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1. Review of Sets and Functions

It is assumed that the reader is familiar with the most basic set constructions and
functions and knows the natural numbers, integers and rational numbers

N ={0, 1, 2, . . . }
Z ={0,±1,±2, . . . }

Q ={m
n

: m ∈ Z, n ∈ N+}

respectively as well as the real numbers R, though we will carefully review the least upper
bound property of R in Section 2. Let N+ = N \ {0} denote the positive integers.

Familiarity with matrices Mn(R) and Mm,n(R) is also assumed. The complex numbers
C will also appear in these course notes.
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1.1. Unions, intersections, complements, and products.

Definition 1.1. Given sets X, Y ⊂ S, the union and intersection of X and Y are

X ∪ Y ={z ∈ S : z ∈ X or z ∈ Y } ⊂ S

X ∩ Y ={z ∈ S : z ∈ X and z ∈ Y } ⊂ S,

respectively.

The complement of X, denoted X̃, is the set

X̃ = {x ∈ S : x /∈ X}.

The relative complement of X in Y is

Y \X = Y ∩ X̃ = {z ∈ S : z ∈ Y and z /∈ X}.

In particular, X̃ = S \X. /

Definition 1.2. Let X and Y be sets. The Cartesian product of X and Y is the set

X × Y = {(x, y) : x ∈ X, y ∈ Y }.
/

Example 1.3. The set R2 = R× R is known as the Cartesian plane.

The set R3 is the 3-dimensional Euclidean space of third semester Calculus. 4

Definition 1.4. Given a set S, let P (S) denote the power set of S, the set of all subsets
of S. /

Example 1.5. Let S = {0, 1}. Then,

P (S) = {∅, {0}, {1}, {0, 1}}.

As we shall see later, P (N) is a large set. 4

Definition 1.6. Let S be a given set. The union and intersection of the collection
F ⊂ P (S) are

∪A∈FA ={x ∈ S : there is a A ∈ F such that x ∈ A}
∩A∈FA ={x ∈ S : x ∈ A for every A ∈ F}.

respectively. /

For example, let F = {A ⊂ N : 0 ∈ A}. In this case,

∩A∈F = {0}
and

∪A∈F = N.

Do Problem 1.1.
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1.2. Functions.

Definition 1.7. A function f is a triple (f, A,B) where A and B are sets and f is a rule
which assigns to each a ∈ A a unique b = f(a) in B. We write

f : A→ B.

(i) The set A is the domain of f .
(ii) The set B is the codomain of f

(iii) The range of f , sometimes denoted rg(f), is the set {f(a) : a ∈ A}.
(iv) The function f : A→ B is one-one if x, y ∈ A and x 6= y implies f(x) 6= f(y).
(v) The function f : A → B is onto if for each b ∈ B there exists an a ∈ A such that

b = f(a); i.e., if rg(f) = B.
(vi) A function which is both one-one and onto is called a bijection.

(vii) The graph of f is the set

graph(f) = {(a, f(a)) : a ∈ A} ⊂ A×B.

(viii) If f : A→ B and Y ⊂ B, the inverse image of Y under f is the set

f−1(Y ) = {x ∈ A : f(x) ∈ Y }.

(ix) If f : A→ B and C ⊂ A, the set

f(C) ={f(c) : c ∈ C}
={b ∈ B : there is an c ∈ C such that b = f(c)}

is the image of C under f . Note, rg(f) = f(A).
(x) The identity function on a set A is the function idA : A→ A with rule idA(x) = x.

/

Example 1.8. Often one sees functions specified by giving the rule only, leaving the
domain implicitly understood (and the codomain unspecified), a practice to be avoided.
For example, given f(x) = x2 it is left to the reader to guess that the domain is the set of
real numbers. But it could also be C or even Mn(C), the n×n matrices with entries from
C. If the domain is taken to be R, then R is a reasonable choice of codomain. However,
the range of f is [0,∞) (a fact which will be carefully proved later) and so the codomain
could be any set containing [0,∞). The moral is that it is important to specify both the
domain and codomain as well as the rule when defining a function. 4

Example 1.9. Define f : R→ R by f(x) = x2. Note that f is neither one-one nor onto.

