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In this paper we further investigate the role of randomness in competitions which 

was inspired by the results of other recent books and studies on the theory 

randomness. After a brief literature review, we construct a mathematical model of 

a game with spelling bee-like rules using an absorbing state Markov Chain. The 

model is then used to explore an interesting arrangement of competitors that 

explores the effect of multiple unskilled players on the success of a skilled player. 

We found that randomness plays quite a dominant role in competitions and the 

outcomes of events are not always what is expected or perceived. 

 

Introduction 
 

Biondo et al, conducted a study based on the 

economic premise that the stock market has 

predicable values and expected results. 

Because of this premise, professional 

economists sought to construct trading 

strategies that predicted the future asset prices 

of the market (Biondo 2013).  

Biondo et al., however, challenged this 

premise by comparing the results of four 

common trading strategies to a purely random 

strategy. Interestingly, Biondo et al. found no 

significant difference between the outcomes 

of the professional trading strategies and the 

purely random strategy. The extreme nature of 

the wins and losses in the professional trading 

strategy, in fact, may, unnecessarily, be a 

more risky option than the random trading 

strategy.  

The research conducted by Biondo et 

al. is suggesting an overarching theme in 

competitions that is vastly present but easy to 

forget about. This theme is the theory of 

randomness. Author Nassim Taleb discusses 

in his book Fooled by Randomness, how 

ubiquitous randomness is in everyday life and 

describes how easy it is to get caught in a 

human’s attempt to rationalize and explain 

events that are purely random in nature (Taleb 

2005).  

Taleb illustrates this misconception by 

discussing the apparent animal-like shapes 

that clouds take when being closely watched. 

These clouds, however, are mere random 

generations in nature but are perceived by 

humans as having structure or reason (Taleb 

2005).  

The research conducted on 

randomness by Biondo and the insight of 

Taleb’s book has laid the foundation for our 

research. We seek to answer questions such 

as: can we quantify how much ability matters 

in competitions? what role does randomness 

play in competitions? will the most qualified 

player succeed?  

Within this research we will further 

investigate the theory of randomness by 

building a mathematical model of a game with 

spelling bee-like rules. First, we examine the 

construction of the game and its rules. Second, 

the model is checked for validity against 

another game modeling strategy. Third, we 

utilize our model to explore a particular 

organization of competitors that lead to 

interesting results. Fourth, we discuss the 

primary results of our research. Finally, we 

will draw conclusions from our research, 

discuss the implications, and make 

suggestions for future areas of study. 
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Formulation of the Model 
 

In order to explore the interplay between 

chance and skill in a game with multiple 

players, a model game with spelling bee-like 

rules was constructed. The game is composed 

of 𝑁  players that compete in a round-based 

fashion. Each player can either find success or 

failure during each round just like each 

competitor in a spelling bee can spell a word 

correctly or incorrectly each round. The 

probability of player 𝑛 finding success during 

each round is a parameter of the model, ℎ𝑛, 

and is a reflection of that player’s skill. 

Therefore, the probability of failure for player 

𝑛 is (1 − ℎ𝑛). 

If a player fails in any given round, 

that player cannot re-enter the game unless all 

other players also fail during that round. In the 

event that all players fail, no players are 

eliminated and the round is repeated. On the 

other hand, if at least one player succeeds 

during the round, all players who failed are 

eliminated from subsequent rounds. The game 

continues until only a single player remains. 

A game with rules as outlined above 

can be formulated as a discrete-time 

absorbing-state Markov Chain (Norris 2006) 

as follows. First, the success probabilities of 

all 𝑁  players are organized into a “skill” 

vector ℎ = (ℎ1 ℎ2  ℎ3 ⋯ ℎ𝑁), and the current 

state or competitive status of each player is 

structured is a state vector 𝑆 =
(𝑆1 𝑆2  𝑆3 ⋯ 𝑆𝑁)  where 𝑆𝑛  is a binary value 

with 1 or 0 indicating player 𝑛 as still active 

in, or eliminated from, the game, respectively. 

For example, the state vector 𝑆 = (1, 1, 0, 1) 

indicates that players 1, 2, and 4 are still active 

while player 3 has been eliminated.  

The probability of transitioning from 

one state vector to another depends only on 

the current state of each of the players and 

their respective success probabilities. Thus, 

the Markov condition is satisfied (Stewart 

1994). Consider for example a two-player 

game. The state-space of such a game—that 

is, the enumeration of all the possible states—

is 𝑆 ∈ {(1, 1), (1, 0), (0, 1)} . Notice that the 

size of this state space is equivalent to 2𝑁 − 1, 

which is true regardless of the number of 

players.  

