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THE CLOSED GRAPH THEOREM IS THE OPEN MAPPING THEOREM

R.S. MONAHAN AND P.L. ROBINSON

Abstract. We extend the closed graph theorem and the open mapping theorem to a context

in which a natural duality interchanges their extensions.

Introduction

It is a familiar fact that the two fundamentally important theorems to which we refer in
our title are closely related, both to each other and to the Bounded Inverse Theorem. This
general understanding is fairly represented in Pryce [5] page 146: speaking of the Closed Graph
Theorem, the author says ‘We derive it as a consequence of the Open Mapping Theorem; but ...
the process can be reversed, so that these two apparently very different theorems are equivalent’.
It is more strikingly presented in Pietsch [4] page 43: ‘We now discuss a fundamental result,
which has many facets. ... Once we have proved one of the above conclusions, the others follow
immediately’; here, the ellipsis covers statements of the closed graph theorem and the open
mapping theorem, along with the bounded inverse theorem.

Our purpose in this note is to record that when suitably generalized, the closed graph theorem
(CGT) and the open mapping theorem (OMT) become more than ‘equivalent’ in the generally
understood sense that either may be derived from the other: their suitable generalizations are
simply two sides of the same coin, related by a natural duality. The key step in our generalization
is the replacement of linear operators from a Banach space X to a Banach space Y by linear
relations between the spaces; that is, by linear subspaces of the Banach space X ˆ Y . The
natural duality that mediates between the relational CGT and the relational OMT is simply
the switching of factors in X ˆ Y . In addition to deriving these relational theorems from their
classical versions, we provide a stand-alone proof.

CGT ” OMT

Let X and Y be Banach spaces. In their traditional forms, the closed graph theorem and
the open mapping theorem address a linear operator L from X to Y . The classical CGT gives
a sufficient condition for L to be continuous: explicitly, L : X Ñ Y is continuous if its graph
tpx, Lxq : x P Xu is a closed subset of X ˆ Y . The classical OMT gives a sufficient condition
for L to be an open mapping: explicitly, L : X Ñ Y is open if it is both continuous and
surjective. The classical bounded inverse theorem asserts that if L is a linear isomorphism then
its continuity entails that of its inverse. It is customary to prove all three of these theorems
together, first establishing one of them as a consequence of the Baire category theorem and
then deriving the others from that one. It is in this relatively informal sense that these three
theorems are frequently spoken of as being ‘equivalent’: each of them may be derived from each
of the others. We claim that passage from the context of linear operators to the broader context
of linear relations yields extended versions of CGT and OMT that are actually equivalent in a
very precise sense: the canonical flip X ˆ Y Ø Y ˆ X interchanges them.

Let Γ be a linear relation from X to Y : that is, let Γ be a linear subspace of the Banach
space X ˆ Y .

1

http://arxiv.org/abs/1912.02626v1


2 R.S MONAHAN AND P.L. ROBINSON

When B Ď Y we define

ΓB “ tx P X : pDb P Bq px, bq P Γu Ď X.

In particular, the domain of Γ is the subspace

DomΓ “ ΓY Ď X.

When A Ď X we define

AΓ “ ty P Y : pDa P Aq pa, yq P Γu Ď Y.

In particular, the range of Γ is the subspace

RanΓ “ XΓ Ď Y.

Equivalently, DomΓ is the image of Γ under first-factor projection πX : X ˆ Y Ñ X ; likewise,
RanΓ is the image of Γ under second-factor projection πY : X ˆ Y Ñ Y .

As a special case, Γ may be the graph of a linear operator L : X Ñ Y . In this case, AΓ Ď Y

is the direct image of A Ď X under L and ΓB Ď X is the inverse image of B Ď Y under L.

We now state and prove the versions of the closed graph theorem and open mapping theorem
that are appropriate to relations. In these theorems, Γ will be a closed subspace of X ˆ Y and
hence a Banach space in its own right. Our first appproach to each theorem will be to show
how it follows from the corresponding classical version for operators.

