Composition operators induced by Schur-Agler mappings

Michael Jury

University of Florida

September 8, 2007

Michael Jury Composition operators induced by Schur-Agler mappings

Setting:

$$\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$$

 H^2 = Hardy space on \mathbb{D}

$$k(z,w) = rac{1}{1-z\overline{w}}$$
 Szegő kernel

 $\varphi:\mathbb{D}\to\mathbb{D}$ holomorphic

 $H(\varphi) =$ de Branges-Rovnyak space: RKHS with kernel

$$k^arphi(z,w) = rac{1-arphi(z)\overline{arphi(w)}}{1-z\overline{w}}$$

・ 回 と ・ ヨ と ・ ヨ と

Two kinds of operators:

• "Adjoints of multipliers" Given $f : \mathbb{D} \to \mathbb{C}$ define

$$M_f^* k_w = \overline{f(w)} k_w$$

$$h, fh \in H^2 \Longrightarrow$$

$$f(w)h(w) = \langle fh, k_w \rangle = \langle h, M_f^* k_w \rangle$$

 "Adjoints of composition operators" Define

$$C_{\varphi}^* k_w = k_{\varphi(w)}$$

$$\begin{array}{l}h, \ h \circ \varphi \in H^2 \implies \\ h(\varphi(w)) = \langle h \circ \varphi, k_w \rangle = \langle h, C_{\varphi}^* k_w \rangle \end{array}$$

The main estimate:

If
$$\varphi : \mathbb{D} \to \mathbb{D}$$
 is analytic and $f \in H(\varphi)$, then
$$\|C_{\varphi}^* M_f^*\| \le \|f\|_{H(\varphi)}.$$

Proof:

Assume $\|f\|_{H(\varphi)} = 1$, prove $\|C_{\varphi}^* M_f^*\| \le 1$: $\|f\|_{H(\varphi)} = 1 \implies$

$$\frac{1-\varphi(z)\overline{\varphi(w)}}{1-z\overline{w}}-f(z)\overline{f(w)}\geq 0$$

Schur product with $\frac{1}{1 - \varphi(z)\overline{\varphi(w)}} \Longrightarrow$

$$\frac{1}{1-z\overline{w}}-\frac{f(z)\overline{f(w)}}{1-\varphi(z)\overline{\varphi(w)}}\geq 0$$

向下 イヨト イヨト

$$egin{aligned} &rac{1}{1-z\overline{w}}-rac{f(z)\overline{f(w)}}{1-arphi(z)\overline{arphi(w)}} \geq 0 \ &\iff \ &\langle k_w,k_z
angle-\langle C_arphi^*\;M_f^*\;k_w,C_arphi^*\;M_f^*\;k_z
angle \geq 0 \ &\iff \ &\|C_arphi^*\;M_f^*\|\leq 1 \quad &\Box \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Corollary 1: If $\varphi : \mathbb{D} \to \mathbb{D}$ is holomorphic then

$$\|C_{\varphi}\| \leq \left(rac{1+|arphi(\mathsf{0})|}{1-|arphi(\mathsf{0})|}
ight)^{1/2}$$

Proof: Apply estimate with

$$f(z) = k^{\varphi}(z,0) = 1 - \varphi(z)\overline{\varphi(0)}$$

Then

•
$$\|f\|_{H(\varphi)} = (k^{\varphi}(0,0))^{1/2} = (1 - |\varphi(0)|^2)^{1/2}$$

• $\|M^*_{\frac{1}{f}}\| = \sup_{|z| < 1} \left|\frac{1}{f(z)}\right| \le \frac{1}{1 - |\varphi(0)|}$

Thus

$$\begin{split} \|C_{\varphi}^{*}\| &= \|C_{\varphi}^{*} M_{f}^{*} M_{\frac{1}{f}}^{*}\| \\ &\leq \|C_{\varphi}^{*} M_{f}^{*}\| \|M_{\frac{1}{f}}^{*}\| &\leq \left(\frac{1+|\varphi(0)|}{1-|\varphi(0)|}\right)^{1/2} \Box \end{split}$$

