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Theorem

Let f be holomorphic in the disk. TFAE:

1) |f (z)| ≤ 1 for all z ∈ D.

2) The Hermitian kernel

1− f (z)f (w)

1− zw

is positive semidefinite.

3) ‖f (T )‖ ≤ 1 for all linear operators T on Hilbert space with
‖T‖ < 1.

(2) and (3) each imply (1) trivially.
(1) implies (2) since f multiplies H2 into itself contractively.
(1) implies (3) is von Neumann’s inequality (von Neumann, 1949).
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A (strict) row contraction is a n-tuple of commuting operators

T = (T1, . . . ,Tn)

such that
r2I − T1T ∗1 − · · · − TnT ∗n ≥ 0

for some r < 1.

Theorem (Drury, 1978)

Let f be holomorphic in the ball Bn. TFAE:

1’) |f (z)| ≤ 1 for all z ∈ Bn.

2’) The Hermitian kernel

1− f (z)f (w)

1− 〈z ,w〉

is positive semidefinite.

3’) ‖f (T )‖ ≤ 1 for all strict row contractions T .
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1− f (z)f (w)
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is positive semidefinite.

3’) ‖f (T )‖ ≤ 1 for all strict row contractions T .

Trivially both (2’) and (3’) imply (1’) as before, but now (1’)
implies neither of the others.

Definition

Say f belongs to the Schur class if it satisfies the conditions of the
theorem.
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Why are (2’) and (3’) equivalent?

(2’) implies (3’): Write the kernel as a “sum of squares”
(Aronszajn/Bergman):

1− f (z)f (w)

1− 〈z ,w〉
=
∑

j

gj(z)gj(w)

Now
1− f (z)f (w) =

∑
j

gj(z)(1− 〈z ,w〉)gj(w)

Functional calculus:

I − f (T )f (T )∗ =
∑

j

gj(T )
[
1−

∑
TiT

∗
i

]
gj(T )∗

≥ 0

(3’) implies (2’): Hahn-Banach theorem and GNS construction.
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Q: What’s the point?

A: Being a “sum of squares” is a much more tractable condition
than mere pointwise positivity (cf. Hilbert’s seventeenth problem).

Example:

Theorem (Uniqueness in the Schwarz lemma in Bn)

If f is Schur class, f (0) = 0 and Df (0) = ζ with |ζ| = 1, then
f (z) =

∑
zjζj .

(Utterly false assuming only ‖f ‖∞ ≤ 1.)
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The bidisk D2:

Theorem (Cole-Wermer)

Let q(z1, z2) be a rational inner function in D2. Then there exist
rational functions A1, . . .Am and B1, . . .Bn such that

1−q(z)q(w) = (1−z1w1)
∑

Ai (z)Ai (w)+(1−z2w2)
∑

Bj(z)Bj(w).

This is essentially equivalent to Ando’s inequality: if f is analytic
in D2 and ‖f ‖∞ ≤ 1, then

‖f (T1,T2)‖ ≤ 1 for all ‖Ti‖ < 1. (*)

Similarly, every f bounded by 1 in D2 admits a SOS decomposition
(Agler), but not so in Dn for n ≥ 3.

Admitting SOS is equivalent to the n-variable version of (*).
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Definition

A function ϕ : Bd → Cd belongs to the Schur class on Bd if the
Hermitian kernel

1− 〈ϕ(z), ϕ(w)〉
1− 〈z ,w〉

is positive semidefinite.

If ϕ is Schur class, then ϕ is automatically holomorphic and
bounded by 1.

The converse holds when d = 1 but fails when d > 1.

E.g. ϕ(z1, z2) = (2z1z2, 0) is bounded by 1, but NOT Schur class.

Every linear fractional map of Bd is Schur class.

