
Monahan, R. and Groff, J., March 2015

 1

The Effect of Multiple Unskilled Competitors on
the Success of a Skilled Player in a Model
Spelling Bee-Like Game
Robert Monahan, Department of Computer Science, Mathematics, and Engineering and
Jeffrey R. Groff, Institute of Environmental and Physical Sciences, Shepherd University

In this paper we further investigate the role of randomness in competitions which

was inspired by the results of other recent books and studies on the theory

randomness. After a brief literature review, we construct a mathematical model of

a game with spelling bee-like rules using an absorbing state Markov Chain. The

model is then used to explore an interesting arrangement of competitors that

explores the effect of multiple unskilled players on the success of a skilled player.

We found that randomness plays quite a dominant role in competitions and the

outcomes of events are not always what is expected or perceived.

Introduction

Biondo et al, conducted a study based on the

economic premise that the stock market has

predicable values and expected results.

Because of this premise, professional

economists sought to construct trading

strategies that predicted the future asset prices

of the market (Biondo 2013).

Biondo et al., however, challenged this

premise by comparing the results of four

common trading strategies to a purely random

strategy. Interestingly, Biondo et al. found no

significant difference between the outcomes

of the professional trading strategies and the

purely random strategy. The extreme nature of

the wins and losses in the professional trading

strategy, in fact, may, unnecessarily, be a

more risky option than the random trading

strategy.

The research conducted by Biondo et

al. is suggesting an overarching theme in

competitions that is vastly present but easy to

forget about. This theme is the theory of

randomness. Author Nassim Taleb discusses

in his book Fooled by Randomness, how

ubiquitous randomness is in everyday life and

describes how easy it is to get caught in a

human’s attempt to rationalize and explain

events that are purely random in nature (Taleb

2005).

Taleb illustrates this misconception by

discussing the apparent animal-like shapes

that clouds take when being closely watched.

These clouds, however, are mere random

generations in nature but are perceived by

humans as having structure or reason (Taleb

2005).

The research conducted on

randomness by Biondo and the insight of

Taleb’s book has laid the foundation for our

research. We seek to answer questions such

as: can we quantify how much ability matters

in competitions? what role does randomness

play in competitions? will the most qualified

player succeed?

Within this research we will further

investigate the theory of randomness by

building a mathematical model of a game with

spelling bee-like rules. First, we examine the

construction of the game and its rules. Second,

the model is checked for validity against

another game modeling strategy. Third, we

utilize our model to explore a particular

organization of competitors that lead to

interesting results. Fourth, we discuss the

primary results of our research. Finally, we

will draw conclusions from our research,

discuss the implications, and make

suggestions for future areas of study.

Monahan, R. and Groff, J., March 2015

 2

Formulation of the Model

In order to explore the interplay between

chance and skill in a game with multiple

players, a model game with spelling bee-like

rules was constructed. The game is composed

of 𝑁 players that compete in a round-based

fashion. Each player can either find success or

failure during each round just like each

competitor in a spelling bee can spell a word

correctly or incorrectly each round. The

probability of player 𝑛 finding success during

each round is a parameter of the model, ℎ𝑛,

and is a reflection of that player’s skill.

Therefore, the probability of failure for player

𝑛 is (1 − ℎ𝑛).

If a player fails in any given round,

that player cannot re-enter the game unless all

other players also fail during that round. In the

event that all players fail, no players are

eliminated and the round is repeated. On the

other hand, if at least one player succeeds

during the round, all players who failed are

eliminated from subsequent rounds. The game

continues until only a single player remains.

A game with rules as outlined above

can be formulated as a discrete-time

absorbing-state Markov Chain (Norris 2006)

as follows. First, the success probabilities of

all 𝑁 players are organized into a “skill”

vector ℎ = (ℎ1 ℎ2 ℎ3 ⋯ ℎ𝑁), and the current

state or competitive status of each player is

structured is a state vector 𝑆 =
(𝑆1 𝑆2 𝑆3 ⋯ 𝑆𝑁) where 𝑆𝑛 is a binary value

with 1 or 0 indicating player 𝑛 as still active

in, or eliminated from, the game, respectively.

