C*-algebras generated by non-unitary group representations

Michael Jury

University of Florida

April 13, 2006

Michael Jury C*-algebras generated by non-unitary group representations

- 4 同 2 4 日 2 4 日 2

When groups appear in the thoery of operator algebras, they nearly always appear in the guise of *unitary representations*:

Definition

A *unitary representation* of a group G on a Hilbert space \mathcal{H} is a homomorphism

$$\pi: \mathcal{G} \to \mathcal{U}(\mathcal{H})$$

of G into the group of unitary operators on \mathcal{H} .

Example

For G discrete, let $\mathcal{H} = \ell^2(G)$. The *(left) regular representation* λ is defined by

$$\lambda_g(\xi)(h) = \xi(g^{-1}h)$$

イロン イヨン イヨン イヨン

C*-algebras generated by unitary representations appeared very early in the history of C*-algebras, e.g in the work of Gelfand, Naimark, Segal, Fell, Kaplansky,...

Definition

The reduced group C*-algebra $C_r^*(G)$ is the C*-subalgebra of $\mathcal{B}(\ell^2(G))$ generated by the image of the regular representation.

Such a C*-algebra may be viewed as a completion of the convolution algebra $\ell^1(G)$ in the C*-norm induced by the representation. We may define a maximal C*-norm on $\ell^1(G)$ by

$$\|\sum a_g g\|_{max} := \sup_{\pi} \|\sum a_g \pi(g)\| \le \|\sum a_g g\|_1$$

This is a C*-norm, and the completion of $\ell^1(G)$ under $\|\cdot\|_{max}$ gives the full group C*-algebra $C^*(G)$.

The full group C*-algebra has the following very important universal property:

Theorem

If π is any unitary representation of G, then there is a surjective *-homomorphism

$$ho: C^*(G) \to C^*(\pi(G))$$

In general, the full and reduced group C*-algebras do not coincide:

Theorem (Godement 1950)

 $C^*(G) \cong C^*_r(G)$ if and only if G is amenable.

Definition

A representation $\pi : G \to \mathcal{B}(\mathcal{H})$ is uniformly bounded if

 $\sup_{g\in G} \|\pi(g)\| < \infty$

 π is called unitarizable if there exists a unitary representation ρ and an invertible operator S such that

$$\pi(g) := S^{-1}\rho(g)S$$

for all $g \in G$.

If G is amenable then every u.b. representation is unitarizable; not so otherwise.

In this talk we are interested in the C*-algebras $C^*(\pi(G))$ generated by representations π that are not unitary, and our most interesting examples occur for π that are not even u.b. To state our main result, we first need to see how to associate a C*-algebra to the action of a group G on a topological space X.

(4 回) (4 回) (4 回)

Definition

Let X be a compact Hausdorff space and let $\alpha : G \to Homeo(X)$ be an action of G. A covariant representation of (G, X, α) on a Hilbert space \mathcal{H} is a pair (π, u) where

$$\pi: \mathcal{C}(X) \to \mathcal{B}(\mathcal{H})$$

is a *-homomorphism and

$$u: G \rightarrow \mathcal{B}(\mathcal{H})$$

is a unitary representation which satisfy

$$u_g^*\pi(f)u_g = \pi(\hat{lpha}_g(f))$$

for all $g \in G$, $f \in C(X)$.

(D) (A) (A) (A) (A)

The Main Theorem

Theorem (J. 2006)

Let $\pi : G \to \mathcal{B}(\mathcal{H})$ be a representation of a discrete group G by invertible operators. Then there exist:

- a compact Hausdorff space X (metrizable if G is countable),
- an action α of G on X, and
- ideals $\mathcal{J} \subset C^*(\pi(G))$, $\mathcal{I} \subset C(X) imes_{lpha} G$

such that

$$\mathcal{C}^*(\pi(\mathcal{G}))/\mathcal{J}\cong (\mathcal{C}(X) imes_lpha \mathcal{G})/\mathcal{I}$$

While the existence of \mathcal{I} is proved via the universal property of the full crossed product, the ideal \mathcal{J} is constructed explicitly.