ϕ(z) =
Az + B

〈z ,C 〉+ D
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Define
Cϕf := f ◦ ϕ

Theorem (Littlewood, 1925)

Let ϕ be a holomorphic self-map of D with ϕ(0) = 0. Then∫ 2π

0
|f (ϕ(e iθ))|2 dθ ≤

∫ 2π

0
|f (e iθ)|2 dθ

for all f ∈ H2. Equivalently,

‖Cϕ‖ ≤ 1.

The analogous result is utterly false when d > 1; in fact Cϕ is not
even bounded on H2(Bd) in general, and even for very nice ϕ.

E.g. ϕ(z1, z2) = (2z1z2, 0) (More examples: Cima-Wogen et al.)
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Proof (J., 2007):

Two observations:

Since |ϕ(z)| < 1 for all z ∈ D, the kernel

1

1− ϕ(z)ϕ(w)

is positive semidefinite.

Since ϕ is a contractive multiplier of H2, the kernel

kϕ(z ,w) =
1− ϕ(z)ϕ(w)

1− zw

is positive semidefinite; and since ϕ(0) = 0 the kernel

kϕ(z ,w)− kϕ(z , 0)kϕ(0,w)

kϕ(0, 0)
=

1− ϕ(z)ϕ(w)

1− zw
− 1

is also positive (Schur complement theorem)
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Proof, continued.

Consider the Szegő kernel

kw (z) =
1

1− zw

Note that C ∗ϕkw = kϕ(w).

We must show ‖Cϕ‖ ≤ 1; or equivalently I − CϕC ∗ϕ ≥ 0. Test
against k :

〈(I − CϕC ∗ϕ)kw , kz〉 = 〈kw , kz〉 − 〈kϕ(w), kϕ(z)〉

=
1

1− zw
− 1

1− ϕ(z)ϕ(w)

=

(
1

1− ϕ(z)ϕ(w)

)
·

(
1− ϕ(z)ϕ(w)

1− zw
− 1

)

which is positive, so done.
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Let H2
d ,m denote the RKHS with kernel

km(z ,w) =
1

(1− 〈z ,w〉)m
m = 1, 2, . . .

The above proof generalizes immediately to the ball, provided ϕ
belongs to the Schur class:

Theorem (J., 2007)

Let ϕ be a Schur class mapping of Bd and ϕ(0) = 0. Then
‖Cϕ‖ ≤ 1 on H2

d ,m. In particular (for m = d)∫
∂Bd

|f ◦ ϕ|2 dσ ≤
∫
∂Bd

|f |2 dσ

for all f in the classical Hardy space H2(Bd).
(σ = surface measure on ∂Bd)
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the case m = 1.

As in the disk case, the kernels

1

1− 〈ϕ(z), ϕ(w)〉
,

1− 〈ϕ(z), ϕ(w)〉
1− 〈z ,w〉

− 1

are positive (since ϕ is Schur class!!!)
Thus

〈(I−CϕC ∗ϕ)kw , kz〉 =

(
1

1− 〈ϕ(z), ϕ(w)〉

)
·
(

1− 〈ϕ(z), ϕ(w)〉
1− 〈z ,w〉

− 1

)
is a positive kernel.
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If 0 is not fixed, we have:

Theorem

Let ϕ be a Schur class mapping of Bd . Then Cϕ is bounded on
each of the spaces H2

d ,m, and(
1

1− |ϕ(0)|2

)m/2

≤ ‖Cϕ‖m ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

)m/2

Two nice things:

both sides are roughly the same size, ∼ (1− |ϕ(0)|)−m/2

the inequality iterates...
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The norm inequality(
1

1− |ϕ(0)|2

)m/2

≤ ‖Cϕ‖m ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

)m/2

iterates to give

‖Cn
ϕ‖m ∼ (1− |ϕn(0)|)−m/2

[here ϕn = ϕ ◦ · · · ◦ ϕ, n times], and hence

Corollary (Spectral radius)

Let ϕ be a Schur class mapping of the ball. The spectral radius of
Cϕ acting on H2

d ,m is

r(Cϕ) = lim
n→∞

(1− |ϕn(0)|)−m/2n

Can we evaluate this limit?
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Theorem (MacCluer, 1983)

Let ϕ be a holomorphic self-map of Bd . Then:

1 There exists a unique point ζ ∈ Bd (the Denjoy-Wolff point)
such that

ϕn(z)→ ζ

locally uniformly in Bd .