For example, the state vector 𝑆 = (1, 1, 0, 1)

indicates that players 1, 2, and 4 are still active

while player 3 has been eliminated.

The probability of transitioning from

one state vector to another depends only on

the current state of each of the players and

their respective success probabilities. Thus,

the Markov condition is satisfied (Stewart

1994). Consider for example a two-player

game. The state-space of such a game—that

is, the enumeration of all the possible states—

is 𝑆 ∈ {(1, 1), (1, 0), (0, 1)} . Notice that the

size of this state space is equivalent to 2𝑁 − 1,

which is true regardless of the number of

players.

 The probability of transitioning from

state vector 𝑆 = (1, 1) with both players

active to 𝑆 = (1, 0) with player two

eliminated and player one victorious is 𝑞 =
ℎ1(1 − ℎ2). Similarly, the probability of

transitioning from state vector 𝑆 = (1, 1)

with both players active to 𝑆 = (0, 1) with

player one eliminated and player two

victorious is 𝑞 = (1 − ℎ1)ℎ2 . On the other

hand, transitioning from state 𝑆 = (1, 0) to

state 𝑆 = (0, 1) is forbidden and has

probability zero. In fact, both of these states

represent different final outcomes of the game

(player one victorious versus player two

victorious) and are thus absorbing states out of

which no transitions are allowed. Figure 1

illustrates the state space and transition

probabilities for a two player game.

The probabilities for all allowed

transitions between states can be summarized

in matrix form. For example, the transition

probability matrix for the two-player game is

𝑃 = (
⋄ ℎ1(1 − ℎ2) (1 − ℎ1)ℎ2

0 ⋄ 0
0 0 ⋄

)

where 𝑞𝑖𝑗 is the transition probability from

state 𝑖 to state 𝑗 and the ⋄ are selected to

ensure that the row sums are equal to one,

Figure 1: State Transition Diagram of a two player
game. 1 is a binary representation of active players
and 0 is a binary representation of inactive players.

Monahan, R. and Groff, J., March 2015

 3

making 𝑃 a stochastic matrix. This condition

reflects the necessity that the total probability

of all possible transitions out of the current

state is equal to one.

Monte Carlo Simulations

After specifying the number of players, 𝑁 ,

and each player’s skill level, ℎ, a game can be

simulated using Monte Carlo methods as

follows. First, a random number between zero

and one is drawn from a uniform distribution

for each of the active players each round of the

game. If the random number drawn for each

player is greater than that player’s skill level,

the player is unsuccessful in that round. If no

active player is successful then the round is

repeated. However, if at least one player is

successful, 𝑆is updated to indicate any players

eliminated during that round and the game

continues. Each game is initialized with all

players active, 𝑆 = (1 1 1 ⋯ 1) , and ends

when only a single player remains active,

Σ𝑆 = 1 . Many games can be simulated to

determine the probability of each player

winning any individual game.

Direct Matrix Calculations

The probability of each player winning any

individual game can also be calculated

directly using matrix-analytic methods. First,

the transition probability matrix is

reorganized so all the absorbing states are

grouped together,

𝑃 = (
𝑃𝑇𝑇 𝑃𝑇𝐴

𝑍 𝑈
),

where 𝑃𝑇𝑇 is a sub-matrix containing the

probabilities for transitions between transient

states and 𝑃𝑇𝐴 is a sub-matrix containing the

probabilities for transitions from transient

states into one of the absorbing states. The 𝑍

sub-matrix is all zeros reflecting the fact that

transitions from absorbing states to transient

states are forbidden. Meanwhile, each row of

the 𝑈 sub-matrix has a single non-zero entry

equal to one, reflecting the fact that once an

absorbing state is entered it is never left.