• 3 >

A ₽

< ≣ >

æ

Remarks:

- Estimate is sharp over all φ , attained by inner functions [Nordgren 1968]
- Same argument works on weighted Bergman spaces with kernels k(z, w)^α; exponent is α/2
- General estimate on H^2 :

$$\|C_{\varphi}\| \leq \inf_{f \in H(\varphi)} \left\{ \left\| \frac{1}{f} \right\|_{\infty} \|f\|_{H(\varphi)} \right\}$$

Given a factorization

$$\frac{1-\varphi(z)\overline{\varphi(w)}}{1-z\overline{w}} = \sum_{j} f_{j}(z)\overline{f_{j}(w)}$$

we obtain the identity

$$\sum_{j} M_{f_j} C_{\varphi} C_{\varphi}^* M_{f_j}^* = I \quad (\text{SOT})$$

Image: A image: A

Multivariable setting:

$$\mathbb{B}^d = \left\{ (z_1, \dots z_d) \in \mathbb{C}^d : |z_1|^2 + \dots + |z_d|^2 < 1 \right\}$$

$$\langle z, w \rangle = z_1 \overline{w_1} + \dots + z_d \overline{w_d}$$

$$k(z,w) = \frac{1}{1 - \langle z,w \rangle}$$

$$arphi = (arphi_1, \dots arphi_d) : \mathbb{B}^d o \mathbb{B}^d$$
 holomorphic

 $H(\varphi) =$ "de Branges-Rovnyak space??" not automatically...only when

$$k^{\varphi}(z,w) = rac{1 - \langle arphi(z), arphi(w)
angle}{1 - \langle z, w
angle} \geq 0$$

that is, when φ belongs to the *Schur-Agler class* S_d .

Composition operators on H_d^2

Theorem: Suppose $\varphi : \mathbb{B}^d \to \mathbb{B}^d$ belongs to \mathcal{S}_d . Then C_{φ} is bounded on H^2_d and

$$\| C_{\varphi} \| \leq \left(\frac{1 + |\varphi(0)|}{1 - |\varphi(0)|} \right)^{1/2}$$

Proof: Same proof!...almost. For $f \in H(\varphi)$, estimate

$$\| C_{\varphi}^* M_f^* \| \leq \| f \|_{H(\varphi)}$$

goes through. Now take $f = k^{\varphi}(\cdot, 0)...$...need to estimate the *multiplier norm* of $\frac{1}{f}$.

Not too hard: since $I - \sum M_{z_j} M_{z_j}^* \ge 0$,

$$\left\|\sum_{j=1}^{d} M_{z_j} \cdot \overline{w_j}\right\| \le |w| \qquad \forall |w| \le 1$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$\left\|\sum_{j=1}^{d}M_{z_{j}}\cdot\overline{w_{j}}\right\| \leq |w| \quad \forall |w| \leq 1$$

Take $w = \varphi(0)$, then the series

$$\sum_{n=0}^{\infty} \left(\sum_{j=1}^{d} M_{z_j} \overline{\varphi_j(0)} \right)^n$$

converges in norm to $M_{\frac{1}{f}}$, and

$$\|M_{rac{1}{f}}\| \leq \sum_{n=0}^{\infty} |arphi(0)|^n \; = \; (1 - |arphi(0)|)^{-1}$$

Rest of the argument goes through. \Box

Remarks:

- Estimate is sharp over φ ∈ S_d; upper bound is obtained on automorphisms of B^d.
- Estimates go through for spaces $H^2_{d,\alpha}$ with kernel $(1 \langle z, w \rangle)^{-\alpha}$; exponent $\alpha/2$ —includes classical Hardy $(\alpha = d)$ and Bergman $(\alpha = d + 1)$
- Unfortunately, C_{φ} bounded $\Rightarrow \varphi \in \mathcal{S}_d$. Example:

$$\varphi_r(z_1,z_2)=(2rz_1z_2,0)$$

is bounded on H_2^2 iff r < 1. But

$$k^{arphi_r} \geq 0 \; (orall \; r < 1) \implies k^{arphi_1} \geq 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Linear fractional maps