2 If ζ ∈ ∂Bd , then

0 < lim inf
z→ζ

1− |ϕ(z)|2

1− |z |2
= α ≤ 1

If the Denjoy-Wolff point ζ lies in Bd , then ϕ is called elliptic.

If ζ ∈ ∂Bd , the number α is called the dilatation coefficient of ϕ.

The map ϕ is called parabolic if α = 1, and hyperbolic if α < 1.
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We want to evaluate

lim
n→∞

(1− |ϕn(0)|)−1/2n

If ϕ is elliptic or parabolic, it is not hard to show this limit is 1.

In one dimension we have:

Theorem (C. Cowen, 1983)

If ϕ is an elliptic or parabolic self-map of D, then the spectral
radius of Cϕ (on H2) is 1.

If ϕ is hyperbolic with dilatation coefficient α, then the spectral
radius is α−1/2.

Goal: Extend this theorem to Schur class mappings of Bd .

The elliptic and parabolic cases go through (with identical proofs).
The hyperbolic case takes work...
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Definition

Given a point ζ ∈ ∂Bd and a real number c > 0, the Koranyi
region Dc(ζ) is the set

Dc(ζ) =
{

z ∈ Bd : |1− 〈z , ζ〉| ≤ c

2
(1− |z |2)

}
A function f has K-limit equal to L at ζ if

lim
z→ζ

f (z) = L

whenever z → ζ within a Koranyi region.

When d = 1 (the disk), K-limit is the same as non-tangential limit.
Not so in the ball...
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Slice of a Koranyi region with vertex at (1, 0) in B2:

z2 = 0
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Slice of a Koranyi region with vertex at (1, 0) in B2:

Imz1 = Imz2 = 0

Michael Jury Schur class functions on the unit ball in Cn



α = lim inf
z→ζ

1− |ϕ(z)|2

1− |z |2
<∞. (C)

Theorem (Rudin, 1980)

Suppose ϕ = (ϕ1, . . . ϕd) is a holomorphic mapping from Bd to
itself satisfying condition (C)at e1. The following functions are
then bounded in every Koranyi region with vertex at e1:

(i) 1−ϕ1(z)
1−z1

(ii) (D1ϕ1)(z)

(iii) 1−|ϕ1(z)|2
1−|z1|2

(iv) 1−|ϕ(z)|2
1−|z|2

Moreover, each of these functions has restricted K-limit α at e1.

What is a restricted K-limit?
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Fix a point ζ ∈ ∂Bd and consider a curve Γ : [0, 1)→ Bn such that
Γ(t)→ ζ as t → 1. Let γ(t) = 〈Γ(t), ζ〉ζ be the projection of Γ
onto the complex line through ζ. The curve Γ is called special if

lim
t→1

|Γ− γ|2

1− |γ|2
= 0 (1)

and restricted if it is special and in addition

|ζ − γ|
1− |γ|2

≤ A (2)

for some constant A > 0.

Definition

We say that a function f : Bd → C has restricted K -limit L at ζ if
limz→ζ f (z) = L along every restricted curve.

We have

K-limit =⇒ restricted K-limit =⇒ non-tangential limit
and each implication is strict when d > 1.
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One more fact:

Theorem

Let ϕ be a hyperbolic, holomorphic self-map of Bd with
Denjoy-Wolff point ζ. Then

ϕn(z0)→ ζ

within a Koranyi region for every z0 ∈ Bd .

