \\ &= \frac{1}{1 - z \overline{w}} - \frac{1}{1 - \varphi(z) \overline{\varphi(w)}} \\ &= \left(\frac{1}{1 - \varphi(z) \overline{\varphi(w)}}\right) \cdot \left(\frac{1 - \varphi(z) \overline{\varphi(w)}}{1 - z \overline{w}} - 1\right) \end{split}$$

which is positive, so done.

Let $H^2_{d,m}$ denote the RKHS with kernel

$$k_m(z,w) = rac{1}{(1-\langle z,w\rangle)^m}$$
 $m=1,2,\ldots$

The above proof generalizes immediately to the ball, provided φ belongs to the Schur class:

- 注 () (注) ()

æ

Let $H^2_{d,m}$ denote the RKHS with kernel

$$k_m(z,w) = \frac{1}{(1-\langle z,w\rangle)^m}$$
 $m = 1,2,\ldots$

The above proof generalizes immediately to the ball, provided φ belongs to the Schur class:

Theorem (J., 2007)

Let φ be a Schur class mapping of \mathbb{B}^d and $\varphi(0) = 0$. Then $\|C_{\varphi}\| \leq 1$ on $H^2_{d,m}$. In particular (for m = d)

$$\int_{\partial \mathbb{B}^d} |f \circ \varphi|^2 \, d\sigma \leq \int_{\partial \mathbb{B}^d} |f|^2 \, d\sigma$$

for all f in the classical Hardy space $H^2(\mathbb{B}^d)$. (σ = surface measure on $\partial \mathbb{B}^d$)

the case m = 1.

As in the disk case, the kernels

$$rac{1}{1-\langle arphi(z),arphi(w)
angle}, \qquad rac{1-\langle arphi(z),arphi(w)
angle}{1-\langle z,w
angle}-1$$

are positive (since φ is Schur class!!!) Thus

$$\langle (I - C_{\varphi} C_{\varphi}^*) k_w, k_z \rangle = \left(\frac{1}{1 - \langle \varphi(z), \varphi(w) \rangle} \right) \cdot \left(\frac{1 - \langle \varphi(z), \varphi(w) \rangle}{1 - \langle z, w \rangle} - 1 \right)$$

is a positive kernel.

イロン イ部ン イヨン イヨン 三日

If 0 is not fixed, we have:

Theorem

Let φ be a Schur class mapping of \mathbb{B}^d . Then C_{φ} is bounded on each of the spaces $H^2_{d,m}$, and

$$\left(rac{1}{1-|arphi(\mathbf{0})|^2}
ight)^{m/2} \leq \left\|\mathcal{C}_arphi
ight\|_m \leq \left(rac{1+|arphi(\mathbf{0})|}{1-|arphi(\mathbf{0})|}
ight)^{m/2}$$

3

< ∃ >

If 0 is not fixed, we have:

Theorem

Let φ be a Schur class mapping of \mathbb{B}^d . Then C_{φ} is bounded on each of the spaces $H^2_{d,m}$, and

$$\left(rac{1}{1-|arphi(\mathbf{0})|^2}
ight)^{m/2} \leq \left\|\mathcal{C}_arphi
ight\|_m \leq \left(rac{1+|arphi(\mathbf{0})|}{1-|arphi(\mathbf{0})|}
ight)^{m/2}$$

Two nice things:

- both sides are roughly the same size, $\sim (1-|arphi(0)|)^{-m/2}$
- the inequality iterates...

The norm inequality

$$\left(\frac{1}{1-|\varphi(0)|^2}\right)^{m/2} \leq \left\|\boldsymbol{\mathit{C}}_{\varphi}\right\|_m \leq \left(\frac{1+|\varphi(0)|}{1-|\varphi(0)|}\right)^{m/2}$$

iterates to give

$$\left\|C_{\varphi}^{n}\right\|_{m} \sim (1-|\varphi_{n}(0)|)^{-m/2}$$

[here $\varphi_n = \varphi \circ \cdots \circ \varphi$, *n* times], and hence

□ > < E > < E > < E</p>

The norm inequality

$$\left(\frac{1}{1-|\varphi(0)|^2}\right)^{m/2} \leq \left\|\mathcal{C}_{\varphi}\right\|_m \leq \left(\frac{1+|\varphi(0)|}{1-|\varphi(0)|}\right)^{m/2}$$

iterates to give

$$\left\|\mathcal{C}_{\varphi}^{n}\right\|_{m} \sim (1-|\varphi_{n}(0)|)^{-m/2}$$

