Some useful trigonometric relation that might help you to solve these problems. But remember you should know all of them in order to be prepared for your final exam.

$$
\begin{gather*}
\sin \left(30^{\circ}\right)=\frac{1}{2} \quad \sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2} \quad \sin \left(45^{\circ}\right)=\frac{\sqrt{2}}{2} \tag{1}\\
\cos (\theta)=\sin \left(\frac{\pi}{2}-\theta\right) \quad \sin \left(90^{\circ}\right)=1 \tag{2}\\
\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)} \quad \cot (\theta)=\frac{\cos (\theta)}{\sin (\theta)} \tag{3}\\
\cos (\theta)=\frac{1}{\sin (\theta)} \quad \sin (\theta)^{2}+\cos (\theta)^{2}=1 \tag{4}\\
\sin (\theta)=\sqrt{1-\cos (\theta)^{2}}
\end{gather*}
$$

1. Use the given function value and trigonometric identities to find the indicated trigonometric.

$$
\begin{equation*}
\sec (\theta)=5 \tag{5}
\end{equation*}
$$

$\cos (\theta)$

$$
\sin (\theta)
$$

$$
\tan (\theta)
$$

2. Find two solutions of each equation and give your answers in degree and in radians.

$$
\begin{equation*}
\csc (\theta)=\frac{2 \sqrt{3}}{3} \tag{6}
\end{equation*}
$$

3. Calculate the value of $\tan (\theta)$ and $\cos (\theta)$ for

$$
\begin{equation*}
\theta=405^{\circ} \quad \text { and } \quad \theta=\frac{7 \pi}{6} \tag{7}
\end{equation*}
$$

4. Graph the function

$$
\begin{equation*}
y=3 \cos (x+\pi) \tag{8}
\end{equation*}
$$

5. By using trigonometric identities prove that

$$
\begin{equation*}
1+(\tan \theta)^{2}=(\sec \theta)^{2} \tag{9}
\end{equation*}
$$

