1) Use the limit definition and directly find the derivative of the function

$$f(x) = \frac{1}{x+2} \tag{1}$$

Hint: Use $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ and then simplify it in a way to get rid of the indefinite case.

2) If $f(x) = 2x + e^{3x} + \tan(x)$ and g(x) is the inverse of f, then find g'(1)Hint: Differentiate both side of this equation with respect to t and consider x and y independent functions of t.

3) A function is moving on the graph of the function $f(x) = x^2$. First, find the distance of an arbitrary point on this graph from the origin. What is the rate of change of distance when $\frac{dx}{dt} = 2\frac{feet}{s}$ at x = 2?

Hint: The distance of an arbitrary point like (x, y) from the origin is given by $s = \sqrt{x^2 + y^2}$. Here, a point on the graph of this function is given by (x, x^2) . Use this fact and find an equation for distance as a function of x. For part b what you only need to do is just to differentiate the distance with respect to time.