Outline of the construction

Consider the polar decomposition of $\pi(g)$:

$$\pi(g) = v_g |\pi(g)|$$

where

$$|\pi(g)| := (\pi(g)^* \pi(g))^{1/2}$$

$$v_g = \pi(g) |\pi(g)|^{-1}$$

Note that each v_g is unitary. We have

$$C^*(\pi(G)) = C^*\{v_g, |\pi(g)| : g \in G\}$$

(本間) (本語) (本語)

Definition

Let

$$\mathcal{P} = \mathcal{C}^*\{|\pi(g)| : g \in G\}$$

 $\mathcal{J}=$ ideal of $C^*(\pi(G))$ generated by $\{pq-qp \ : \ p,q\in\mathcal{P}\}$

In general, $v_g v_h \neq v_{gh}$. However:

Theorem

For all $g, h \in G$,

$$v_g v_h - v_{gh} \in \mathcal{J}$$

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへの

Let $\rho: C^*(\pi(G)) \to C^*(\pi(G))/\mathcal{J}$ be the quotient map. Then:

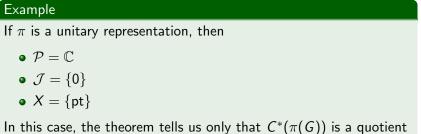
- $C^*(\pi(G))/\mathcal{J}$ is generated by $\rho(\mathcal{P})$ and the unitaries $u_g := \rho(v_g)$
- $\bullet~\mbox{Since}~\mathcal{J}\supset [\mathcal{P},\mathcal{P}]$ we have

$$\rho(\mathcal{P}) = \rho(\mathcal{P} + \mathcal{J}) = \frac{\mathcal{P} + \mathcal{J}}{\mathcal{J}} \cong \frac{\mathcal{P}}{\mathcal{J} \cap \mathcal{P}}$$

is *commutative*; put $X = \sigma(\rho(\mathcal{P}))$.

• $u_g \rho(\mathcal{P}) u_g^* \subset \rho(\mathcal{P})$; G-action is deduced from this.

The first example shows that the space X can be trivial:



of the full group C*-algebra $C^*(G)$.

It can happen that X is not trivial but the action of G is:

Example • $G = \mathbb{Z}$ • $T \in \mathcal{B}(\mathcal{H})$ invertible and normal, i.e. $T^*T = TT^*$ • $\pi(n) = T^n$ Then since $C^*(T)$ is commutative, we have • $\mathcal{P} = C^*(|T|) \subset C^*(T) \implies \mathcal{J} = 0$ and $X = \sigma(|T|)$ • $v_n \in C^*(T) \implies v_n p v_n^* = p \ \forall n, \forall p \in \mathcal{P} \implies \alpha = id$.

(ロ) (同) (E) (E) (E)

However, it turns out that the normality of the operators $\pi(g)$ in the last two examples is essentially the only way to obtain trivial X or trivial G-action:

Theorem

Suppose $[\pi(g)^*, \pi(g)] \notin \mathcal{J}$ for some $g \in G$. Then $\exists x \in X$ such that $g \cdot x \neq x$.

Trivial cases Fuchsian groups

The main example: Fuchsian groups

From now on *G* will be a Fuchsian group, i.e. a discrete group of conformal automorphisms of the open unit disk $\mathbb{D} \subset \mathbb{C}$.

Examples

- $G = \pi_1(M)$, M a compact Riemann surface of genus $g \ge 2$
- $G \subset PSL(2,\mathbb{Z})$
- $G \cong \mathbb{F}_d$, the free group on d generators

We consider representations of G on the Hardy space:

Definition

$$H^2 := \{ f = \sum a_n z^n : \sum |a_n^2| < \infty \}$$
 with $||f|| = (\sum |a_n|^2)^{1/2}$

Trivial cases Fuchsian groups

Theorem (Fatou)

If $f \in H^2$ then

$$\widetilde{f}(e^{i heta}) := \lim_{r \to 1} f(re^{i heta})$$

exists a.e. on $\partial \mathbb{D}$ and $\|f\|_{H^2} = \|\tilde{f}\|_{L^2(\partial \mathbb{D})}$

 H^2 is a reproducing kernel Hilbert space: for each $w \in \mathbb{D}$, the function $k_w(z) := (1 - \overline{w}z)^{-1}$ satisfies

$$\langle f, k_w \rangle = f(w) \qquad \forall f \in H^2$$

We represent G on H^2 by

$$\pi(g)(f)(z) = f(g^{-1}(z))$$

Easy estimates show $\pi(g)$ is bounded $\forall g$, though not uniformly (in fact $\|\pi(g)\| = \frac{1}{1 - |g(0)|^2}$).