 The probability of ending up in each of

the absorbing states can then be found using

𝐴 = (𝐼 − 𝑃𝑇𝑇)−1𝑃𝑇𝐴

where 𝐼 is an identity matrix commensurate in

size with 𝑃𝑇𝑇 (Stewart 1994). This matrix has

a row for each transient state and a column for

each absorbing state where 𝐴𝑚𝑛 is the

probability of ending in absorbing state 𝑛

assuming the game began in transient state 𝑚.

Assuming the states are ordered such that the

first transient state is the state with all players

active then

𝐴1𝑗 = (𝜋1, 𝜋2, 𝜋3, ⋯ , 𝜋𝑁)

gives the probability of each player winning

the game.

 All simulations and calculations were

carried out using MATLAB running on either

a modest laptop or desktop computer.

Results

Validating the Model: A Comparison
Between Direct Matrix Calculations and
Monte Carlo Simulations

If the direct matrix calculation was formulated

correctly, it would yield comparable results to

repeated Monte Carlo Simulations.

 Consider a 4 player game with “skill”

vector ℎ = (0.4 0.5 0.6 0.7) . The direct

matrix calculation returns the probability

matrix

𝑝 = (0.0944 0.1661 0.2791 0.4605)

which shows the probability of player 1, 2, 3

or 4 winning the entire competition. Using the

same “skill” vector ℎ from before, the result

from 10 Monte Carlo Simulations is

(0 0.4 0.2 0.4). The aforementioned outcome

matrix shows that player 1 won 0% of the

games (0 games), player 2 won 40% (4

games), player 3 won 20% (2 games), and

player 4 won 40% (4 games). These results are

not unique as running 10 additional Monte

Monahan, R. and Groff, J., March 2015

 4

Carlo Simulations could yield different

outcomes.

 These results are quite different than

the Direct Matrix Calculation’s results and are

summarized in Figure 2. Figure 3 compares

100 Monte Carlo Simulations to the Direct

Matrix Calculation.

Notice how the overall differential between

the Monte Carlo Simulations and Direct

Matrix Calculation in Figure 3 is significantly

smaller than that of Figure 2. The results

began to agree after repeated Monte Carlo

Simulations. Figure 4 summarizes the

differentials between the outputs of repeated

simulations and the direct calculation.

 Figure 4 illustrates how as the number

of simulations increases the differential

between the simulation and direct calculation

decreases. In other words, the Monte Carlo

Simulation agreed with the Direct Matrix

Calculation.

 On a side note, the direct calculation

requires a heavy computational load for

competitions with larger amounts of players

because, again, the Markov Chain takes the

form of a matrix with 2𝑁 − 1 rows and

columns. Because the Monte Carlo

Simulations validated the results of the direct

calculation, the Monte Carlo Simulation can

be used to approximate the probability of any

given player winning the competition when

the number of players is too large to use the

direct calculation.

A Diamond In The Rough: A Study of a
Skilled Player’s Probability of Success
When Competing Against Multiple
Unskilled Players

Consider a 2 player game in which player 2

has “skill” ℎ2 = 01. How “skilled” must

player 1 be in order to maintain a win

percentage of at least 50% in the competition?

In this trivial example, ℎ1 must be 0.1 as well.

The outcomes of this 2 player game mirror a

simple coin toss. What happens, however, as

Figure 2: Compares the Direct Calculation results to 10
Monte Carlo Simulations. Figure 3: Compares the
Direct Calculation results to 100 Monte Carlo
Simulations. Skill vector used: 𝒉 = [𝟎. 𝟒 𝟎. 𝟓 𝟎. 𝟔 𝟎. 𝟕].

Figure 4: Compares the average difference between
the Direct Calculation and Monte Carlo Simulation as a
function of the number of Monte Carlo Simulations.