C. Cowen 1981 (d = 1)
Bracci, Poggi-Corradini 2003 (d > 1)

If we knew that some orbit {ϕn(z0)} approached the Denjoy-Wolff
point restrictedly, this combined with Rudin’s Julia-Caratheodory
theorem would imply

lim
n→∞

(1− |ϕn(z0)|)−1/2n = α−1/2

It is not known if such orbits always exist. (Yes, if ϕ is an LFT.)
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Indeed, if we know some orbit zn := ϕn(z0) approaches ζ
restrictedly, then

lim
n→∞

1− |ϕ(zn)|
1− |ϕ(zn−1)|

= α

and hence

lim
n→∞

(1− |ϕn(z0)|)1/n = lim
n→∞

(
n∏

k=1

1− |ϕ(zk)|
1− |ϕ(zk−1)|

)1/n

= α
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α = lim inf
z→ζ

1− |ϕ(z)|2

1− |z |2
<∞. (C)

Theorem (J., 2008)

Let ϕ be a Schur class map and ζ ∈ ∂Bd . Then the following are
equivalent:

1 Condition (C).

2 There exists ξ ∈ ∂Bd such that the function

h(z) =
1− 〈ϕ(z), ξ〉

1− 〈z , ζ〉

belongs to H(ϕ).

3 Every f ∈ H(ϕ) has a finite K -limit at ζ.

d = 1 case: Sarason 1994
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Theorem (J., 2008)

Suppose ϕ = (ϕ1, . . . ϕd) is a holomorphic Schur class mapping
from Bd to itself satisfying condition (C) at e1. The following
functions are then bounded in every Koranyi region with vertex at
e1:

(i) 1−ϕ1(z)
1−z1

(ii) (D1ϕ1)(z)

(iii) 1−|ϕ1(z)|2
1−|z1|2

(iv) 1−|ϕ(z)|2
1−|z|2

Moreover, each of these functions (i)-(iii) has restricted K-limit α
at e1.

Unfortunately, our attempted argument works only if (iv) has a
K-limit at e1, which is not true in general even if ϕ is Schur class.
Nonetheless, this theorem is sufficient to solve the spectral radius
problem, in a more indirect way....
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For 0 < α < 1, let θα denote the disk automorphism

θα(z) =
z +

(
1−α
1+α

)
1 +

(
1−α
1+α

)
z

Theorem (J., 2009)

Let ϕ be a hyperbolic Schur class self-map of Bd with dilatation
coefficient α. Then there exists a nonconstant Schur class map
σ : Bd → D such that

σ ◦ ϕ = θα ◦ σ

Proof needs1 strengthened Julia-Caratheodory theorem.

(d = 1: Valiron, 1931; also Pommerenke 1979, C. Cowen 1981)
(d > 1, under different assumptions:

Bracci, Gentili, Poggi-Corradini, 2007)
1Probably.
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Given a Schur class solution σ to the Abel-Schroeder equation

σ ◦ ϕ = θα ◦ σ

we can compute the spectral radius of Cϕ via “transference:”

Suppose F is holomorphic in D and λ ∈ C satisfies

F ◦ θα = λF

Then

F ◦ σ ◦ ϕ = F ◦ θα ◦ σ
= λF ◦ σ

Formally, σ transfers eigenfunctions of Cθα to eigenfunctions of Cϕ.

KEY FACT: If F ∈ H2(D) and σ Schur class, then F ◦ σ ∈ H2
d ,1.
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The transference technique then proves:

Theorem (J., 2009)

Let ϕ be a hyperbolic Schur class map of Bd with dilatation
coefficient α. Then the spectral radius of Cϕ acting on H2

d ,m is

α−m/2. Moreover every complex number λ in the annulus

αm/2 < |λ| < α−m/2

is an eigenvalue of Cϕ of infinite multiplicity.

(d = 1 case: C. Cowen, 1983)

If d > 1 and ϕ is an automorphism, the closure of this annulus is
equal to the spectrum of Cϕ (MacCluer, 1984)
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