 The probability of transitioning from 

state vector 𝑆 = (1, 1)  with both players 

active to 𝑆 = (1, 0)  with player two 

eliminated and player one victorious is 𝑞 =
ℎ1(1 − ℎ2). Similarly, the probability of 

transitioning from state vector 𝑆 = (1, 1) 

with both players active to 𝑆 = (0, 1)  with 

player one eliminated and player two 

victorious is 𝑞 = (1 − ℎ1)ℎ2 . On the other 

hand, transitioning from state 𝑆 = (1, 0)  to 

state 𝑆 = (0, 1)  is forbidden and has 

probability zero. In fact, both of these states 

represent different final outcomes of the game 

(player one victorious versus player two 

victorious) and are thus absorbing states out of 

which no transitions are allowed. Figure 1 

illustrates the state space and transition 

probabilities for a two player game. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The probabilities for all allowed 

transitions between states can be summarized 

in matrix form. For example, the transition 

probability matrix for the two-player game is 

 

𝑃 = (
⋄ ℎ1(1 − ℎ2) (1 − ℎ1)ℎ2

0 ⋄ 0
0 0 ⋄

) 

 

where 𝑞𝑖𝑗  is the transition probability from 

state 𝑖   to state 𝑗  and the ⋄  are selected to 

ensure that the row sums are equal to one, 

Figure 1: State Transition Diagram of a two player 
game. 1 is a binary representation of active players 
and 0 is a binary representation of inactive players. 
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making 𝑃 a stochastic matrix. This condition 

reflects the necessity that the total probability 

of all possible transitions out of the current 

state is equal to one.  

 

Monte Carlo Simulations 
 

After specifying the number of players, 𝑁 , 

and each player’s skill level, ℎ, a game can be 

simulated using Monte Carlo methods as 

follows. First, a random number between zero 

and one is drawn from a uniform distribution 

for each of the active players each round of the 

game. If the random number drawn for each 

player is greater than that player’s skill level, 

the player is unsuccessful in that round. If no 

active player is successful then the round is 

repeated. However, if at least one player is 

successful, 𝑆is updated to indicate any players 

eliminated during that round and the game 

continues. Each game is initialized with all 

players active, 𝑆 = (1 1 1 ⋯ 1) , and ends 

when only a single player remains active, 

Σ𝑆 = 1 . Many games can be simulated to 

determine the probability of each player 

winning any individual game. 

 

Direct Matrix Calculations 
 

The probability of each player winning any 

individual game can also be calculated 

directly using matrix-analytic methods. First, 

the transition probability matrix is 

reorganized so all the absorbing states are 

grouped together, 

 

𝑃 = (
𝑃𝑇𝑇 𝑃𝑇𝐴

𝑍 𝑈
), 

 

where 𝑃𝑇𝑇  is a sub-matrix containing the 

probabilities for transitions between transient 

states and 𝑃𝑇𝐴 is a sub-matrix containing the 

probabilities for transitions from transient 

states into one of the absorbing states. The 𝑍 

sub-matrix is all zeros reflecting the fact that 

transitions from absorbing states to transient 

states are forbidden. Meanwhile, each row of 

the 𝑈 sub-matrix has a single non-zero entry 

equal to one, reflecting the fact that once an 

absorbing state is entered it is never left.  

 The probability of ending up in each of 

the absorbing states can then be found using 

 

𝐴 = (𝐼 − 𝑃𝑇𝑇)−1𝑃𝑇𝐴 

 

where 𝐼 is an identity matrix commensurate in 

size with 𝑃𝑇𝑇 (Stewart 1994). This matrix has 

a row for each transient state and a column for 

each absorbing state where 𝐴𝑚𝑛  is the 

probability of ending in absorbing state 𝑛 

assuming the game began in transient state 𝑚. 

Assuming the states are ordered such that the 

first transient state is the state with all players 

active then  

 

𝐴1𝑗 = (𝜋1, 𝜋2, 𝜋3, ⋯ , 𝜋𝑁) 

 

gives the probability of each player winning 

the game. 

 All simulations and calculations were 

carried out using MATLAB running on either 

a modest laptop or desktop computer.    

 

Results 
 

Validating the Model: A Comparison 
Between Direct Matrix Calculations and 
Monte Carlo Simulations 
 

If the direct matrix calculation was formulated 

correctly, it would yield comparable results to 

repeated Monte Carlo Simulations.  