Monahan, R. and Groff, J., March 2015

 5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12

S
k

il
l

R
e

q
u

ir
e

d

Number of Jokers

Winning 50% of the Competitions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

S
k

il
l

R
e

q
u

ir
e

d

Number of Jokers

Diamond in the Rough Summary
0.5

0.6

0.7

0.8

0.9

the number of unskilled players increase? The

Diamond in the Rough Model seeks to answer

this question.

 In this model with 𝑁 players, there are

𝑁 − 1 unskilled players, called Jokers, and 1

skilled player, called the Ace. The initial skill

vector is, therefore, given by ℎ =
(ℎ𝑎 ℎ𝑗1 ℎ𝑗2 ⋯ ℎ𝑗(𝑛−1)) where ℎ𝑎 is the “skill”

of the Ace that must be determined and ℎ𝑗𝑖 =

0.1 is the standard Joker “skill” where 𝑖 ∈
1, 2, ⋯ (𝑛 − 1).

 Using the direct calculation, the “skill”

required of the Ace to beat multiple unskilled

competitors 50% of the competitions is

summarized in Figure 5.

 What if the Ace desires to overcome

the Jokers more than 50% of the

competitions? Figure 6 shows the results with

desired win percentages of 60%, 70%, 80%,

and 90%.

 Figure 6 shows that the skill required

of the Ace player to overcome the Jokers

increases as the number of Jokers increase. It

can also be seen that the skill required of the

Ace increases as the desired win percentage

increases.

Monahan, R. and Groff, J., March 2015

 6

y = 0.1588ln(x) + 0.0794 R² = 0.9928

y = 0.1787ln(x) + 0.132 R² = 0.9971

y = 0.1935ln(x) + 0.2062 R² = 0.9963

y = 0.1944ln(x) + 0.3224 R² = 0.9913

y = 0.1529ln(x) + 0.5402 R² = 0.9642

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

S
k

il
l

R
e

q
u

ir
e

d

Number of Jokers

Diamond in the Rough Summary

0.5 0.6 0.7

0.8 0.9

y = 0.0191x + 0.2593 R² = 0.9943

y = 0.0169x + 0.3723 R² = 0.9442

y = 0.0153x + 0.4884 R² = 0.9483

y = 0.0144x + 0.6115 R² = 0.9878

y = 0.0087x + 0.7848 R² = 0.9827

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

S
k

il
l

R
e

q
u

ir
e

d

Number of Jokers

Linear Association in the Tails

0.5

0.6

0.7

0.8

0.9

Conclusions

Interestingly, the data in Figure 6 suggests a

pattern or perhaps a plateau point. In other

words, is there an Ace player skill other than

the trivial skill required, 1, (premature limit)

that is expected to beat any number of Jokers?

Figure 6 is reproduced with

corresponding logarithmic trend lines and

correlation coefficients.

 Overall, the correlation between these

logarithmic functions and our data is pretty

strong but it is important to keep in mind that

these trend lines, although strongly correlated,

are still approximations.

 Looking back at the original data

points in Figure 6, the “tail” end is visually

Figure 5: Shows the skill required of the Ace player to beat a certain number of Jokers 50% of the time. Figure 6:
shows the skill required of the Ace player to beat a certain number of Jokers 50%, 60%, 70%, 80% and 90% of
time, respectively. Figure 7: A reproduction of Figure 5 but with logarithmic trend lines and corresponding
correlation coefficients. Figure 8: Focuses on the last 5 points of each win percentage (50%, 60%, 70%, 80%, and
90%) illustrates their linear tendency with corresponding correlation coefficients.

Monahan, R. and Groff, J., March 2015

 7

linear. Figure 8 examines the linear

relationship in the tail of each desired win

percentage.

 Using the five logarithmic equations

from Figure 7 and the five linear equations

from Figure 8, we can approximate the

number of Jokers (𝑥) it takes to overcome the

Ace player. In other words, we can set the Ace

players skill required (𝑦) to 1 and solve for the

number of Jokers that require the Ace to be

perfectly skilled. Figure 9 summarizes these

findings.