[here $\varphi_n = \varphi \circ \cdots \circ \varphi$, *n* times], and hence

Corollary (Spectral radius)

Let φ be a Schur class mapping of the ball. The spectral radius of C_{φ} acting on $H^2_{d,m}$ is

$$\mathsf{r}(\mathcal{C}_{\varphi}) = \lim_{n \to \infty} (1 - |\varphi_n(0)|)^{-m/2n}$$

Can we evaluate this limit?

Theorem (MacCluer, 1983)

Let φ be a holomorphic self-map of \mathbb{B}^d . Then:

• There exists a unique point $\zeta \in \overline{\mathbb{B}^d}$ (the Denjoy-Wolff point) such that

$$\varphi_n(z) \to \zeta$$

locally uniformly in \mathbb{B}^d .

2 If $\zeta \in \partial \mathbb{B}^d$, then

$$0 < \liminf_{z \to \zeta} \frac{1 - |\varphi(z)|^2}{1 - |z|^2} = \alpha \le 1$$

白 と く ヨ と く ヨ と …

2

Theorem (MacCluer, 1983)

Let φ be a holomorphic self-map of \mathbb{B}^d . Then:

• There exists a unique point $\zeta \in \overline{\mathbb{B}^d}$ (the Denjoy-Wolff point) such that

$$\varphi_n(z) \to \zeta$$

locally uniformly in \mathbb{B}^d .

2 If $\zeta \in \partial \mathbb{B}^d$, then

$$0 < \liminf_{z \to \zeta} \frac{1 - |\varphi(z)|^2}{1 - |z|^2} = \alpha \le 1$$

If the Denjoy-Wolff point ζ lies in \mathbb{B}^d , then φ is called <u>elliptic</u>. If $\zeta \in \partial \mathbb{B}^d$, the number α is called the <u>dilatation coefficient</u> of φ . The map φ is called parabolic if $\alpha = 1$, and hyperbolic if $\alpha < 1$. We want to evaluate

$$\lim_{n\to\infty}(1-|\varphi_n(0)|)^{-1/2n}$$

If φ is elliptic or parabolic, it is not hard to show this limit is 1. In one dimension we have:

- 金田 - 金田 - 二

Э

We want to evaluate

$$\lim_{n\to\infty}(1-|\varphi_n(0)|)^{-1/2n}$$

If φ is elliptic or parabolic, it is not hard to show this limit is 1.

In one dimension we have:

Theorem (C. Cowen, 1983)

If φ is an elliptic or parabolic self-map of \mathbb{D} , then the spectral radius of C_{φ} (on H^2) is 1.

If φ is hyperbolic with dilatation coefficient α , then the spectral radius is $\alpha^{-1/2}$.

• 3 > 1

$$\lim_{n\to\infty}(1-|\varphi_n(0)|)^{-1/2n}$$

If φ is elliptic or parabolic, it is not hard to show this limit is 1.

In one dimension we have:

Theorem (C. Cowen, 1983)

If φ is an elliptic or parabolic self-map of \mathbb{D} , then the spectral radius of C_{φ} (on H^2) is 1.

If φ is hyperbolic with dilatation coefficient α , then the spectral radius is $\alpha^{-1/2}$.

Goal: Extend this theorem to Schur class mappings of \mathbb{B}^d .

The elliptic and parabolic cases go through (with identical proofs). The hyperbolic case takes work...

伺い イヨト イヨト

Definition

Given a point $\zeta \in \partial \mathbb{B}^d$ and a real number c > 0, the Koranyi region $D_c(\zeta)$ is the set

$$D_c(\zeta) = \left\{z \in \mathbb{B}^d: |1-\langle z,\zeta
angle| \leq rac{c}{2}(1-|z|^2)
ight\}$$

A function f has <u>K-limit</u> equal to L at ζ if

$$\lim_{z\to\zeta}f(z)=L$$

whenever $z \rightarrow \zeta$ within a Koranyi region.