The ‘closed graph theorem’ for relations is as follows.

Theorem 1. Let Γ Ď X ˆ Y be a closed linear relation with DomΓ “ X. If B Ď Y is open

then ΓB Ď X is open.

Proof. Notice that, as Γ Ď X ˆ Y is closed, the subspace Y0 “ ty P Y : p0, yq P Γu is closed.
Now, let x P X “ DomΓ: there exists y P Y such that px, yq P Γ; if also px, y1q P Γ then
p0, y1 ´ yq “ px, y1q ´ px, yq P Γ so that y1 ´ y P Y0. The resulting well-defined linear map

ℓ : X Ñ Y {Y0 : x ÞÑ y ` Y0

has closed graph, as Γ is closed; by the classical CGT, ℓ is therefore continuous. As is readily
verified, if B Ď Y then ΓB is exactly the inverse image of B `Y0 Ď Y {Y0 under ℓ. Finally, if B
is open then B ` Y0 is open (quotient maps are open) so that ΓB is open (ℓ being continuous).

�

In particular, this theorem applies to the graph of a linear operator L : X Ñ Y : in this
case, it says that if L has closed graph then L is continuous; that is, Theorem 1 reduces exactly
to the classical closed graph theorem. We remark that in the proof of Theorem 1, Y0 “ 0Γ
and y ` Y0 “ xΓ as sets; though this circumstance does not appear to simplify matters to any
appreciable degree.

The ‘open mapping theorem’ for relations is as follows.

Theorem 2. Let Γ Ď X ˆ Y be a closed linear relation with RanΓ “ Y . If A Ď X is open

then AΓ Ď Y is open.

Proof. The restriction πY |Γ of the (continuous) linear projection πY : X ˆ Y Ñ Y is surjective
because RanΓ “ Y ; by the classical OMT, πY |Γ is therefore open. Now, if A Ď X is open then
pA ˆY q XΓ Ď Γ is open, whence the openness of the map πY |Γ implies the openness of the set

πY |ΓrpA ˆ Y q X Γs “ AΓ.

�
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In particular, we may recover the classical open mapping theorem: let L : X Ñ Y be a
continuous linear map that is surjective and let Γ be its graph; then Γ is closed with RanΓ “ Y

and Theorem 2 implies that L maps open sets to open sets. In connexion with the proof of
Theorem 2, see also [2] Section 11 Problem E, which was noted after the present paper was
completed.

It is at once clear that Theorem 1 and Theorem 2 are but two manifestations of one theorem:
the flip X ˆ Y Ñ Y ˆX : px, yq ÞÑ py, xq transforms the one into the other; otherwise said, the
one theorem applied to a closed linear relation is the other theorem applied to its transpose (or
dual). Accordingly, it is natural to seek a proof of this ‘one’ theorem that favours neither the
classical CGT nor the classical OMT.

Such an even-handed proof is furnished by the Zabreiko lemma, a suitable version of which
we now recall. Say that the seminorm p on the Banach space Z is countably subadditive precisely
when

pp
ÿ

n

znq ď
ÿ

n

ppznq

for each convergent series
ř

n
zn in Z; of course, this inequality need only be checked when the

series on the right is convergent.

Lemma (Zabreiko). On a Banach space, each countably subadditive seminorm is continuous.

See [6] for a contemporaneous English translation of the original Russian paper of Zabreiko.
See also Megginson [3] for a more recent account of the lemma and some of its uses. Of course,
a (weak) version of the Baire category theorem lies behind the lemma.

Our even-handed proof of Theorem 1 and Theorem 2 is as follows, taking the ‘one’ theorem
in its second manifestation. Let the linear relation Γ Ď X ˆ Y be closed and let RanΓ “ Y .
Define p : Y Ñ R by the rule that if y P Y then

ppyq “ inft||x|| : px, yq P Γu.