As an illustrations of the notion of inverse image, f−1((4,∞)) = (−∞, 2) ∪ (2,∞) and
f−1((−2,−1)) = ∅. 4

Example 1.10. The function g : R→ [0,∞) defined by g(x) = x2 is not one-one, but it
is, as we’ll see in Subsection 2.2, onto.

The function h : [0,∞) → [0,∞) is both one-one and onto. Note h−1((4,∞)) =
(2,∞). 4
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Do Exercise 1.1 and Problem 1.2.

Remark 1.11. Given a set S, an (index) set I and a function α : I → P (S), let Ai = α(i).
Let F denote the range of α. In this context, the union and intersection over F are written,

∪i∈IAi = ∪A∈FA
and

∩i∈IAi = ∩A∈FA
respectively. See Exercise 1.3.

Finally, in the case that the index set is N or Z, it is customary to write,

∪n∈NAn = ∪∞n=0An

and

∪n∈ZAn = ∪∞n=−∞An.
�

Definition 1.12. Given sets A,B and X, Y and functions f : A → X and g : B → Y ,
define f × g : A×B → X × Y by f × g(a, b) = (f(a), g(b)). /

Example 1.13. If f : N → N is defined by f(n) = 2n and g : Z → N is defined by
g(m) = 3m2, then f × g : N× Z→ N× N is given by f × g(n,m) = (2n, 3m2). 4

Definition 1.14. Given f : A→ B and C ⊂ A, the restriction of f to C is the function
f |C : C → B defined by f |C(x) = f(x) for x ∈ C. /

Definition 1.15. Given f : X → Y and g : Y → Z the composition of g and f is the
function g ◦ f : X → Z with rule g ◦ f(x) = g(f(x)). /

Proposition 1.16. Suppose (X and Y are nonempty and) f : X → Y.

(1) There exists a function g : Y → X such that f ◦ g = idY if and only if f is onto;
(2) There exists a function g : Y → X such that g◦f = idX if and only if f is one-one;
(3) There exists a function g : Y → X such that f ◦ g = idY and g ◦ f = idX if and

only if f is one-one and onto;
(4) There exists at most one function g : Y → X such that f ◦g = idY and g◦f = idX .

†

Proof. In each of items (i), (ii) and (iii) the existence of g is easily seen to imply the
conclusion on f . Now suppose that f is onto. For y ∈ Y the set Sy = f−1(Y ) is
nonempty. For each y choose xy ∈ Sy (using the axiom of choice). In this way we obtain
a function g : Y → X defined by g(y) = xy satisfying f ◦ g = idY . Now suppose f is
one-one. Fix a ∈ X. Define g : Y → X as follows: given y ∈ Y , if there is an x ∈ X such
that f(x) = y, then, as f is one-one, there is only one such x. In this case, let g(y) = x.
Otherwise define g(y) = a.

By items (i) and (ii), if there exists a g such that g ◦ f = idX and f ◦ g = idY , then
f is one-one and onto. Now suppose that f is one-one and onto. By what has already
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been proved, there exist functions g, h : Y → X such that f ◦ g = idY and h ◦ f = idX .
It follows that

g = h ◦ f ◦ g = h

proving both (iii) and (iv). �

Definition 1.17. A function f : X → Y is invertible if there is a function g : Y → X
such that

g ◦ f =idX

f ◦ g =idY .

We call g the inverse of f , written g = f−1. /

Remark 1.18. If f : X → Y is invertible, and B ⊂ Y , then f−1(B) could refer to either
the inverse image of B under f , or the image of B under the function f−1. Happily, these
two sets are the same. �

Example 1.19. The function h : [0,∞)→ [0,∞) given by h(x) = x2 of Example 1.10 is
one-one and onto (as we will see later in Proposition 2.13) and thus has an inverse. Of
course this inverse h−1 : [0,∞) → [0,∞) is commonly denoted as

√
so that h−1(x) =√

x. 4

1.3. finite and countable sets.

Definition 1.20. Two sets A and B are equivalent, denoted A ∼ B if there is a one-one
onto function f : A→ B. /

Observe that ∼ is behaves like an equivalence relation; i.e., A ∼ A; if A ∼ B, then
B ∼ A; and finally if A ∼ B and B ∼ C, then A ∼ C.

