Composition operators induced by Schur-Agler mappings

Michael Jury
University of Florida

September 8, 2007

Setting:

$\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$
$H^{2}=$ Hardy space on \mathbb{D}
$k(z, w)=\frac{1}{1-z \bar{w}} \quad$ Szegő kernel
$\varphi: \mathbb{D} \rightarrow \mathbb{D}$ holomorphic
$H(\varphi)=$ de Branges-Rovnyak space:
RKHS with kernel

$$
k^{\varphi}(z, w)=\frac{1-\varphi(z) \overline{\varphi(w)}}{1-z \bar{w}}
$$

Two kinds of operators:

- "Adjoints of multipliers"

Given $f: \mathbb{D} \rightarrow \mathbb{C}$ define

$$
M_{f}^{*} k_{w}=\overline{f(w)} k_{w}
$$

$h, f h \in H^{2} \Longrightarrow$

$$
f(w) h(w)=\left\langle f h, k_{w}\right\rangle=\left\langle h, M_{f}^{*} k_{w}\right\rangle
$$

- "Adjoints of composition operators"

Define

$$
C_{\varphi}^{*} k_{w}=k_{\varphi(w)}
$$

$h, h \circ \varphi \in H^{2} \Longrightarrow$

$$
h(\varphi(w))=\left\langle h \circ \varphi, k_{w}\right\rangle=\left\langle h, C_{\varphi}^{*} k_{w}\right\rangle
$$

The main estimate:

If $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ is analytic and $f \in H(\varphi)$, then

$$
\left\|C_{\varphi}^{*} M_{f}^{*}\right\| \leq\|f\|_{H(\varphi)} .
$$

Proof:
Assume $\|f\|_{H(\varphi)}=1$, prove $\left\|C_{\varphi}^{*} M_{f}^{*}\right\| \leq 1$:
$\|f\|_{H(\varphi)}=1 \Longrightarrow$

$$
\frac{1-\varphi(z) \overline{\varphi(w)}}{1-z \bar{w}}-f(z) \overline{f(w)} \geq 0
$$

Schur product with $\frac{1}{1-\varphi(z) \overline{\varphi(w)}} \Longrightarrow$

$$
\frac{1}{1-z \bar{w}}-\frac{f(z) \overline{f(w)}}{1-\varphi(z) \overline{\varphi(w)}} \geq 0
$$

$$
\frac{1}{1-z \bar{w}}-\frac{f(z) \overline{f(w)}}{1-\varphi(z) \overline{\varphi(w)}} \geq 0
$$

$$
\left\langle k_{w}, k_{z}\right\rangle-\left\langle C_{\varphi}^{*} M_{f}^{*} k_{w}, C_{\varphi}^{*} M_{f}^{*} k_{z}\right\rangle \geq 0
$$

$$
\left\|C_{\varphi}^{*} M_{f}^{*}\right\| \leq 1
$$

$$
\square
$$

Corollary 1:

If $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ is holomorphic then

$$
\left\|C_{\varphi}\right\| \leq\left(\frac{1+|\varphi(0)|}{1-|\varphi(0)|}\right)^{1 / 2}
$$

Proof: Apply estimate with

$$
f(z)=k^{\varphi}(z, 0)=1-\varphi(z) \overline{\varphi(0)}
$$

Then

$$
\begin{aligned}
& \text { - }\|f\|_{H(\varphi)}=\left(k^{\varphi}(0,0)\right)^{1 / 2}=\left(1-|\varphi(0)|^{2}\right)^{1 / 2} \\
& -\left\|M_{\frac{1}{f}}^{*}\right\|=\sup _{|z|<1}\left|\frac{1}{f(z)}\right| \leq \frac{1}{1-|\varphi(0)|}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left\|C_{\varphi}^{*}\right\| & =\left\|C_{\varphi}^{*} M_{f}^{*} M_{\frac{1}{f}}^{*}\right\| \\
& \leq\left\|C_{\varphi}^{*} M_{f}^{*}\right\|\left\|M_{\frac{1}{f}}^{*}\right\| \leq\left(\frac{1+|\varphi(0)|}{1-|\varphi(0)|}\right)^{1 / 2} \square
\end{aligned}
$$

Remarks:

- Estimate is sharp over all φ, attained by inner functions [Nordgren 1968]
- Same argument works on weighted Bergman spaces with kernels $k(z, w)^{\alpha}$; exponent is $\alpha / 2$
- General estimate on H^{2} :

$$
\left\|C_{\varphi}\right\| \leq \inf _{f \in H(\varphi)}\left\{\left\|\frac{1}{f}\right\|_{\infty}\|f\|_{H(\varphi)}\right\}
$$

- Given a factorization

$$
\frac{1-\varphi(z) \overline{\varphi(w)}}{1-z \bar{w}}=\sum_{j} f_{j}(z) \overline{f_{j}(w)}
$$

we obtain the identity

$$
\sum_{j} M_{f_{j}} C_{\varphi} C_{\varphi}^{*} M_{f_{j}}^{*}=l \quad(\mathrm{SOT})
$$

Multivariable setting:

$$
\begin{aligned}
\mathbb{B}^{d}= & \left\{\left(z_{1}, \ldots z_{d}\right) \in \mathbb{C}^{d}:\left|z_{1}\right|^{2}+\cdots+\left|z_{d}\right|^{2}<1\right\} \\
& \langle z, w\rangle=z_{1} \overline{w_{1}}+\cdots+z_{d} \overline{w_{d}}
\end{aligned}
$$

$H_{d}^{2}=$ symmetric Fock space
(not classical H^{2})...RKHS with kernel

$$
k(z, w)=\frac{1}{1-\langle z, w\rangle}
$$

$\varphi=\left(\varphi_{1}, \ldots \varphi_{d}\right): \mathbb{B}^{d} \rightarrow \mathbb{B}^{d}$ holomorphic
$H(\varphi)=$ "de Branges-Rovnyak space??" not automatically...only when

$$
k^{\varphi}(z, w)=\frac{1-\langle\varphi(z), \varphi(w)\rangle}{1-\langle z, w\rangle} \geq 0
$$

that is, when φ belongs to the Schur-Agler class \mathcal{S}_{d}.

Composition operators on \mathbf{H}_{d}^{2}

Theorem: Suppose $\varphi: \mathbb{B}^{d} \rightarrow \mathbb{B}^{d}$ belongs to \mathcal{S}_{d}. Then C_{φ} is bounded on H_{d}^{2} and

$$
\left\|C_{\varphi}\right\| \leq\left(\frac{1+|\varphi(0)|}{1-|\varphi(0)|}\right)^{1 / 2}
$$

Proof: Same proof!...almost. For $f \in H(\varphi)$, estimate

$$
\left\|C_{\varphi}^{*} M_{f}^{*}\right\| \leq\|f\|_{H(\varphi)}
$$

goes through. Now take $f=k^{\varphi}(\cdot, 0) \ldots$
...need to estimate the multiplier norm of $\frac{1}{f}$.
Not too hard: since $I-\sum M_{z_{j}} M_{z_{j}}^{*} \geq 0$,

$$
\left\|\sum_{j=1}^{d} M_{z_{j}} \cdot \overline{w_{j}}\right\| \leq|w| \quad \forall|w| \leq 1
$$

$$
\left\|\sum_{j=1}^{d} M_{z_{j}} \cdot \overline{w_{j}}\right\| \leq|w| \quad \forall|w| \leq 1
$$

Take $w=\varphi(0)$, then the series

$$
\sum_{n=0}^{\infty}\left(\sum_{j=1}^{d} M_{z_{j}} \overline{\varphi_{j}(0)}\right)^{n}
$$

converges in norm to $M_{\frac{1}{f}}$, and

$$
\left\|M_{\frac{1}{f}}\right\| \leq \sum_{n=0}^{\infty}|\varphi(0)|^{n}=(1-|\varphi(0)|)^{-1}
$$

Rest of the argument goes through. \square

Remarks:

- Estimate is sharp over $\varphi \in \mathcal{S}_{d}$; upper bound is obtained on automorphisms of \mathbb{B}^{d}.
- Estimates go through for spaces $H_{d, \alpha}^{2}$ with kernel $(1-\langle z, w\rangle)^{-\alpha}$; exponent $\alpha / 2$-includes classical Hardy ($\alpha=d$) and Bergman ($\alpha=d+1$)
- Unfortunately, C_{φ} bounded $\nRightarrow \varphi \in \mathcal{S}_{d}$. Example:

$$
\varphi_{r}\left(z_{1}, z_{2}\right)=\left(2 r z_{1} z_{2}, 0\right)
$$

is bounded on H_{2}^{2} iff $r<1$. But

$$
k^{\varphi_{r}} \geq 0(\forall r<1) \Longrightarrow k^{\varphi_{1}} \geq 0
$$

Linear fractional maps
Given $d+1 \times d+1$ matrices

$$
T=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \quad \text { and } \quad J=\left(\begin{array}{cc}
I_{d \times d} & 0 \\
0 & -1
\end{array}\right)
$$

define

$$
\varphi(z)=\frac{A z+B}{\langle z, C\rangle+D}
$$

Then $\varphi: \mathbb{B}^{d} \rightarrow \mathbb{B}^{d}$ if and only if for some scalar m

$$
J-|m|^{2} T^{*} J T \geq 0
$$

[Cowen-MacCluer (2000)] C_{φ} is bounded on classical Hardy \& Bergman spaces. (Indirect proof-no norm estimates) [Bayart (2007)] gives an estimate for special class of "parabolic" φ on the classical Hardy space

$$
\left\|C_{\varphi}\right\| \leq \frac{C(d, \varphi)}{(1-|\varphi(0)|)^{d / 2}}
$$

Proposition: Every LFT $\varphi: \mathbb{B}^{d} \rightarrow \mathbb{B}^{d}$ belongs to \mathcal{S}_{d}.
Proof: Factor

$$
J-T^{*} J T=X^{*} X
$$

Put

$$
L(z)=X\binom{z}{1}
$$

Then

$$
\begin{aligned}
& k^{\varphi}(z, w)=\frac{1-\langle\varphi(z), \varphi(w)\rangle}{1-\langle z, w\rangle} \\
& \quad=\frac{1}{\langle z, C\rangle+D}\left(1+\frac{L(z) L(w)^{*}}{1-\langle z, w\rangle}\right) \frac{1}{\overline{\langle w, C\rangle+D}}
\end{aligned}
$$

Corollary: For every LFT φ, C_{φ} is bounded on $H_{d, \alpha}^{2}$ and

$$
\left(\frac{1}{\left(1-|\varphi(0)|^{2}\right)}\right)^{\alpha / 2} \leq\left\|C_{\varphi}\right\| \leq\left(\frac{1+|\varphi(0)|}{1-|\varphi(0)|}\right)^{\alpha / 2}
$$

Spectral radii

If φ fixes a point of \mathbb{B}^{d} (hence called elliptic) then $r\left(C_{\varphi}\right)=1$. In the case of no interior fixed point, we have the Denjoy-Wolff point $\zeta \in \partial \mathbb{B}^{d}$; and

$$
\lim _{r \rightarrow 1} D_{\zeta} \varphi(r \zeta)=\alpha
$$

for some $0<\alpha \leq 1$, called the dilatation coefficient (analogous to the angular derivative when $d=1$).

- $\alpha=1$ parabolic
- $\alpha<1$ hyperbolic

From the previous norm estimate we get a prototype spectral radius formula on H_{d}^{2} :

Proposition: For $\varphi \in \mathcal{S}_{\boldsymbol{d}}$

$$
r\left(C_{\varphi}\right)=\lim \left\|C_{\varphi}^{n}\right\|^{1 / n}=\lim \left(1-\left|\varphi_{n}(0)\right|\right)^{-1 / 2 n}
$$

Theorem: [Cowen (1983)] For $\varphi: \mathbb{D} \rightarrow \mathbb{D}$, on H^{2} we have

- $r\left(C_{\varphi}\right)=1$ (elliptic)
- $r\left(C_{\varphi}\right)=\alpha^{-1 / 2}$ (otherwise)

Theorem: [J. (2007)] ($d \geq 1$) For $\varphi \in \mathcal{S}_{d}$, on H_{d}^{2} we have

- $r\left(C_{\varphi}\right)=1$ (elliptic)
- $r\left(C_{\varphi}\right)=1=\alpha^{-1 / 2}$ (parabolic)

If φ is an LFT, then we also have

- $r\left(C_{\varphi}\right)=\alpha^{-1 / 2}$ (hyperbolic)

Conjecture: Formula holds for all hyperbolic $\varphi \in \mathcal{S}_{d}$.

