1) A circular cylinder is being flattened so that its volume does not change. Find the rate of change of the radius when $\mathrm{r}=2$ inches and $\mathrm{h}=3$ inches, if the height is decreasing at $0.1 \mathrm{in} / \mathrm{sec}$.
Hint: First find a relation between the volume, the radius and the hight of this cylinder. ($V=\pi r^{2} h$). Then differentiate both side of the equation with respect to time. Here, V,r,h are independent functions. Please note that by assumption the volume does not change!
2) If $\mathrm{g}(\mathrm{x})$ is the inverse of the function $f(x)=2 x+\sin (x)$. Find the value of $g^{\prime}(2 \pi)$

Hint: Differentiate both side of this equation with respect to t and consider x and y independent functions of t.
3) Find the derivative of the function $y=x^{\tan (x)}$

Hint: Apply ln function to both side of this equation. Use one of the properties of ln function in order to simplify the right hand side of this equation. Then, treat y as a function of x and differentiate both side of this equation.