Given a positive integer n, let Jn denote the set {1, 2, . . . , n}. To show that Jn is not
equivalent to N note, if f : Jn → N, then f(j) ≤

∑n
`=1 f(`) for each j ∈ Jn and so f is

not onto.

Definition 1.21. Let A be a set.

(i) A is finite if it is either empty or there is an n ∈ N+ such that A ∼ Jn;
(ii) A is infinite if it is not finite;
(iii) A is countable if A ∼ N;
(iv) A is at most countable if A is either finite or countable; and
(v) A is uncountable if it is not at most countable.

/

Remark 1.22. Note, by the comments preceding the definition, that N is infinite. �

Proposition 1.23. A set A is at most countable if and only if there exists a one-one
mapping f : A→ N.

Likewise A is at most countable if and only if there exists an onto mapping g : N →
A. †
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You may wish to compare Proposition 1.23 with the Cantor–Schroeder–Bernstein Theo-
rem (which is also goes by the names Schroeder–Bernstein Theorem and Cantor–Bernstein
Theorem). See also Problem 1.3. Note that the proposition implies that a subset of an
at most countable set is at most countable.

Sketch of proof. We may assume A is not finite. Let B = f(A) ⊂ N. Since f is one-one,
A and B ⊂ N are equivalent. Hence, it suffices to prove if B ⊂ N is infinite, then B ∼ N.
To this end, note that since B is a nonempty subset of N it has a smallest element, n0.
Recursively define, for k ∈ N+,

nk = min(B \ {n0, . . . , nk−1}),

where the assumption that B is not finite is used so that the minimum is taken over a
nonempty subset of N. By construction the mapping h : N→ B defined by h(k) = nk is
one-one. On the other hand, since nk ≥ k, given m ∈ B the set {j : nj ≥ m} is nonempty.
Its smallest element k satisfies nk = m. Hence h is onto and B ∼ N.

If g : N→ A is onto, then, by Problem 1.3 (which is a simple consequence of Proposition
1.16), there is a one-one mapping f : A→ N and from what is already proved A ∼ N. �

Proposition 1.24. The sets Z, N× N, and Q are all at most countable. †

Proof. Verify that f : N → Z by f(2m) = m and f(2m + 1) = −m − 1 is one-one and
onto.

To prove N ∼ N× N first note that the function F : N× N→ N defined by

F (m,n) = 2n 3m

is one-one, a fact which follows from prime factorization (the Fundamental Theorem of
Arithmetic). Hence, by Proposition 1.23, N× N is at most countable.

Since N×N is at most countable, there exists an onto map g : N→ N×N. Consequently
the composition (f × idN) ◦ g : N → Z × N is onto. Thus, using Problem 1.3 and
Proposition 1.23, to prove that Q is at most countable, it suffices to exhibit an onto
mapping h : Z × N → Q, since then h ◦ (f × idN) ◦ g maps N onto Q. Define h by
h(m,n) = m

n+1
. �

Remark 1.25. It is easy to see that N and N×N are not finite. Hence both are countable.

An alternative argument that N× N is equivalent to N is to view the set N× N as an
array {(m,n) : m,n ∈ N} and define f : N → N × N by f(0) = (0, 0), f(1) = (1, 0),
f(2) = (0, 1), f(3) = (2, 0) etc. It is easy to believe, but a bit painful to write a formula
for f and check it is one-one and onto. �

Do Problems 1.4 and 1.6

Proposition 1.26. The set P (N) is not countable. †

The proof is accomplished using Cantor’s diagonalization argument.
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Proof. It suffices to prove, if f : N→ P (N), then f is not onto.

Given such an f , let
B = {n ∈ N : n /∈ f(n)}.

We claim that B is not in the range of f . Arguing by contradiction, suppose m ∈ N and
f(m) = B. If m /∈ B, then m ∈ f(m) = B a contradiction. On the other hand, if m ∈ B,
then m /∈ f(m) = B, also a contradiction. �

Do Problem 1.7.

1.4. Worked Examples.

Sample Problem 1.1. Suppose f : X → S and D ⊂ S. Show, f(f−1(D)) ⊂ D and give
an example where strict inclusion holds.

