1. Find the unknown variables a, b such that the following function becomes continuous.

$$
f(x)=\left\{\begin{array}{llc}
a|x-2|+3 & \text { if } & x<1 \tag{1}\\
5 & \text { if } & x=1 \\
b x^{2}-1 & \text { if } & x>1
\end{array}\right.
$$

Hint: A function f is continuous if at $\mathrm{x}=1$ if both left and right limit at this point exist and they match the value of $\mathrm{f}(1)$. Please note that for $a|x-2|+3$ some how you should get rid of the absolute value sign. Pay attention to the interval $x<1$ and the sign of $|x-2|$ at this interval. We had a similar problem in our last discussion quiz!
2. Find the limit.

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{5 x^{2}} \tag{2}
\end{equation*}
$$

hint: Please note that $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$. You can use one of these equivalences for $\cos (2 x)$ and use the fact $\lim _{t \rightarrow 0} \frac{\sin (t)}{t}=1$ in order to evaluate this limit.
3. Find all vertical and horizontal asymptotes of the following function.

$$
\begin{equation*}
f(x)=\frac{7 x-1}{x^{2}-6 x-16} \tag{3}
\end{equation*}
$$

