1) Find whether the following sequences are divergent or convergent. If any of them is divergent, then find the limit.
$\left.\left\{\frac{(2 n) n!}{(n+1)!}\right\}\right|_{n=0} ^{\infty}$
$\left.\left\{\frac{\ln (n)}{n}\right\}\right|_{n=0} ^{\infty}$
$\left.\left\{(-1)^{n} \sin \left(\frac{1}{n}\right)\right\}\right|_{n=0} ^{\infty}$
2) Suppose, the sequence a_{n} is given as follow.

$$
\begin{equation*}
a_{1}=\sqrt{2}, \quad a_{2}=\sqrt{2 \sqrt{2}}, \quad \ldots \quad a_{n}=\sqrt{2 \sqrt{2 \sqrt{2 \ldots}}} \tag{1}
\end{equation*}
$$

As you can see this sequence is monotonic increasing and we have for all $n \quad a_{n}>1$. This sequence is convergent. Find

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n} \tag{2}
\end{equation*}
$$

Hint: At first glance, it is not possible to solve this problem. However, you can note that when n goes to infinity since $\left\{a_{n}\right\}$ is monotonically increasing, the difference between a_{n} and a_{n-1} becomes negligible. Therefore, the relation $a_{n}=\sqrt{2 a_{n-1}}$ for large values of n is equivalent to $a_{n}=\sqrt{2 a_{n}}$. By doing one trick you can find two solutions for the value of a_{n} and only one of them is acceptable. Choose wisely!
3) Use geometric series in order to find the value of following series.

$$
\begin{equation*}
\sum_{n=0}^{\infty} e^{n} 5^{1-2 n} \tag{3}
\end{equation*}
$$