Solution. Let y ∈ f(f−1(D)) be given. By definition of image of a set under a function,
there exists an x ∈ f−1(D) such that y = f(x). By definition of inverse image, x ∈ f−1(D)
means f(x) ∈ D. Thus y ∈ D and the desired inclusion has been established.

To give an example where f(f−1(D)) 6= D (strict inclusion holds), let X = {0}, S =
{0, 1}, define f : X → S by f(0) = 0 and finally let D = S. In this case f(f−1(D)) =
f({0}) = {0} 6= D.

Sample Problem 1.2. Suppose f : X → Y and F ⊂ P (X). Show,

f(∪A∈FA) = ∪A∈Ff(A).

Solution. A point y is in f(∪A∈FA) if and only if there is an x ∈ ∪A∈FA such that
y = f(x) if and only if there is B ∈ F such that x ∈ B and y = f(x) if and only if there
exists a B ∈ F such that y ∈ f(B) if and only if y ∈ ∪A∈Ff(A).

1.5. Exercises.

Exercise 1.1. Define f : R→ R2 by

f(x) = (cos(x), sin(x)).

Let
D = {(x, y) ∈ R2 : x2 + y2 < 1}

and
S = {(x, y) ∈ R2 : x2 + (y − 1)2 < 1}.

Identify

(i) f−1(S);
(ii) f−1(D); and

(iii) f−1(f((−π
2
, π
2
))).

Exercise 1.2. Consider the function h = f × g of Example 1.13 and let 6N denote the
set {6k : k ∈ N}. Find the inverse image of the set {(j, k) : j ∈ {2, 3, 4}, k ∈ 6N}. Find
the inverse image of the set {(j, k) : j ∈ {0, 1, 2}, k is odd}.
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Exercise 1.3. Consider the sets An = {m ∈ N : m ≥ n} ⊂ N for n ∈ N. Determine,

∪n∈NAn and ∩n∈N An.

1.6. Problems.

Problem 1.1. Suppose S is a set and ∅ 6= F ⊂ P (S). Show

∪̃A∈FA = ∩A∈FÃ.

Problem 1.2. Suppose f : X → S and F ⊂ P (S). Show,

f−1(∪A∈FA) = ∪A∈F f−1(A)

f−1(∩A∈FA) = ∩A∈F f−1(A)

Show, if A,B ⊂ X, then f(A∩B) ⊂ f(A)∩ f(B). Give an example, if possible, where
strict inclusion holds.

Show, if C ⊂ X, then f−1(f(C)) ⊃ C. Give an example, if possible, where strict
inclusion holds.

Problem 1.3. Let A be a nonempty set. Prove there exists an onto mapping f : N→ A
if and only if there is a one-one mapping g : A→ N.

Problem 1.4. Prove that an at most countable union of at most countable sets is at
most countable; i.e., if S is a set, α : N→ P (S) is a function such that each Aj = α(j) is
at most countable, then

T = ∪∞j=0Aj := ∪j∈NAj
is at most countable.

Suggestion: For each j there is a function gj : N→ Aj. Define a function F : N×N→ T
by F (j, k) = gj(k). Proceed.

Problem 1.5. Use induction to show, for n ∈ N+, that P (Jn) ∼ J2n .

Problem 1.6. Show that the collection F ⊂ P (N+) of finite subsets of N is an at most
countable set.

Problem 1.7. Suppose A is a non-empty set. Show there does not exist an onto mapping
f : A→ P (A); i.e., show A 6∼ P (A).

Problem 1.8. Let A be a given nonempty set. Show, 2A = {f : A→ {0, 1}} is equivalent
to P (A).

2. The Real Numbers

We will take the view that we know what the real numbers are and we will simply
review some important properties in this section.

Example 2.1. The square root of 2 is not rational; i.e., there is no rational number s > 0
such that s2 = 2. 4
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2.1. The least upper bound property.

Definition 2.2. Let S be a subset of R.

(i) The set S is bounded above if there is a b ∈ R such that b ≥ s for all s ∈ S.
(ii) Any b ∈ R such that b ≥ s for all s ∈ S is an upper bound for S.

/

Example 2.3. Informally identify the set of upper bounds for the the subsets of R in
items (i), (ii) and (iv).

(i) [0, 1);
(ii) [0, 1];

(iii) Q;
(iv) ∅.

