1) Find the equation of the polar function $r=2 \cos (\theta)$ in Cartesian coordinate system. Hint: $x=r \cos (\theta), y=r \sin (\theta)$ and $x^{2}+y^{2}=r^{2}$.
2) Suppose points $A=(2,-2)$ and $B=\left(2, \frac{7 \pi}{4}\right)$ are given in Cartesian and polar coordinate system, respectively. Find a representation of A in polar and B in Cartesian coordinate system.
3) Suppose, $r_{1}(\theta)=1+\sin (\theta)$ and $r_{2}(\theta)=1+\cos (\theta)$ are given. Find the area inscribed between r_{2} and r_{1}.
Hint: First, find points at which $r_{2}=r_{1}$ in the interval $[0,2 \pi]$. These obtained points are the boundaries of the integral $\frac{1}{2} \int\left(r_{1}(\theta)^{2}-r_{2}^{2}(\theta)\right) d \theta$ that gives you the area inscribed between these two functions.
