1) Find the interval of convergence for the following series.

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{x^{n}}{n \ln (n)} \tag{1}
\end{equation*}
$$

Solution: $[-1,1)$

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{n^{2} x^{3 n}}{\ln (n+1)} \tag{2}
\end{equation*}
$$

Solution: $(-1,1)$.
2) Find the 12 th derivative of the function $x^{2} e^{2 x}$ at $x=0$.

Solution: $\frac{2^{10}}{10!}$.
3) Find the 6th derivative of $\ln (1+x)$ at $\mathrm{x}=0$ by comparing the Mac-Laurin series with Taylor's expansion of the given function.
Solution: -5!.
4) Evaluate the exact value of the following series.

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \pi^{2 n}}{4^{2 n} 2 n!} \tag{3}
\end{equation*}
$$

Solution: Consider $\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2 n!}$. Compare the given series with series expansion of $\cos (x)$. The answer is $\frac{-\sqrt{2}}{2}$.
5) Find the series expansion for the following functions.

$$
\begin{equation*}
\frac{1}{4-x^{2}} \tag{4}
\end{equation*}
$$

Solution: Use the partial fraction method and then use the fact that $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{2}$ in order to find a series expansion of the given function.

$$
\begin{equation*}
\int \arctan \left(x^{2}\right) \tag{5}
\end{equation*}
$$

Solution: First, evaluate the derivative of the function $\arctan \left(x^{2}\right)$. Then, find a series expansion for the derivative and finally use the fact that the integral of the derivative of a given function is equal to itself.

$$
\begin{equation*}
\frac{x^{3}}{(x-2)^{2}} \tag{6}
\end{equation*}
$$

Solution: Use the fact that $\frac{d}{d x}\left(\frac{1}{x-2}\right)=\frac{-1}{(x-2)^{2}}$.
6) Evaluate the length of the parametric curve $\left(e^{t} \cos (t), e^{t} \sin (t)\right.$ from $t=0$ to $t=1$.

Solution: Evaluate $\frac{d x}{d t}$ and $\frac{d y}{d t}$ and then use the relation $\int \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$.
7) Find the equation of the tangent and normal line on the parametric curve $c(t)=\left(e^{t}+\right.$ $\left.e^{-t}, t^{2}\right)$ at the point $(2,0)$ and also evaluate the concavity of this function at this given point. Solution: First, find for what value of $\mathrm{t}\left(e^{t}+e^{-t}, t^{2}\right)=(2,0)$. Then, use relations $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{d x}$ in order to find the equation for tangent and normal line and $\frac{d^{2} y}{d x^{2}}=\frac{\left.\frac{d}{d t} \frac{(d y}{d x}\right)}{\frac{d x}{d t}}$ in order to find the concavity.
8) Find the area out side the curve $r_{1}(\theta)=1+\sin (\theta)$ and inside $r_{2}=\frac{1}{2}$.

Solution: First, find the interval at which $r_{1}=r_{2}$. Then, use the relation $\frac{1}{2} \int\left(r_{1}^{2}(\theta)-r_{2}^{2}\right) d \theta$ 9) Find the equation of given polar functions in Cartesian plane.

$$
\begin{equation*}
r=2 \sin (\theta) \quad \tan (\theta)=2 \quad \sec (\theta)=3 r \tag{7}
\end{equation*}
$$

Solution: Use relations $x^{2}+y^{2}=r^{2}$ and $x=r \cos (\theta)$ and $y=r \sin (\theta)$ in order to solve this problem.
10) Find the series expansion for the following function.

$$
\begin{equation*}
\int \frac{e^{3 t}-1-3 t}{t^{2}} d t \tag{8}
\end{equation*}
$$

Solution: $\sum_{n=2}^{\infty} \frac{3^{n} t^{n-1}}{(n-1) n!}+C$

