UFID: \qquad

1. Find a polynomial function that has zeros in $x=-1, x=\sqrt{2}, x=3$ and $x=4$.

Solution : Since this promising polynomial has roots in above points, then it has the form'

$$
\begin{equation*}
(x-(-1))(x-\sqrt{2})(x-3)(x-4) \tag{1}
\end{equation*}
$$

2. Use long division algorithm to simplify below expression.

$$
\begin{equation*}
\frac{x^{4}+9 x^{3}-5 x^{2}-36 x+4}{x^{2}-4} \tag{2}
\end{equation*}
$$

Solution:

$$
\begin{equation*}
x^{4}+9 x^{3}-5^{2}-36 x+4=\left(x^{2}-4\right)\left(x^{2}+9 x-1\right) \tag{3}
\end{equation*}
$$

3. Use quadratic formula to find the complex roots of the equation $x^{2}+6 x+10=0$.

Solution: If we consider our quadratic equation as $a x^{2}+b x+c$, then roots x_{1} and x_{2} will be obtained as follow:

$$
\begin{equation*}
x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \tag{5}
\end{equation*}
$$

Now, if we consider $a=1, b=6$, and $c=10$ then we have

$$
\begin{align*}
& x_{1}=\frac{-6+\sqrt{-4}}{2} \tag{6}\\
& x_{2}=\frac{-6-\sqrt{-4}}{2} \tag{7}
\end{align*}
$$

Since, $\sqrt{-1}=i$ then one can simplify roots and rewrite them as

$$
\begin{equation*}
x_{1}=-3+2 i \quad x_{2}=-3-2 i \tag{8}
\end{equation*}
$$

4. Write the quotient in standard form.

$$
\begin{equation*}
\frac{1-2 i}{1+2 i} \tag{9}
\end{equation*}
$$

Solution :

$$
\begin{gather*}
\frac{1-2 i}{1+2 i}=\frac{1-2 i}{1+2 i} \times \frac{1-2 i}{1-2 i}=\frac{(1-2 i)^{2}}{(1+2 i)(1-2 i)} \tag{10}\\
=\frac{1^{2}-2(2 i)(1)+(2 i)^{2}}{1^{2}-(2 i)^{2}} \tag{11}
\end{gather*}
$$

Here, I use two important identities

$$
\begin{equation*}
(a+b)(a-b)=a^{2}-b^{2} \quad \text { and }(a-b)^{2}=a^{2}-2 a b+b^{2} \tag{12}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
(2 i)^{2}=(2)^{2}(i)^{2}=-4 \tag{13}
\end{equation*}
$$

Therefore, by considering above facts and putting them in 10 we have

$$
\begin{equation*}
\frac{1-2 i}{1+2 i} \times \frac{1-2 i}{1-2 i}=\frac{1-4 i+(-4)}{1-(-4)}=\frac{-3-4 i}{5} \tag{14}
\end{equation*}
$$

5. If $1-\sqrt{3} i$ is the root of $h(x)=3 x^{3}-4 x^{2}+8 x+8$, find all other real roots.

Hint: Use the fact that if a polynomial with a complex root has only real coefficients, then the complex conjugate of that root is also a root of that polynomial.

Solution : By using above fact, since all coefficients of the given polynomial are all reals and $1-\sqrt{3} i$ is one of its complex roots, therefore the conjugate of this complex root, $1+\sqrt{3} i$, is the other root of the given polynomial. Hence,
$(x-(1-\sqrt{3} i))(x-(1+\sqrt{3} i))=(x-1)^{2}-(3 i)^{2}=x^{2}-2 x+1+3=x^{2}-2 x+4$
divides $h(x)=3 x^{3}-4 x^{2}+8 x+8$. Here, I use identity from equation 12 to simplify 15 . Just consider $x-1$ as (a) and $\sqrt{3} i$ as (b).Now, if one divides $3 x^{3}-4 x^{2}+8 x+8$ by $x^{2}-2 x+4$ then

$$
\begin{equation*}
\frac{3 x^{3}-4 x^{2}+8 x+8}{x^{2}-2 x+4}=3 x+2 \tag{16}
\end{equation*}
$$

Therefore, according to division algorithm

$$
\begin{equation*}
3 x^{3}-4 x^{2}+8 x+8=\left(x^{2}-2 x+4\right)(3 x+2) \tag{17}
\end{equation*}
$$

As we saw $x^{2}-2 x+4$ includes two complex roots of $3 x^{3}-4 x^{2}+8 x+8$. Therefore, the only real root of this polynomial is the root of

$$
\begin{equation*}
3 x+2=0 \tag{18}
\end{equation*}
$$

which is

$$
\begin{equation*}
x=\frac{-2}{3} \tag{19}
\end{equation*}
$$