 Unfortunately, the logarithmic and

linear trend lines do not suggest the existence

of a premature skill required of the Ace player.

As the number of Jokers increase and/or the

desired win percentage increases, the skilled

required of the Ace played indefinitely

approaches 1, or perfect skill.

 Although we couldn’t find a

premature limit point, it is pretty clear that we

are able to answer our three introductory

questions at the conclusion of this research.

Can we quantify how much ability matters in

competitions? What role does randomness

play in competitions? Will the most qualified

player succeed?

Discussion

Results from a Diamond in the Rough suggest

that ability matters, to a degree, within

competitions. Ability alone, however, is not

the only influential factor because players do

not compete in isolation. The outcome of a

competition is affected by the number of

players in the game as well as the skill of each

of those players. In fact, an Ace player with a

skill of 0.46 is expected to win 50% of the

competitions against only 11 Jokers. Although

the Ace was more than four times as “skilled”

as any one of the Jokers, it didn’t take many

Jokers to overcome the Ace.
The underlying principle in this study

is the existence of randomness in

competitions. The most qualified, or in this

context, skilled, is not necessarily the winner

at the end of the competition. Events in

competitions are not repeated until the

expected winner, or most skilled player, has

succeeded so the role of chance cannot be

discounted. The existence of randomness in

competitions really illustrates the limitations

of a meritocratic view.

Applications of this research can be

seen within elections. Whether the election

demographics are federal, state, or local, the

“skilled” or most informed voters can be

drowned out by the sea of unskilled

competitors. Does the most qualified

candidate in the election win? Not necessarily,

the role of chance and randomness may

indirectly elect a candidate who is not the

most qualified.

Looking back at the research

conducted by Biondo et al., the stock market

is a prime illustration of the dominance of

randomness. Biondo et al. found that on

average, the skilled trading strategies did not

yield any significant difference in outcome

when compared against a random trading

strategy (Biondo 2013). In fact, the skilled

trading strategies lead to more extreme and

sporadic, or varied, results where the losses

were more detrimental but the wins were

greater than that of a random strategy.

The research and results in this study

really suggest some sort of “mysterious”

analytical solution. Is there an analytical

generalization that can be made which

connects the desired win percentage of the

Ace, the number of jokers, and the skill

required of the Ace player? Is there a more

compact representation than the matrix built

in this study? In fact, the matrix may, simply,

be that compact representation.

Figure 9: Shows the expected number of Jokers to
overwhelm an Ace player unless he had perfect skill
using the five logarithmic and five linear equations.

Monahan, R. and Groff, J., March 2015

 8

Unfortunately, we were not able to formulate

an analytical solution to the Diamond in the

Rough and, therefore, further research is

necessary.

 Perhaps the greatest limitation to this

research was the lack of computational power.

All calculations and figures were generated in

Matlab on a modest laptop computer. In a

Diamond in the Rough, generating results for

games with 12 Jokers actually depleted the

laptops memory before completion. A more

powerful computer should be able to collect

data points for games that have more Jokers

and, as a result, can make more accurate

predictions regarding the skill required of an

Ace player to beat a sea of Jokers a certain

percentage of games.

 In this study, particularly within the

Diamond in the Rough, the Ace player

competed against a sea of Jokers with

homogeneous skill. All the Jokers were set to

have a skill of ℎ𝑗 = 0.1. The matrix can

certainly handle a competition where the

Jokers’ skill is heterogeneous but it was not

explored in this study. Sample code for further

exploration can be found in the Appendix.

References

Biondo A. 2013. Are Random Trading

Strategies More Successful than Technical

Ones? PLoS ONE 8(7): e68344. doi:10.1371

/journal.pone.0068344

Norris J.R. 2006. Markov Chains. New York

(NY): Cambridge University Press.

Stewart W. 1994. Introduction to the

Numerical Solution of Markov Chains.

