1. Find the point at which the function

$$
\begin{equation*}
f(x)=\frac{1-\tan (x)}{\sec (x)} \tag{1}
\end{equation*}
$$

has a horizontal tangent line.
2) Evaluate the second derivative of the function

$$
\begin{equation*}
f(x)=x \sin (x)+e^{x} \tag{2}
\end{equation*}
$$

3) Find the constant "a" such that the function

$$
\left\{\begin{array}{ll}
a x^{2}+3 x & \text { if } x \leq 1 \tag{3}\\
5 x-1 & \text { if } x>1
\end{array}\right\}
$$

becomes continuous at $\mathrm{x}=1$. Is this function differentiable at $x=1$?
Hint: Notice that the necessary condition for a function to be differentiable is to be continuous at first step. Then, you should find left and right derivative of $f(x)$ at $x=1$ separately to see if they match each other and as a consequence this function becomes differentiable.

