1. Find the domain, x intercept and vertical asymptote of the function

$$
\begin{equation*}
f(x)=\log _{5}(x-4) \tag{1}
\end{equation*}
$$

Solution: The function \log is defined only for positive quantities. Therefore,

$$
\begin{equation*}
x-4>0 \quad \longmapsto x>4 \tag{2}
\end{equation*}
$$

The x intercept of \log function is where it equals to 1 . Hence

$$
\begin{equation*}
x-4=1 \quad \longmapsto x=5 \tag{3}
\end{equation*}
$$

\log function has asymptote where it equals zero. As the result,

$$
\begin{equation*}
x-4=0 \quad \longmapsto x=4 \tag{4}
\end{equation*}
$$

2. Use the properties of logarithms to expand the expression as sum, difference or constant multiple of logarithm.

$$
\begin{equation*}
\log \left(\frac{x^{2}-3 x+2}{\sqrt[3]{x^{5}}}\right) \tag{5}
\end{equation*}
$$

Solution :

$$
\begin{gather*}
\log \left(\frac{x^{2}-3 x+2}{\sqrt[3]{x^{5}}}\right)=\log \left(x^{2}-3 x+2\right)-\log \left(\sqrt[3]{x^{5}}\right) \tag{6}\\
=\log ((x-1)(x-2))-\log \left(x^{\frac{5}{3}}\right)=\log (x-1)+\log (x-2)-\frac{5}{3} \log (x) \tag{7}
\end{gather*}
$$

3. Solve the logarithm equation.

$$
\begin{equation*}
\log _{4}(2 x+1)-\log _{4}(2 x-1)=\frac{1}{2} \tag{8}
\end{equation*}
$$

Solution :

$$
\begin{equation*}
\log _{4}(2 x+1)-\log _{4}(2 x-1)=\frac{1}{2}=\log _{4}\left(\frac{2 x+1}{2 x-1}\right)=\frac{1}{2} \tag{9}
\end{equation*}
$$

Now, by using the definition of logarithm, one can rewrite above equation as

$$
\begin{gather*}
\frac{2 x+1}{2 x-1}=4^{\frac{1}{2}}=2 \tag{10}\\
2 x+1=2(2 x-1) \quad=\quad 4 x-2 \longmapsto x=-\frac{3}{2} \tag{11}
\end{gather*}
$$

However, $-\frac{3}{2}$ does not belong to domain of $\log (2 x-1)$. Since, \log is not defined for negative functions. Please be careful! Always check your answer to see if the are acceptable.
4. If $\log (x+2)=3$ and $\log (x-2)=4$, find the value of

$$
\begin{equation*}
f(x)=x^{2}-4 \tag{12}
\end{equation*}
$$

Solution: First, one can calculate $\log (f(x))$
$\log (f(x))=\log \left(x^{2}-4\right)=\log ((x-2)(x+2)=\log (x-2)+\log (x+2)=3+4=7$
Therefore, by using the definition of logarithm

$$
\begin{equation*}
\log (f(x))=7 \quad \longmapsto f(x)=10^{7} \tag{14}
\end{equation*}
$$