Given $d + 1 \times d + 1$ matrices

$$T = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 and $J = \begin{pmatrix} I_{d \times d} & 0 \\ 0 & -1 \end{pmatrix}$

define

$$\varphi(z) = \frac{Az+B}{\langle z, C \rangle + D}$$

Then $\varphi: \mathbb{B}^d \to \mathbb{B}^d$ if and only if for some scalar m

$$J-|m|^2T^*JT\geq 0.$$

[Cowen-MacCluer (2000)] C_{φ} is bounded on classical Hardy & Bergman spaces . (Indirect proof—no norm estimates) [Bayart (2007)] gives an estimate for special class of "parabolic" φ on the classical Hardy space

$$\|C_{\varphi}\| \leq rac{C(d, arphi)}{(1 - |arphi(0)|)^{d/2}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition: Every LFT $\varphi : \mathbb{B}^d \to \mathbb{B}^d$ belongs to \mathcal{S}_d . **Proof:** Factor

$$J - T^*JT = X^*X$$

Put

$$L(z) = X \begin{pmatrix} z \\ 1 \end{pmatrix}$$

Then

$$k^{\varphi}(z,w) = rac{1 - \langle arphi(z), arphi(w)
angle}{1 - \langle z, w
angle}$$

$$=rac{1}{\langle z, C
angle + D}\left(1+rac{L(z)L(w)^*}{1-\langle z, w
angle}
ight)rac{1}{\overline{\langle w, C
angle + D}}$$

Corollary: For every LFT φ , C_{φ} is bounded on $H^2_{d,\alpha}$ and

$$\left(rac{1}{(1-|arphi(0)|^2)}
ight)^{lpha/2} \leq \parallel C_arphi \parallel \ \leq \ \left(rac{1+|arphi(0)|}{1-|arphi(0)|}
ight)^{lpha/2}$$

Spectral radii

If φ fixes a point of \mathbb{B}^d (hence called *elliptic*) then $r(C_{\varphi}) = 1$. In the case of no interior fixed point, we have the *Denjoy-Wolff* point $\zeta \in \partial \mathbb{B}^d$; and

$$\lim_{r\to 1} D_{\zeta}\varphi(r\zeta) = \alpha$$

for some $0 < \alpha \le 1$, called the *dilatation coefficient* (analogous to the angular derivative when d = 1).

- $\alpha = 1$ parabolic
- $\alpha < 1$ hyperbolic

From the previous norm estimate we get a prototype spectral radius formula on H_d^2 :

Proposition: For $\varphi \in \mathcal{S}_d$

$$r(C_{\varphi}) = \lim \|C_{\varphi}^{n}\|^{1/n} = \lim(1 - |\varphi_{n}(0)|)^{-1/2n}$$

Theorem: [Cowen (1983)] For $\varphi : \mathbb{D} \to \mathbb{D}$, on H^2 we have

•
$$r(C_{\varphi}) = 1$$
 (elliptic)
• $r(C_{\varphi}) = \alpha^{-1/2}$ (otherwise)

4月 2 4 日 2 4 日 2 4

Theorem: [J. (2007)]
$$(d \ge 1)$$
 For $\varphi \in S_d$, on H^2_d we have

•
$$r(C_{\varphi}) = 1$$
 (elliptic)

•
$$r(\mathcal{C}_{arphi}) = 1 = lpha^{-1/2}$$
 (parabolic)

If φ is an LFT, then we also have

•
$$r(C_{\varphi}) = \alpha^{-1/2}$$
 (hyperbolic)

Conjecture: Formula holds for all hyperbolic $\varphi \in S_d$.

伺下 イヨト イヨト