1) It was shown that the geometric series $\sum_{n=0}^{\infty} x^{n}$ is convergent for $|x|<1$ and it converges to $\frac{1}{1-x}$. Use this fact and find a series representation of the function $x^{2} \arctan (x)$ and use an appropriate test in order to evaluate the interval of convergence.
2) Find the interval of convergence for the following series.

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{x^{n}}{\ln (n)} \tag{1}
\end{equation*}
$$

Hint: $[-1,1)$ is the solution. Use ratio test to justify this result. Justify the fact that -1 is part of the solution but 1 is not.
3) Find the 5 th derivative of the function $\sin (\ln (x+2))$ at $x=0$!

Hint: At first glance solving this question is not possible. Recall that the Maclaurin series expansion of $\sin (x)$ has the form $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$. Consider this fact and find a series expansion for the function $\sin (\ln (x+2))$. Now, compare your result with a Maclaurin series in its standard format $\sum_{n=0}^{\infty} \frac{f^{n}(0) x^{n}}{n!}$ where, f^{n} means nth derivative. Here, we want to find $f^{5}(0)$. Therefore, $n=5$. Use this fact in the series you got at first place in order to find your answer.

