1) It was shown that the geometric series $\sum_{n=0}^{\infty} x^{n}$ is convergent for $|x|<1$ and it converges to $\frac{1}{1-x}$. Use this fact and find a series representation of the function $\frac{x^{2}}{(x-2)^{2}}$ and use an appropriate test in order to evaluate the interval of convergence.
Hint: Remember that $\frac{d}{d x}\left(\frac{1}{x-2}\right)=-\frac{1}{(x-2)^{2}}$
2) Suppose a parametric curve is given as $(x, y)=(\cos (2 t), \sin (2 t)$ where, $0 \leq t \leq \pi$.
a) Find $\frac{d^{2} y}{d x^{2}}$ at the point $(1,0)$.

Hint: $\frac{d^{2} y}{d x^{2}}=\frac{\frac{d\left(\frac{d y}{d x}\right)}{d x}}{\frac{d x}{d t}}$ and $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$.
b) Find the arch length of this curve.

Hint: The arch length of a given parametric curve is given by $\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$. Here, $a=0$ and $b=\pi$.

