1) Find the equation of the polar function $r = 2\cos(\theta)$ in Cartesian coordinate system. Hint: $x = r\cos(\theta), y = r\sin(\theta)$ and $x^2 + y^2 = r^2$.

2) Suppose points A = (2, -2) and $B = (2, \frac{7\pi}{4})$ are given in Cartesian and polar coordinate system, respectively. Find a representation of A in polar and B in Cartesian coordinate system.

3) Suppose, $r_1(\theta) = 1 + \sin(\theta)$ and $r_2(\theta) = 1 + \cos(\theta)$ are given. Find the area inscribed between r_2 and r_1 .

Hint: First, find points at which $r_2 = r_1$ in the interval $[0, 2\pi]$. These obtained points are the boundaries of the integral $\frac{1}{2} \int (r_1(\theta)^2 - r_2^2(\theta)) d\theta$ that gives you the area inscribed between these two functions.