 Consider a 4 player game with “skill” 

vector ℎ = (0.4 0.5 0.6 0.7) . The direct 

matrix calculation returns the probability 

matrix  

 

𝑝 = (0.0944 0.1661 0.2791 0.4605) 

 

which shows the probability of player 1, 2, 3 

or 4 winning the entire competition. Using the 

same “skill” vector ℎ from before, the result 

from 10 Monte Carlo Simulations is 

(0 0.4 0.2 0.4). The aforementioned outcome 

matrix shows that player 1 won 0% of the 

games (0 games), player 2 won 40% (4 

games), player 3 won 20% (2 games), and 

player 4 won 40% (4 games). These results are 

not unique as running 10 additional Monte 
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Carlo Simulations could yield different 

outcomes.  

 These results are quite different than 

the Direct Matrix Calculation’s results and are 

summarized in Figure 2. Figure 3 compares 

100 Monte Carlo Simulations to the Direct 

Matrix Calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

  

Notice how the overall differential between 

the Monte Carlo Simulations and Direct 

Matrix Calculation in Figure 3 is significantly 

smaller than that of Figure 2. The results 

began to agree after repeated Monte Carlo 

Simulations. Figure 4 summarizes the 

differentials between the outputs of repeated 

simulations and the direct calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4 illustrates how as the number 

of simulations increases the differential 

between the simulation and direct calculation 

decreases. In other words, the Monte Carlo 

Simulation agreed with the Direct Matrix 

Calculation.  

 On a side note, the direct calculation 

requires a heavy computational load for 

competitions with larger amounts of players 

because, again, the Markov Chain takes the 

form of a matrix with 2𝑁 − 1  rows and 

columns. Because the Monte Carlo 

Simulations validated the results of the direct 

calculation, the Monte Carlo Simulation can 

be used to approximate the probability of any 

given player winning the competition when 

the number of players is too large to use the 

direct calculation. 

 

A Diamond In The Rough: A Study of a 
Skilled Player’s Probability of Success 
When Competing Against Multiple 
Unskilled Players  
 

Consider a 2 player game in which player 2 

has “skill” ℎ2 = 01. How “skilled” must 

player 1 be in order to maintain a win 

percentage of at least 50% in the competition? 

In this trivial example, ℎ1 must be 0.1 as well. 

The outcomes of this 2 player game mirror a 

simple coin toss. What happens, however, as 

Figure 2: Compares the Direct Calculation results to 10 
Monte Carlo Simulations. Figure 3: Compares the 
Direct Calculation results to 100 Monte Carlo 
Simulations. Skill vector used: 𝒉 = [𝟎. 𝟒 𝟎. 𝟓 𝟎. 𝟔 𝟎. 𝟕]. 

Figure 4: Compares the average difference between 
the Direct Calculation and Monte Carlo Simulation as a 
function of the number of Monte Carlo Simulations. 
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the number of unskilled players increase? The 

Diamond in the Rough Model seeks to answer 

this question. 

 In this model with 𝑁 players, there are 

𝑁 − 1 unskilled players, called Jokers, and 1 

skilled player, called the Ace. The initial skill 

vector is, therefore, given by ℎ =
(ℎ𝑎 ℎ𝑗1 ℎ𝑗2  ⋯ ℎ𝑗(𝑛−1)) where ℎ𝑎 is the “skill” 

of the Ace that must be determined and ℎ𝑗𝑖 =

0.1  is the standard Joker “skill” where 𝑖 ∈
1, 2, ⋯ (𝑛 − 1). 

 

 Using the direct calculation, the “skill” 

required of the Ace to beat multiple unskilled 

competitors 50% of the competitions is 

summarized in Figure 5. 

 What if the Ace desires to overcome 

the Jokers more than 50% of the 

competitions? Figure 6 shows the results with 

desired win percentages of 60%, 70%, 80%, 

and 90%.  

 Figure 6 shows that the skill required 

of the Ace player to overcome the Jokers 

increases as the number of Jokers increase. It 

can also be seen that the skill required of the 

Ace increases as the desired win percentage 

increases.   
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Conclusions 
 
Interestingly, the data in Figure 6 suggests a 

pattern or perhaps a plateau point. In other 

words, is there an Ace player skill other than 

the trivial skill required, 1, (premature limit) 

that is expected to beat any number of Jokers? 