For Q, the natural guess is that there are no upper bounds, but the justification for this
assertion needs to wait for Theorem 2.10. (See Remark 2.11.) 4

Lemma 2.4. Let S be a subset of R and suppose both b and b′ are upper bounds for S.
If b and b′ both have the property that if c ∈ R is an upper bound for S, then c ≥ b and
c ≥ b′, then b = b′. †

Definition 2.5. The least upper bound of a subset S of R, if it exists, is a b ∈ R such
that

(i) b is an upper bound for S; and
(ii) if c ∈ R is an upper bound for S, then c ≥ b.

/

Remark 2.6. Lemma 2.4 justifies the use of the (as opposed to an) in describing the
least upper bound.

The condition (ii) can be replaced with either of the following conditions

(ii)′ if c < b, then there exists an s ∈ S such that c < s; or
(ii)′′ for each ε > 0 there is an s ∈ S such that b− ε < s.

The notions of bounded below, lower bound and greatest lower bound are defined analo-
gously. A set S ⊂ R is bounded if it bounded both above and below.

Least upper bound is often abbreviated lub. The term supremum, often abbreviated
sup, is synonymous with lub. Likewise glb and inf for greatest lower bound and infimum.

�

Example 2.7. Here is a list of examples.

(i) The least upper bound of S = [0, 1) ⊂ R is 1.
(ii) The least upper bound of V = [0, 1] ⊂ R is also 1.
(iii) The set Q ⊂ R has no upper bound (see the comment in Example 2.3) and thus no

least upper bound;
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(iv) Every real number is an upper bound for the set ∅ ⊂ R. Thus ∅ has no least upper
bound.

(v) Let S = {x ∈ Q : 0 < x, x2 < 2} ⊂ R. Since 1 ∈ S, the set S is nonempty. It is
easily seen that S is bounded above by 2.

4

Theorem 2.8. Every nonempty subset of R which is bounded above has a least upper
bound.

In fact more is true as you likely learned in a previous course. Namely, that R is
the unique, up to ordered field isomorphism, ordered field with the property that every
nonempty subset which is bounded above has a least upper bound.

Remark 2.9. Returning to Example 2.7(v), Theorem 2.8 implies S has a least upper
bound s and 2 > s ≥ 1 > 0. It takes effort to show s2 = 2 and hence s is the (positive)
square root of 2. A more general result is stated and proved as Proposition 2.13. �

Do Exercise 2.3 and Problem 2.1.

2.2. Archimedean properties and square roots.

Theorem 2.10. [Archimedean properties] Suppose x, y ∈ R.

(i) There is a natural number n so that n > x.
(ii) If 1 < x− y, then there is an integer m so that y < m < x.

(iii) If y < x, then there is a q ∈ Q such that y < q < x.

Remark 2.11. The last part of the theorem is sometimes expressed as saying Q is dense
in R.

Item (i) can be restated as N is not bounded above. Since N ⊂ Q, it follows that Q
is not bounded above, justifying the claim made in Example 2.3(iii). Likewise, R is not
bounded below, thus justifying the claim in Example 2.7(iv). �

Proof. We prove (i) by arguing by contradiction. Accordingly, suppose no such natural
number exists. In that case x is an upper bound for N. It follows that N has a lub α. If
n ∈ N, then n+ 1 ∈ N. Hence n+ 1 ≤ α and thus n ≤ α− 1 for all n ∈ N. Consequently,
α − 1 is an upper bound for N, contradicting the least property of α. Hence N is not
bounded above and there is an n > x, which proves item (i).

To prove (ii), it suffices to assume that x > 0 (why). By (i), the set {k ∈ N : k ≥ x} is
nonempty and does not contain 0. It has a least element k > 0. Thus x− 1 ≤ k − 1 < x
and since x− y > 1, it follows that y < k − 1 < x.

Item (iii) is Problem 2.2. As a suggestion, note that, by item (i), there is a positive
integer n so that n(x− y) > 1. Proceed. �
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Example 2.12. Suppose 0 < a < 1. Show the set A = {an : n ∈ N} is bounded below
and its infimum is 0.

