Name: \qquad

UFID: \qquad

1. Find a polynomial function that has zeros in $x=-1, x=\sqrt{2}, x=3$ and $x=4$.
2. Use long division algorithm to simplify below expression.

$$
\begin{equation*}
\frac{x^{4}+9 x^{3}-5 x^{2}-36 x+4}{x^{2}-4} \tag{1}
\end{equation*}
$$

3. Use quadratic formula to find the complex roots of the equation $x^{2}+6 x+10=0$.
4. Write the quotient in standard form.

$$
\begin{equation*}
\frac{1-2 i}{1+2 i} \tag{2}
\end{equation*}
$$

5. If $1-\sqrt{3} i$ is the root of $h(x)=3 x^{3}-4 x^{2}+8 x+8$,find all other real roots. Hint: Use the fact that if a polynomial with a complex root has only real coefficients, then the complex conjugate of that root is also a root of that polynomial.