・回 ・ ・ ヨ ・ ・ ヨ ・

æ

Definition

Given a point $\zeta \in \partial \mathbb{B}^d$ and a real number c > 0, the Koranyi region $D_c(\zeta)$ is the set

$$D_c(\zeta) = \left\{ z \in \mathbb{B}^d : |1 - \langle z, \zeta
angle | \leq rac{c}{2}(1 - |z|^2)
ight\}$$

A function f has <u>K-limit</u> equal to L at ζ if

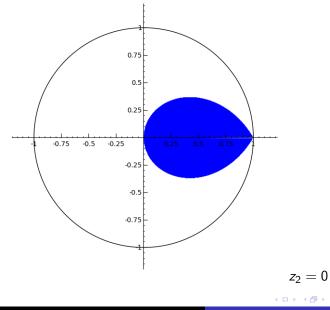
$$\lim_{z\to\zeta}f(z)=L$$

whenever $z \rightarrow \zeta$ within a Koranyi region.

When d = 1 (the disk), K-limit is the same as non-tangential limit. Not so in the ball...

・ 同 ト ・ ヨ ト ・ ヨ ト

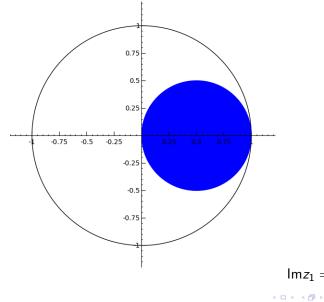
Slice of a Koranyi region with vertex at (1,0) in \mathbb{B}^2 :



< ≣⇒

Э

Slice of a Koranyi region with vertex at (1,0) in \mathbb{B}^2 :



< ≣⇒

э

$$\alpha = \liminf_{z \to \zeta} \frac{1 - |\varphi(z)|^2}{1 - |z|^2} < \infty.$$
 (C)

◆□ > ◆□ > ◆ 目 > ◆目 > ● 目 ● の < ⊙

$$\alpha = \liminf_{z \to \zeta} \frac{1 - |\varphi(z)|^2}{1 - |z|^2} < \infty.$$
 (C)

Theorem (Rudin, 1980)

Suppose $\varphi = (\varphi_1, \dots, \varphi_d)$ is a holomorphic mapping from \mathbb{B}^d to itself satisfying condition (C)at e_1 . The following functions are then bounded in every Koranyi region with vertex at e_1 :

(i)
$$\frac{1-\varphi_1(z)}{1-z_1}$$

(ii) $(D_1\varphi_1)(z)$
(iii) $\frac{1-|\varphi_1(z)|^2}{1-|z_1|^2}$
(iv) $\frac{1-|\varphi(z)|^2}{1-|z|^2}$

Moreover, each of these functions has restricted K-limit α at e_1 .

$$\alpha = \liminf_{z \to \zeta} \frac{1 - |\varphi(z)|^2}{1 - |z|^2} < \infty.$$
 (C)

Theorem (Rudin, 1980)

Suppose $\varphi = (\varphi_1, \dots, \varphi_d)$ is a holomorphic mapping from \mathbb{B}^d to itself satisfying condition (C)at e_1 . The following functions are then bounded in every Koranyi region with vertex at e_1 :

(i)
$$\frac{1-\varphi_1(z)}{1-z_1}$$

(ii) $(D_1\varphi_1)(z)$
(iii) $\frac{1-|\varphi_1(z)|^2}{1-|z_1|^2}$
(iv) $\frac{1-|\varphi(z)|^2}{1-|z|^2}$

Moreover, each of these functions has restricted K-limit α at e_1 .

What is a restricted K-limit?