Figure 6 is reproduced with  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

corresponding logarithmic trend lines and 

correlation coefficients.  

 Overall, the correlation between these 

logarithmic functions and our data is pretty 

strong but it is important to keep in mind that 

these trend lines, although strongly correlated, 

are still approximations.  

 Looking back at the original data 

points in Figure 6, the “tail” end is visually 

Figure 5: Shows the skill required of the Ace player to beat a certain number of Jokers 50% of the time. Figure 6: 
shows the skill required of the Ace player to beat a certain number of Jokers 50%, 60%, 70%, 80% and 90% of 
time, respectively. Figure 7: A reproduction of Figure 5 but with logarithmic trend lines and corresponding 
correlation coefficients. Figure 8: Focuses on the last 5 points of each win percentage (50%, 60%, 70%, 80%, and 
90%) illustrates their linear tendency with corresponding correlation coefficients.  
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linear. Figure 8 examines the linear 

relationship in the tail of each desired win 

percentage. 

 Using the five logarithmic equations 

from Figure 7 and the five linear equations 

from Figure 8, we can approximate the 

number of Jokers (𝑥) it takes to overcome the 

Ace player. In other words, we can set the Ace 

players skill required (𝑦) to 1 and solve for the 

number of Jokers that require the Ace to be 

perfectly skilled. Figure 9 summarizes these 

findings. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 Unfortunately, the logarithmic and 

linear trend lines do not suggest the existence 

of a premature skill required of the Ace player. 

As the number of Jokers increase and/or the 

desired win percentage increases, the skilled 

required of the Ace played indefinitely 

approaches 1, or perfect skill.  

 Although we couldn’t find a 

premature limit point, it is pretty clear that we 

are able to answer our three introductory 

questions at the conclusion of this research. 

Can we quantify how much ability matters in 

competitions? What role does randomness 

play in competitions? Will the most qualified 

player succeed?  
 

Discussion 
 
Results from a Diamond in the Rough suggest 

that ability matters, to a degree, within 

competitions. Ability alone, however, is not 

the only influential factor because players do 

not compete in isolation. The outcome of a 

competition is affected by the number of 

players in the game as well as the skill of each 

of those players. In fact, an Ace player with a 

skill of 0.46 is expected to win 50% of the 

competitions against only 11 Jokers. Although 

the Ace was more than four times as “skilled” 

as any one of the Jokers, it didn’t take many 

Jokers to overcome the Ace.  
The underlying principle in this study 

is the existence of randomness in 

competitions. The most qualified, or in this 

context, skilled, is not necessarily the winner 

at the end of the competition. Events in 

competitions are not repeated until the 

expected winner, or most skilled player, has 

succeeded so the role of chance cannot be 

discounted. The existence of randomness in 

competitions really illustrates the limitations 

of a meritocratic view.   

Applications of this research can be 

seen within elections. Whether the election 

demographics are federal, state, or local, the 

“skilled” or most informed voters can be 

drowned out by the sea of unskilled 

competitors. Does the most qualified 

candidate in the election win? Not necessarily, 

the role of chance and randomness may 

indirectly elect a candidate who is not the 

most qualified.  

Looking back at the research 

conducted by Biondo et al., the stock market 

is a prime illustration of the dominance of 

randomness. Biondo et al. found that on 

average, the skilled trading strategies did not 

yield any significant difference in outcome 

when compared against a random trading 

strategy (Biondo 2013). In fact, the skilled 

trading strategies lead to more extreme and 

sporadic, or varied, results where the losses 

were more detrimental but the wins were 

greater than that of a random strategy.  

The research and results in this study 

really suggest some sort of “mysterious” 

analytical solution. Is there an analytical 

generalization that can be made which 

connects the desired win percentage of the 

Ace, the number of jokers, and the skill 

required of the Ace player?  Is there a more 

compact representation than the matrix built 

in this study? In fact, the matrix may, simply, 

be that compact representation. 

Figure 9: Shows the expected number of Jokers to 
overwhelm an Ace player unless he had perfect skill 
using the five logarithmic and five linear equations. 
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Unfortunately, we were not able to formulate 

an analytical solution to the Diamond in the 

Rough and, therefore, further research is 

necessary.  

 Perhaps the greatest limitation to this 

research was the lack of computational power. 

All calculations and figures were generated in 

Matlab on a   modest laptop computer. In a 

Diamond in the Rough, generating results for 

games with 12 Jokers actually depleted the 

laptops memory before completion. A more 

powerful computer should be able to collect 

data points for games that have more Jokers 

and, as a result, can make more accurate 

predictions regarding the skill required of an 

Ace player to beat a sea of Jokers a certain 

percentage of games.  