KEY FACT: For all $g \in G$ and all $w \in \mathbb{D}$,

$$\pi(g)^*k_w = k_{g^{-1}(w)}$$

It follows that if we fix a base point $z_0 \in \mathbb{D}$ then the subspace

$$M = \overline{span}\{k_{g(z_0)} : g \in G\} \subset H^2$$

is invariant for the operators $\pi(g)^*$. We thus get a representation $\tilde{\pi}$ on M. Finally, let

$$\Lambda = \overline{\{g(z_0) : g \in G\}} \cap \partial \mathbb{D}$$

be the limit set of G; Λ is closed and G-invariant. It is either finite, a Cantor set, or all of $\partial \mathbb{D}$.

Theorem (J. 2005)

For the representations $\tilde{\pi}$ we have:

• \mathcal{P} = the compression of the Toeplitz algebra \mathcal{T} to M

•
$$\mathcal{J} = \mathcal{K}(M)$$

• $X = \Lambda$ with the natural G-action

But we can say more...

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Combining the previous theorem with our main theorem says that there is an ideal $\mathcal{I} \subset C(\Lambda) \times_{\alpha} G$ such that

$$\mathcal{C}^*(ilde{\pi}(\mathcal{G}))/\mathcal{K}\cong (\mathcal{C}(\Lambda) imes_lpha \mathcal{G})/\mathcal{I}$$

But it is known that the crossed product $C(\Lambda) \times_{\alpha} G$ is simple; i.e. has no non-trivial ideals. We then deduce:

Theorem

For a non-elementary Fuchsian group G, there is an exact sequence of C^* -algebras

$$0 o \mathcal{K}(M) o \mathcal{C}^*(ilde{\pi}(G)) o \mathcal{C}(\Lambda) imes_lpha \ G o 0$$

イロン イヨン イヨン イヨン

It can be shown that this exact sequence is semisplit, i.e. the quotient map admits a completely positive section. It follows that $\tilde{\pi}$, via this construction, determines a class

 $[\tilde{\pi}] \in K_1(C(\Lambda) \times G)$

in the (odd) analytic K-homology of the crossed product $C(\Lambda) \times G$. (With more work we can show that we actually get a class in the equivariant Kasparov group $KK^1_G(C(\Lambda), \mathbb{C})$).

Trivial cases Fuchsian groups

Sketch of proof

When $M = H^2$, the proof rests on the fact that \mathcal{P} is equal to the Toeplitz algebra $\mathcal{T} = C^*(M_z)$. Using the fundamental identity

$$(1-|g(0)|^2)\pi(g)\pi(g)^* = 1-\overline{g(0)}M_z + g(0)M_z^* + |g(0)|^2M_zM_z^*$$

and choosing a sequence $g_n(0) \to \lambda \in \partial \mathbb{D}$ shows that \mathcal{P} contains $\overline{\lambda}M_z + \lambda M_z^*$ for all $|\lambda| = 1$ and hence M_z . The identification $\mathcal{J} = \mathcal{K}(H^2)$ follows, and we can identify the *G*-action using the fact that

$$M_{g^{-1}(z)}\pi(g)=\pi(g)M_z$$

When $M \neq H^2$ (e.g. when the limit set of G is a Cantor set) we must replace M_z with $P_M M_z P_M$, use Beurling's theorem to write

 $M = \Theta H^2$, $\Theta =$ Blaschke prod. with zeroes on orbit of the origin to get $P_M = I - M_\Theta M_\Theta^*$. From here we need to know $[M_\Theta, M_z^*] \in \mathcal{K}(H^2)$ (Hartman's theorem)

and use the Livšic-Moeller theorem to prove

 $\sigma_{\rm e}(P_M M_z P_M) = \Lambda$