Since a ≥ 0 each an ≥ 0. Thus A is bounded below by 0. The set A is not empty.
It follows that A has an infimum. Let α = inf(A) and note α ≥ 0. Since α ≤ an for
n = 0, 1, 2, . . . , it follows that α ≤ an+1 for n ∈ N and therefore α

a
≤ an for n ∈ N. Thus,

α
a

is a lower bound for A. Hence α
a
≤ α. Since a < 1 and α ≥ 0, α = 0. 4

Do Exercise 2.4 and Problems 2.3, 2.4, 2.5,

Proposition 2.13. If y ≥ 0 and n ∈ N+, then there is a unique nonnegative real number
s such that sn = y. In particular, the function f : [0,∞) → [0,∞) defined by f(x) = xn

is (one-one and) onto. †

Of course, s = y
1
n is the notation for this n-th root.

Proof outline. The uniqueness is straightforward based upon the fact that if 0 < a < b,
then an < bn. It should not come as a shock that existence depends upon the existence
of least upper bounds, Theorem 2.8.

Let
S = {x ∈ R : 0 < x and xn < y}.

Show S is non-empty and bounded above. Hence S has a least upper bound, say s.

Show, if 0 < t and y < tn, then t is an upper bound for S.

Show if 0 < t and y < tn, then there is a v such that 0 < v < t such that y < vn.
Hence, v < t and v is an upper bound for S. In particular, t does not satisfy the least
property of least upper bound. Thus, sn ≤ y.

Finally, show if 0 < t and tn < y, then there exists a v such that 0 < t < v such that
vn < y. Hence, t is not an upper bound for S. Thus sn ≥ y. Hence sn = y. �

Remark 2.14. Since f : [0,∞)→ [0,∞) defined by f(x) = xn is both one-one and onto
it has an inverse, f−1 : [0,∞) → [0,∞). This inverse is called the square root function

and is commonly denoted by n
√

or x
1
n . In particular, f−1(x) = x

1
n .

Later, after more machinery is developed, a simpler proof will be given. It is convenient
though to have existence of roots in the meantime. It is also good to emphasize again
here that the existence of roots, say

√
2, depends on the existence of least upper bounds,

and it is this property which distinguishes R from Q. �

2.3. Exercises.

Exercise 2.1. Find the glb and lub of the set { 1
n

: n ∈ N+}.

Exercise 2.2. Find the glb and lub of the set Q ∩ (0, 1).

Exercise 2.3. Let A be a nonempty set of real numbers which is bounded both above
and below. Prove, sup(A) ≥ inf(A).
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Exercise 2.4. Prove, if A ⊂ B are subsets of R and A is nonempty and B is bounded
above, then A and B have least upper bounds and

sup(A) ≤ sup(B).

2.4. Worked Example.

Sample Problem 2.1. Suppose A and B are nonempty subsets of R which are bounded
above. Prove A ∪B has a least upper bound and further

sup(A ∪B) = max{sup(A), sup(B)}.

Solution. Note that the hypotheses imply A and B have least upper bounds. For nota-
tional convenience, let α = max{sup(A), sup(B)}.

Since A and B are nonempty, A ∪ B is nonempty. Given x ∈ A ∪ B, either x ∈ A and
hence x ≤ sup(A) ≤ α or x ∈ B and hence x ≤ sup(B) ≤ α. In either case, x ≤ α and
thus α is an upper bound for A∪B. It follows now that A∪B is nonempty and bounded
above and hence has a least upper bound β. Further, β ≤ α, since α is an upper bound
for A ∪B.

On the other hand, since A ⊂ A ∪ B, Exercise 2.4 implies sup(A) ≤ β. By symmetry
sup(B) ≤ β. Thus α ≤ β.

2.5. Problems.

Problem 2.1. Let A be a nonempty set of real numbers which is bounded above. Let
−A = {−a : a ∈ A} = {x ∈ R : −x ∈ A}. Show −A is bounded below and − inf(−A) =
sup(A).

Problem 2.2. Prove item (iii) of Theorem 2.10.

Problem 2.3. Suppose A ⊂ R is nonempty and bounded above and β ∈ R. Let

A+ β = {a+ β : a ∈ A}
Prove that A+ β has a supremum and

sup(A+ β) = sup(A) + β.

Problem 2.4. Suppose A ⊂ [0,∞) ⊂ R is nonempty and bounded above and β > 0. Let

βA = {aβ : a ∈ A}.
Prove βA is nonempty and bounded above and thus has a supremum and

sup(βA) = β sup(A).