Princeton (NJ): Princeton University Press.

Taleb N.N. 2005. Fooled by Randomness:

The Hidden Role of Chance in the

Markets and in Life. New York: Random

House.

Monahan, R. and Groff, J., March 2015

 9

Appendix

Monte Carlo Simulation Example MATLAB Program

% Define a skill vector for the game

h = [0.5 0.1 0.1]

% then, calculate the number of players

N = length(h);

% and specify the total number of games to be simulated.

nGames = 10000;

% Create a vector to count how many times each player wins the game

nSuccess = zeros(1,N);

% then play the game many times

for ii = 1:nGames

% starting each time with all players active.

S = ones(1,N);

flag = 1;

% Play each game so long as at least one player is still active

 while (sum(S) > 1)

% and keep repeating each round of the game if no players

% are successful.

while (flag == 1)

 test = rand(1,N);

 SNew = (h.*S)>test;

 flag = sum(SNew)==0;

 end

 S = SNew;

 flag = 1;

 end

% After determining who won each game, increment the win tally

% for the player that won the game.

nSuccess = nSuccess + S;

end

% After all games are played, calculate the probability of each player

% winning the game.

pSuccess = nSuccess./nGames

Direct Matrix Calculations Example MATLAB Program

% Define a skill vector for the game

h = [0.5 0.1 0.1]

% then, calculate the number of players

N = length(h);

Monahan, R. and Groff, J., March 2015

 10

% and the size of the state space, that is, the number of possible

% states in the Markov Chain.

nStates = 2^N-1;

% Find the probability of each player failing a round of the game.

f = 1-h;

% Find the binary representation of each state and convert this

% representation from a character array into a matrix.

stateSpace = flipud(dec2bin(1:nStates));

stateSpace = arrayfun(@str2num,stateSpace);

% Initialize the transition probability matrix

P = zeros(nStates,nStates);

% then build it by finding each element.

for ii = 1:nStates

 inow = stateSpace(ii,:);

 for jj = ii+1:nStates % j has to be greater then or equal to i

 jnow = stateSpace(jj,:);

 % if inow-jnow has negative elements then a zero turned

 % back to a one, which is forbidden

 if min(inow-jnow)>=0

 fail = bitxor(inow,jnow).*f;

 pass = bitand(inow,jnow).*h;

 P(ii,jj) = ...

 prod(fail(find(fail>0)))*prod(pass(find(pass>0)));

 end

 end

end

% Insert appropriate values into the diagonal elements of P so the row

% sum to one.

P = P + diag(1-sum(P,2));

% Rearrange P so the matrix is in this form P = (PTT PTA; Z U) where

% PTT holds the transition probabilities for transitions between the

% transient states, PTA holds the transition probabilities for

% transitions from transient states into the absorbing states, and Z

% and U are a commensurate matrix of zeros and a commensurate identity

% matrix, respectively.

iabs = find(sum(stateSpace,2)==1); % indices of absorbing states

nabs = length(iabs); % the number of absorbing states

itrans = find(sum(stateSpace,2)~=1); % indices of transient states

ntrans = length(itrans); % the number of transient states

inew = [itrans; iabs];

stateSpaceShuffle = [stateSpace(itrans,:) ; stateSpace(iabs,:)];

P = P(:,inew); % reshuffle the P matrix

P = P(iNew,:);

Monahan, R. and Groff, J., March 2015

 11

PTT = P(1:ntrans,1:ntrans);

PTA = P(1:ntrans,ntrans+1:ntrans+nabs);

% Calculate the probability of each player winning the game by first

calculating matrix A where A(i,j) is the probability of absorption

into state j when starting in state i.

A = inv(diag(ones(1,length(PTT)))-PTT)*PTA;

% The first row in A represents the probability of each player winning

the game because this row corresponds to the starting state with all

players active (the beginning of the game).

pSuccess = A(1,:);