Let the series
ř

ną0
yn be convergent in Y . When ε ą 0 is given, choose xn P Γyn such that

||xn|| ă ppynq ` ε{2n; it follows that
ř

n
||xn|| ă

ř

n
ppynq ` ε, whence the series

ř

ną0
xn is

absolutely convergent and therefore convergent in the Banach space X . Denote the partial
sums of the series

ř

n
xn and

ř

n
yn by xpnq “ x1 ` ¨ ¨ ¨ ` xn and ypnq “ y1 ` ¨ ¨ ¨ ` yn; denote

the sums of the series by x and y. As Γ is closed, from pxpnq, ypnqq P Γ it follows that px, yq P Γ;
consequently,

ppyq ď ||x|| ď
ÿ

n

||xn|| ă
ÿ

n

ppynq ` ε.

The given ε ą 0 being arbitrary, we deduce that p is a countably subadditive seminorm.
According to the Zabreiko lemma, p is continuous. Let X1 Ď X be the open unit ball: then

X1Γ “ tb P Y : pDa P X1qpa, bq P Γu “ tb P Y : ppbq ă 1u Ď Y

is open. Finally, let U Ď X be an arbitrary open set and let v P UΓ; say u P U and pu, vq P Γ.
If r ą 0 is so chosen that u ` rX1 “ Brpuq Ď U then uΓ ` rX1Γ Ď Y is open and (because
Γ Ď X ˆ Y is linear)

v P uΓ ` rX1Γ Ď pu ` rX1qΓ “ BrpuqΓ Ď UΓ.

This proves that if U is open then UΓ is open, concluding our even-handed proof of Theorem
2 or equivalently of Theorem 1.

We may take the even-handed approach further (perhaps too far). Let Γ Ď X ˆ Z ˆ Y be a
linear ternary relation between Banach spaces. When px, yq P X ˆ Y we shall write

xΓy “ tz P Z : px, z, yq P Γu;
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when W Ď Z we shall write

ΓWΓ “ tpx, yq P X ˆ Y : W X xΓy ‰ Hu.

With this understanding, the ‘closed graph theorem’ and the ‘open mapping theorem’ are
special cases of the following theorem.

Theorem. Let the projection X ˆ Z ˆ Y Ñ X ˆ Y be surjective when restricted to the closed

linear subspace Γ Ď X ˆ Z ˆ Y . If W Ď Z is open then ΓWΓ Ď X ˆ Y is open.

Proof. Transplant the proof displayed ahead of the theorem, with appropriate modifications.
The rule

ppx, yq “ inft||z|| : z P xΓyu

defines on X ˆ Y a seminorm that is countably subadditive and hence (Zabreiko) continuous.
If Z1 is the open unit ball in Z then

ΓZ1Γ “ tpx, yq : ppx, yq ă 1u

is therefore open in X ˆ Y . Finally, let W Ď Z be open and let px, yq P ΓWΓ; choose
w P W X xΓy and choose r ą 0 so that w ` rZ1 Ď W ; then

px, yq P ΓwΓ ` rΓZ1Γ Ď Γpw ` rZ1qΓ Ď ΓWΓ

whence we conclude that ΓWΓ Ď X ˆ Y is open. �

When Y “ 0 we recover Theorem 1: dropping the zero factors, the projection X ˆ Z Ñ X

is surjective on Γ and ΓWΓ becomes ΓW .

When X “ 0 we recover Theorem 2: dropping the zero factors, the projection Z ˆ Y Ñ Y

is surjective on Γ and ΓWΓ becomes WΓ.

Remarks

Our even-handed proof of Theorem 2 is in essence the proof of the classical OMT for linear
operators presented as Theorem 1.6.5 in Megginson [3] but modified for transport to the context
of linear relations.

An alternative even-handed proof derives from notions related to convex series as presented
in Section 22 of Jameson [1]; especially, Theorem 22.7 of [1] is clearly ripe for application to
the present paper.

Lastly, we remark that wider territory can be examined from the point of view expressed in
the present paper: for example, the closed graph theorem and the open mapping theorem are
valid for complete metrizable topological vector spaces.
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