Fix a point $\zeta \in \partial \mathbb{B}^d$ and consider a curve $\Gamma : [0,1) \to \mathbb{B}^n$ such that $\Gamma(t) \to \zeta$ as $t \to 1$. Let $\gamma(t) = \langle \Gamma(t), \zeta \rangle \zeta$ be the projection of Γ onto the complex line through ζ . The curve Γ is called special if

$$\lim_{t \to 1} \frac{|\Gamma - \gamma|^2}{1 - |\gamma|^2} = 0 \tag{1}$$

and restricted if it is special and in addition

$$\frac{|\zeta - \gamma|}{1 - |\gamma|^2} \le A \tag{2}$$

for some constant A > 0.

A B K A B K

Fix a point $\zeta \in \partial \mathbb{B}^d$ and consider a curve $\Gamma : [0, 1) \to \mathbb{B}^n$ such that $\Gamma(t) \to \zeta$ as $t \to 1$. Let $\gamma(t) = \langle \Gamma(t), \zeta \rangle \zeta$ be the projection of Γ onto the complex line through ζ . The curve Γ is called special if

$$\lim_{t \to 1} \frac{|\Gamma - \gamma|^2}{1 - |\gamma|^2} = 0 \tag{1}$$

and restricted if it is special and in addition

$$\frac{|\zeta - \gamma|}{1 - |\gamma|^2} \le A \tag{2}$$

for some constant A > 0.

Definition

We say that a function $f : \mathbb{B}^d \to \mathbb{C}$ has restricted K-limit L at ζ if $\lim_{z\to\zeta} f(z) = L$ along every restricted curve.

We have

K-limit \implies restricted K-limit \implies non-tangential limit and each implication is strict when d > 1.

One more fact:

Theorem

Let φ be a hyperbolic, holomorphic self-map of \mathbb{B}^d with Denjoy-Wolff point ζ . Then

 $\varphi_n(z_0) \to \zeta$

within a Koranyi region for every $z_0 \in \mathbb{B}^d$.

C. Cowen 1981 (d = 1) Bracci, Poggi-Corradini 2003 (d > 1)

★ 문 ▶ 문 문

One more fact:

Theorem

Let φ be a hyperbolic, holomorphic self-map of \mathbb{B}^d with Denjoy-Wolff point ζ . Then

 $\varphi_n(z_0) \to \zeta$

within a Koranyi region for every $z_0 \in \mathbb{B}^d$.

C. Cowen 1981 (d = 1) Bracci, Poggi-Corradini 2003 (d > 1)

If we knew that some orbit $\{\varphi_n(z_0)\}$ approached the Denjoy-Wolff point <u>restrictedly</u>, this combined with Rudin's Julia-Caratheodory theorem would imply

$$\lim_{n \to \infty} (1 - |\varphi_n(z_0)|)^{-1/2n} = \alpha^{-1/2}$$

It is not known if such orbits always exist. (Yes, if φ is an LFT.)

Indeed, if we know some orbit $z_n := \varphi_n(z_0)$ approaches ζ restrictedly, then

$$\lim_{n\to\infty}\frac{1-|\varphi(z_n)|}{1-|\varphi(z_{n-1})|}=\alpha$$

and hence

$$\lim_{n \to \infty} (1 - |\varphi_n(z_0)|)^{1/n} = \lim_{n \to \infty} \left(\prod_{k=1}^n \frac{1 - |\varphi(z_k)|}{1 - |\varphi(z_{k-1})|} \right)^{1/n}$$
$$= \alpha$$

御 と くぼ と くぼ と … ほ

$$\alpha = \liminf_{z \to \zeta} \frac{1 - |\varphi(z)|^2}{1 - |z|^2} < \infty.$$
 (C)

Theorem (J., 2008)

Let φ be a Schur class map and $\zeta \in \partial \mathbb{B}^d$. Then the following are equivalent:

- Condition (C).
- 2 There exists $\xi \in \partial \mathbb{B}^d$ such that the function

$$h(z) = rac{1 - \langle arphi(z), \xi
angle}{1 - \langle z, \zeta
angle}$$

belongs to $\mathcal{H}(\varphi)$.

