1) Use the limit definition and directly find the derivative of the function

\[f(x) = \frac{1}{x + 2} \] \hspace{1cm} (1)

Hint: Use \(f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \) and then simplify it in a way to get rid of the indefinite case.

2) If \(f(x) = 2x + e^{3x} + \tan(x) \) and \(g(x) \) is the inverse of \(f \), then find \(g'(1) \)

Hint: Differentiate both side of this equation with respect to \(t \) and consider \(x \) and \(y \) independent functions of \(t \).
3) A function is moving on the graph of the function \(f(x) = x^2 \). First, find the distance of an arbitrary point on this graph from the origin. What is the rate of change of distance when \(\frac{dx}{dt} = 2 \) feet/s at \(x = 2 \)?

Hint: The distance of an arbitrary point like \((x, y)\) from the origin is given by \(s = \sqrt{x^2 + y^2} \). Here, a point on the graph of this function is given by \((x, x^2)\). Use this fact and find an equation for distance as a function of \(x \). For part b what you only need to do is just to differentiate the distance with respect to time.