 In this study, particularly within the 

Diamond in the Rough, the Ace player 

competed against a sea of Jokers with 

homogeneous skill. All the Jokers were set to 

have a skill of ℎ𝑗 = 0.1. The matrix can 

certainly handle a competition where the 

Jokers’ skill is heterogeneous but it was not 

explored in this study. Sample code for further 

exploration can be found in the Appendix. 
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Appendix 
 

Monte Carlo Simulation Example MATLAB Program  
 
% Define a skill vector for the game 

h = [0.5 0.1 0.1] 

 

% then, calculate the number of players 

N = length(h); 

 

% and specify the total number of games to be simulated. 

nGames = 10000; 

 

% Create a vector to count how many times each player wins the game 

nSuccess = zeros(1,N); 

 

% then play the game many times 

for ii = 1:nGames  

 

% starting each time with all players active. 

S = ones(1,N);  

flag = 1;   

 

% Play each game so long as at least one player is still active 

     while (sum(S) > 1)  

 

% and keep repeating each round of the game if no players  

% are successful. 

while (flag == 1)  

           test = rand(1,N); 

           SNew = (h.*S)>test; 

           flag = sum(SNew)==0; 

        end 

        S = SNew; 

        flag = 1; 

    end 

     

% After determining who won each game, increment the win tally 

% for the player that won the game. 

nSuccess = nSuccess + S;  

end 

 

% After all games are played, calculate the probability of each player  

% winning the game. 

pSuccess = nSuccess./nGames  

 

Direct Matrix Calculations Example MATLAB Program  
 
% Define a skill vector for the game 

h = [0.5 0.1 0.1] 

 

% then, calculate the number of players 

N = length(h); 
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% and the size of the state space, that is, the number of possible 

% states in the Markov Chain. 

nStates = 2^N-1; 

 

% Find the probability of each player failing a round of the game. 

f = 1-h; 

 

% Find the binary representation of each state and convert this  

% representation from a character array into a matrix. 

stateSpace = flipud(dec2bin(1:nStates)); 

stateSpace = arrayfun(@str2num,stateSpace); 

 

% Initialize the transition probability matrix 

P = zeros(nStates,nStates); 

 

% then build it by finding each element. 

for ii = 1:nStates 

 

 inow = stateSpace(ii,:); 

 for jj = ii+1:nStates % j has to be greater then or equal to i 

         

    jnow = stateSpace(jj,:); 

 

  % if inow-jnow has negative elements then a zero turned 

  % back to a one, which is forbidden 

       if min(inow-jnow)>=0  

             

       fail = bitxor(inow,jnow).*f; 

        pass = bitand(inow,jnow).*h; 

             

     P(ii,jj) = ... 

   prod(fail(find(fail>0)))*prod(pass(find(pass>0)));    

  end 

     end 

end 

 

% Insert appropriate values into the diagonal elements of P so the row 

% sum to one. 

P = P + diag(1-sum(P,2)); 

 

% Rearrange P so the matrix is in this form P = (PTT PTA; Z U) where 

% PTT holds the transition probabilities for transitions between the 

% transient states, PTA holds the transition probabilities for  

% transitions from transient states into the absorbing states, and Z  

% and U are a commensurate matrix of zeros and a commensurate identity  

% matrix, respectively. 

 

iabs = find(sum(stateSpace,2)==1); % indices of absorbing states 

nabs = length(iabs); % the number of absorbing states 

itrans = find(sum(stateSpace,2)~=1); % indices of transient states 

ntrans = length(itrans); % the number of transient states 

inew = [itrans; iabs]; 

stateSpaceShuffle = [stateSpace(itrans,:) ; stateSpace(iabs,:)]; 

P = P(:,inew); % reshuffle the P matrix 

P = P(iNew,:);  
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PTT = P(1:ntrans,1:ntrans); 

PTA = P(1:ntrans,ntrans+1:ntrans+nabs); 

 

% Calculate the probability of each player winning the game by first 

calculating matrix A where A(i,j) is the probability of absorption 

into state j when starting in state i.  

A = inv(diag(ones(1,length(PTT)))-PTT)*PTA;  

 

% The first row in A represents the probability of each player winning 

the game because this row corresponds to the starting state with all 

players active (the beginning of the game).  

pSuccess = A(1,:); 

 