Solution Every $f \in \mathcal{H}(\varphi)$ has a finite K-limit at ζ .

d = 1 case: Sarason 1994

Theorem (J., 2008)

Suppose $\varphi = (\varphi_1, \dots, \varphi_d)$ is a holomorphic Schur class mapping from \mathbb{B}^d to itself satisfying condition (C) at e_1 . The following functions are then bounded in every Koranyi region with vertex at e_1 :

(i) $\frac{1-\varphi_1(z)}{1-z_1}$ (ii) $(D_1\varphi_1)(z)$ (iii) $\frac{1-|\varphi_1(z)|^2}{1-|z_1|^2}$ (iv) $\frac{1-|\varphi(z)|^2}{1-|z|^2}$

Moreover, each of these functions (i)-(iii) has restricted K-limit α at e_1 .

Unfortunately, our attempted argument works only if (iv) has a K-limit at e_1 , which is not true in general even if φ is Schur class. Nonetheless, this theorem is sufficient to solve the spectral radius problem, in a more indirect way....

・ロン ・回 と ・ ヨ と ・ ヨ と

For 0 $< \alpha <$ 1, let θ_{α} denote the disk automorphism

$$heta_lpha(z) = rac{z + \left(rac{1-lpha}{1+lpha}
ight)}{1 + \left(rac{1-lpha}{1+lpha}
ight)z}$$

Theorem (J., 2009)

Let φ be a hyperbolic Schur class self-map of \mathbb{B}^d with dilatation coefficient α . Then there exists a nonconstant Schur class map $\sigma : \mathbb{B}^d \to \mathbb{D}$ such that

$$\sigma \circ \varphi = \theta_\alpha \circ \sigma$$

Proof needs¹ strengthened Julia-Caratheodory theorem.

(d = 1: Valiron, 1931; also Pommerenke 1979, C. Cowen 1981) (d > 1, under different assumptions:

Bracci, Gentili, Poggi-Corradini, 2007)

¹Probably.

Given a Schur class solution σ to the Abel-Schroeder equation

$$\sigma \circ \varphi = \theta_{\alpha} \circ \sigma$$

we can compute the spectral radius of C_{φ} via "transference:"

回 と く ヨ と く ヨ と

3

Given a Schur class solution σ to the Abel-Schroeder equation

$$\sigma \circ \varphi = \theta_{\alpha} \circ \sigma$$

we can compute the spectral radius of C_{φ} via "transference:" Suppose F is holomorphic in \mathbb{D} and $\lambda \in \mathbb{C}$ satisfies

$$F \circ \theta_{\alpha} = \lambda F$$

Then

$$F \circ \sigma \circ \varphi = F \circ \theta_{\alpha} \circ \sigma$$
$$= \lambda F \circ \sigma$$

Formally, σ transfers eigenfunctions of $C_{\theta_{\alpha}}$ to eigenfunctions of C_{φ} .

同 と く き と く き と … き

Given a Schur class solution σ to the Abel-Schroeder equation

$$\sigma \circ \varphi = \theta_{\alpha} \circ \sigma$$

we can compute the spectral radius of C_{φ} via "transference:" Suppose F is holomorphic in \mathbb{D} and $\lambda \in \mathbb{C}$ satisfies

$$F \circ \theta_{\alpha} = \lambda F$$

Then

$$\begin{aligned} \mathsf{F} \circ \sigma \circ \varphi &= \mathsf{F} \circ \theta_{\alpha} \circ \sigma \\ &= \lambda \mathsf{F} \circ \sigma \end{aligned}$$

Formally, σ transfers eigenfunctions of $C_{\theta_{\alpha}}$ to eigenfunctions of C_{φ} . KEY FACT: If $F \in H^2(\mathbb{D})$ and σ Schur class, then $F \circ \sigma \in H^2_{d,1}$.

A + + 3 + + 3 + - 3

The transference technique then proves:

Theorem (J., 2009)

Let φ be a hyperbolic Schur class map of \mathbb{B}^d with dilatation coefficient α . Then the spectral radius of C_{φ} acting on $H^2_{d,m}$ is $\alpha^{-m/2}$. Moreover every complex number λ in the annulus

$$\alpha^{m/2} < |\lambda| < \alpha^{-m/2}$$

is an eigenvalue of C_{φ} of infinite multiplicity.

(d = 1 case: C. Cowen, 1983)

If d > 1 and φ is an automorphism, the closure of this annulus is equal to the spectrum of C_{φ} (MacCluer, 1984)