Problem 2.5. Suppose A,B ⊂ [0,∞) are nonempty and bounded above. Let

AB = {ab : a ∈ A, b ∈ B}.
Prove that AB is nonempty and bounded above and

sup(AB) = sup(A) sup(B).
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Here is an outline of a proof. The hypotheses on A and B imply that α = sup(A) and
β = sup(B) both exist. Argue that AB is nonempty and bounded above by αβ and thus

sup(AB) ≤ αβ.

Fix a ∈ A. From an earlier exercise,

sup(aB) = a sup(B) = aβ.

On the other hand, aB ⊂ AB and thus,

aβ ≤ sup(AB)

for each a ∈ A. It follows that βA is bounded above by sup(AB) and thus,

αβ = sup(βA) ≤ sup(AB).

Problem 2.6. Suppose A,B ⊂ R are nonempty and bounded above. Let

A+B = {a+ b : a ∈ A, b ∈ B}.

Show A+B has a supremum and moreover,

sup(A+B) = sup(A) + sup(B).

Problem 2.7. Suppose X, Y are nonempty subsets of R and x < y for each x ∈ X and
y ∈ Y . Prove that X has a supremum and Y an infimum and sup(X) ≤ sup(Y ).

Problem 2.8. Given a positive real number y and positive integers m and n, show

(y
1
n )m = (ym)

1
n .

Likewise verify

(ym)n = (yn)m and (y
1
m )

1
n = (y

1
n )

1
m .

Thus, y
m
n is unambiguously defined.

Problem 2.9. Suppose f : [a, b] → [α, β] and ϕ : [α, β] → R. Let h = ϕ ◦ f . Show, if
there is a C > 0 such that

|ϕ(s)− ϕ(t)| ≤ C|s− t|
for all s, t ∈ [α, β], then

sup{h(x) : a ≤ x ≤ b}− inf{h(x) : a ≤ x ≤ b}
≤C [sup{f(x) : a ≤ x ≤ b} − inf{f(x) : a ≤ x ≤ b}] .

Problem 2.10. Suppose f : [0, 1] → R is increasing (meaning, if 0 ≤ x ≤ y ≤ 1, then
f(x) ≤ f(y)). Prove

α = inf{t ∈ [0, 1] : f(t) ≤ t}
exists and f(α) = α. (Thus α is a fixed point of f . For a further challenge, show α is the
smallest fixed point of f .)
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3. Metric Spaces

3.1. Definitions and Examples.

Definition 3.1. A metric space (X, d) consists of a set X and function d : X ×X → R
such that, for x, y, z ∈ X,

(i) d(x, y) ≥ 0;
(ii) d(x, y) = 0 if and only if x = y;

(iii) d(x, y) = d(y, x); and
(iv) d(x, z) ≤ d(x, y) + d(y, z).

We usually call the metric space X, and d the metric, or distance function. Thus, a
distance function or metric on a set X is a function d : X ×X → R satisfying the axioms
above. Item (iv) is the triangle inequality. Items (i) and (ii) together are sometimes
expressed by saying d is positive definite. Evidently (iii) is a symmetry axiom. /

Example 3.2. Here are some examples of metric spaces.

(i) Unless otherwise noted, R is the metric space with the distance function d(x, y) =
|x− y|.

(ii) Let X be any nonempty set and define d(x, y) = 0 if x = y and d(x, y) = 1 if x 6= y.
This function is the discrete metric.

(iii) On the vector space Rn the `1-metric is defined by

d1(x, y) =
∑
|xj − yj|.

(iv) On Rn, define d∞ by

d∞(x, y) = max{|xj − yj| : 1 ≤ j ≤ n}.
This metric is the `∞ metric (or worst case metric). In particular (Rn, d1) and
(Rn, d∞) are different metric spaces.

(v) Define, on the space of polynomials P , the metric

d1(p, q) =

∫ 1

0

|p− q|dt.

(vi) If (X, d) is a metric space and Y ⊂ X, then (Y, d|Y×Y ) is a metric space and is called
a subspace of X.

4

Do Problem 3.1.

Proposition 3.3. Let (X, d) be a metric space.

If p, q, r ∈ X, then
|d(p, r)− d(q, r)| ≤ d(p, q).

