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When groups appear in the thoery of operator algebras, they nearly
always appear in the guise of unitary representations:

Definition

A unitary representation of a group G on a Hilbert space H is a
homomorphism

π : G → U(H)

of G into the group of unitary operators on H.

Example

For G discrete, let H = `2(G ). The (left) regular representation λ
is defined by

λg (ξ)(h) = ξ(g−1h)
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C*-algebras generated by unitary representations appeared very
early in the history of C*-algebras, e.g in the work of Gelfand,
Naimark, Segal, Fell, Kaplansky,...

Definition

The reduced group C*-algebra C ∗r (G ) is the C*-subalgebra of
B(`2(G )) generated by the image of the regular representation.

Such a C*-algebra may be viewed as a completion of the
convolution algebra `1(G ) in the C*-norm induced by the
representation. We may define a maximal C*-norm on `1(G ) by

‖
∑

ag g‖max := sup
π
‖
∑

agπ(g)‖ ≤ ‖
∑

ag g‖1

This is a C*-norm, and the completion of `1(G ) under ‖ · ‖max

gives the full group C*-algebra C ∗(G ).
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The full group C*-algebra has the following very important
universal property:

Theorem

If π is any unitary representation of G , then there is a surjective
*-homomorphism

ρ : C ∗(G )→ C ∗(π(G ))

In general, the full and reduced group C*-algebras do not coincide:

Theorem (Godement 1950)

C ∗(G ) ∼= C ∗r (G ) if and only if G is amenable.
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Definition

A representation π : G → B(H) is uniformly bounded if

sup
g∈G
‖π(g)‖ <∞

π is called unitarizable if there exists a unitary representation ρ and
an invertible operator S such that

π(g) := S−1ρ(g)S

for all g ∈ G .

If G is amenable then every u.b. representation is unitarizable; not
so otherwise.
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In this talk we are interested in the C*-algebras C ∗(π(G ))
generated by representations π that are not unitary, and our most
interesting examples occur for π that are not even u.b. To state
our main result, we first need to see how to associate a C*-algebra
to the action of a group G on a topological space X .
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Definition

Let X be a compact Hausdorff space and let α : G → Homeo(X )
be an action of G . A covariant representation of (G ,X , α) on a
Hilbert space H is a pair (π, u) where

π : C (X )→ B(H)

is a *-homomorphism and

u : G → B(H)

is a unitary representation which satisfy

u∗gπ(f )ug = π(α̂g (f ))

for all g ∈ G , f ∈ C (X ).
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The Main Theorem

Theorem (J. 2006)

Let π : G → B(H) be a representation of a discrete group G by
invertible operators. Then there exist:

a compact Hausdorff space X (metrizable if G is countable),

an action α of G on X , and

ideals J ⊂ C ∗(π(G )), I ⊂ C (X )×α G

such that
C ∗(π(G ))/J ∼= (C (X )×α G )/I

While the existence of I is proved via the universal property of the
full crossed product, the ideal J is constructed explicitly.
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Outline of the construction

Consider the polar decomposition of π(g):

π(g) = vg |π(g)|

where
|π(g)| := (π(g)∗π(g))1/2

vg = π(g)|π(g)|−1

Note that each vg is unitary.
We have

C ∗(π(G )) = C ∗{vg , |π(g)| : g ∈ G}
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Definition

Let
P = C ∗{|π(g)| : g ∈ G}

J = ideal of C ∗(π(G )) generated by {pq − qp : p, q ∈ P}

In general, vg vh 6= vgh. However:

Theorem

For all g , h ∈ G ,
vg vh − vgh ∈ J
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Let ρ : C ∗(π(G ))→ C ∗(π(G ))/J be the quotient map. Then:

C ∗(π(G ))/J is generated by ρ(P) and the unitaries
ug := ρ(vg )

Since J ⊃ [P,P] we have

ρ(P) = ρ(P + J ) =
P + J
J

∼=
P
J ∩ P

is commutative; put X = σ(ρ(P)).

ugρ(P)u∗g ⊂ ρ(P); G -action is deduced from this.
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The first example shows that the space X can be trivial:

Example

If π is a unitary representation, then

P = C
J = {0}
X = {pt}

In this case, the theorem tells us only that C ∗(π(G )) is a quotient
of the full group C*-algebra C ∗(G ).
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It can happen that X is not trivial but the action of G is:

Example

G = Z
T ∈ B(H) invertible and normal, i.e. T ∗T = TT ∗

π(n) = T n

Then since C ∗(T ) is commutative, we have

P = C ∗(|T |) ⊂ C ∗(T ) =⇒ J = 0 and X = σ(|T |)
vn ∈ C ∗(T ) =⇒ vnpv∗n = p ∀n,∀p ∈ P =⇒ α = id .
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However, it turns out that the normality of the operators π(g) in
the last two examples is essentially the only way to obtain trivial X
or trivial G -action:

Theorem

Suppose [π(g)∗, π(g)] /∈ J for some g ∈ G . Then ∃x ∈ X such
that g · x 6= x.
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The main example: Fuchsian groups

From now on G will be a Fuchsian group, i.e. a discrete group of
conformal automorphisms of the open unit disk D ⊂ C.

Examples

G = π1(M), M a compact Riemann surface of genus g ≥ 2

G ⊂ PSL(2,Z)

G ∼= Fd , the free group on d generators

We consider representations of G on the Hardy space:

Definition

H2 := {f =
∑

anzn :
∑
|a2

n| <∞} with ‖f ‖ =
(∑
|an|2

)1/2
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Theorem (Fatou)

If f ∈ H2 then
f̃ (e iθ) := lim

r→1
f (re iθ)

exists a.e. on ∂D and ‖f ‖H2 = ‖f̃ ‖L2(∂D)

H2 is a reproducing kernel Hilbert space: for each w ∈ D, the
function kw (z) := (1− wz)−1 safisfies

〈f , kw 〉 = f (w) ∀f ∈ H2

We represent G on H2 by

π(g)(f )(z) = f (g−1(z))

Easy estimates show π(g) is bounded ∀g , though not uniformly (in
fact ‖π(g)‖ = 1

1−|g(0)|2 ).
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KEY FACT: For all g ∈ G and all w ∈ D,

π(g)∗kw = kg−1(w)

It follows that if we fix a base point z0 ∈ D then the subspace

M = span{kg(z0) : g ∈ G} ⊂ H2

is invariant for the operators π(g)∗. We thus get a representation
π̃ on M.
Finally, let

Λ = {g(z0) : g ∈ G} ∩ ∂D

be the limit set of G ; Λ is closed and G -invariant. It is either finite,
a Cantor set, or all of ∂D.
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Theorem (J. 2005)

For the representations π̃ we have:

P= the compression of the Toeplitz algebra T to M

J = K(M)

X = Λ with the natural G -action

But we can say more...
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Combining the previous theorem with our main theorem says that
there is an ideal I ⊂ C (Λ)×α G such that

C ∗(π̃(G ))/K ∼= (C (Λ)×α G )/I

But it is known that the crossed product C (Λ)×α G is simple; i.e.
has no non-trivial ideals. We then deduce:

Theorem

For a non-elementary Fuchsian group G , there is an exact sequence
of C*-algebras

0→ K(M)→ C ∗(π̃(G ))→ C (Λ)×α G → 0
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It can be shown that this exact sequence is semisplit, i.e. the
quotient map admits a completely positive section. It follows that
π̃, via this construction, determines a class

[π̃] ∈ K1(C (Λ)× G )

in the (odd) analytic K-homology of the crossed product
C (Λ)× G . (With more work we can show that we actually get a
class in the equivariant Kasparov group KK 1

G (C (Λ),C)).
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Sketch of proof

When M = H2, the proof rests on the fact that P is equal to the
Toeplitz algebra T = C ∗(Mz).
Using the fundamental identity

(1− |g(0)|2)π(g)π(g)∗ = 1− g(0)Mz + g(0)M∗z + |g(0)|2MzM∗z

and choosing a sequence gn(0)→ λ ∈ ∂D shows that P contains
λMz + λM∗z for all |λ| = 1 and hence Mz . The identification
J = K(H2) follows, and we can identify the G -action using the
fact that

Mg−1(z)π(g) = π(g)Mz
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When M 6= H2 (e.g. when the limit set of G is a Cantor set) we
must replace Mz with PMMzPM , use Beurling’s theorem to write

M = ΘH2, Θ = Blaschke prod. with zeroes on orbit of the origin

to get PM = I −MΘM∗Θ. From here we need to know

[MΘ,M
∗
z ] ∈ K(H2) (Hartman’s theorem)

and use the Livšic-Moeller theorem to prove

σe(PMMzPM) = Λ
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