1) Find the equation of the polar function \(r = 2 \cos(\theta) \) in Cartesian coordinate system. Hint: \(x = r \cos(\theta), y = r \sin(\theta) \) and \(x^2 + y^2 = r^2 \).

2) Suppose points \(A = (2, -2) \) and \(B = (2, \frac{7\pi}{4}) \) are given in Cartesian and polar coordinate system, respectively. Find a representation of \(A \) in polar and \(B \) in Cartesian coordinate system.
3) Suppose, \(r_1(\theta) = 1 + \sin(\theta) \) and \(r_2(\theta) = 1 + \cos(\theta) \) are given. Find the area inscribed between \(r_2 \) and \(r_1 \).

Hint: First, find points at which \(r_2 = r_1 \) in the interval \([0, 2\pi]\). These obtained points are the boundaries of the integral \(\frac{1}{2} \int (r_1(\theta)^2 - r_2^2(\theta)) \, d\theta \) that gives you the area inscribed between these two functions.