If p1, . . . , pn ∈ X, then

d(p1, pn) ≤
n−1∑
j=1

d(pj, pj+1).
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†

3.2. Normed vector spaces. Recall that Rn is the vector space of n-tuples of real
numbers. Thus an element x ∈ Rn has the form,

x =

x1...
xn

 .

Vectors - elements of Rn - are added and multiplied by scalars (elements of R) entrywise.

The set of polynomials P (in one variable with real coefficients) is a vector space under
the usual operations of addition and scalar multiplication.

Definition 3.4. A norm on a vector space V over R is a function ‖ · ‖ : V → R satisfying

(i) ‖x‖ ≥ 0 for all x ∈ V ;
(ii) ‖x‖ = 0 if and only if x = 0;

(iii) ‖cx‖ = |c| ‖x‖ for all c ∈ R and x ∈ V ; and
(iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

The last condition is known as the triangle inequality. /

Example 3.5. The functions ‖ · ‖1 and ‖ · ‖∞ mapping Rn to R defined by

‖x‖1 =
n∑
j=1

|xj|

and
‖x‖∞ = max{|xj| : 1 ≤ j ≤ n}

respectively are norms on Rn. 4

Proposition 3.6. If ‖ · ‖ is a norm on a vector space V , then the function

d(x, y) = ‖x− y‖,
is a metric on V . †

Proof. With the exception of the triangle inequality, it is evident that d satisfies the
axioms of a metric.

To prove that d satisfies the triangle inequality, let x, y, z ∈ V be given and estimate,
using the triangle inequality for the norm,

d(x, z) =‖x− z‖
=‖(x− y) + (y − z)‖
≤‖x− y‖+ ‖y − z‖
=d(x, y) + d(y, z).

�

Remark 3.7. In the case (V, ‖ · ‖) is a normed vector space the default is to view V also
as a metric space with the metric coming from the norm. �
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Definition 3.8. Let V be a vector space over R. A function 〈·, ·〉 : V × V → R is an
inner product (or scalar product ) on V if,

(i) 〈x, x〉 ≥ 0 for all x ∈ V ;
(ii) 〈x, x〉 = 0 if and only if x = 0;

(iii) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ;
(iv) 〈cx+ y, z〉 = c〈x, z〉+ 〈y, z〉.

/

Example 3.9. On Rn, the pairing,

〈x, y〉 =
n∑
j=1

xjyj

is an inner product. In the case of n = 2, 3 it is often called the dot product.

On P , the space of polynomials, the pairing

〈p, q〉 =

∫ 1

0

pq dt

is an inner product.

4

Proposition 3.10. [Cauchy-Schwarz inequality] Suppose 〈·, ·〉 is an inner product on a
vector space V . If x, y ∈ V , then

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉.

†

Proof. Given x, y ∈ V and t ∈ R,

0 ≤〈x+ ty, x+ ty〉
=〈x, x〉+ 2t〈x, y〉+ t2〈y, y〉.

Thus, the discriminate satisfies

|〈x, y〉|2 − 〈x, x〉 〈y, y〉 ≤ 0.

�

Proposition 3.11. If 〈·, ·〉 is an inner product on a vector space V , then the function

‖ · ‖ : V → R defined by ‖x‖ =
√
〈x, x〉 is a norm on V . †

Proof. Here is a proof of the triangle inequality. That the other axioms of a norm are
satisfied is left to the gentle reader.
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To verify the triangle inequality, let x, y ∈ V be given and estimate, using linearity of
the inner product in both variables and Proposition 3.10,

‖x+ y‖2 =〈x+ y, x+ y〉
=〈x, x〉+ 2〈x, y〉+ 〈y, y〉
≤‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2

=(‖x‖+ ‖y‖)2.
�

Remark 3.12. In the case that V has an inner product, the norm ‖ · ‖ of Proposition
3.11 is, unless otherwise noted, understood to be the norm on V and ‖x‖ the norm of a
vector x ∈ V .

In the case of Rn with the (usual) inner product given in Example 3.9 the resulting
norm is the Euclidean norm and metric is the Euclidean distance which will sometimes be
written as d2. Euclidean space refers to (Rn, d2) (for some n). Note that (Rn, d2) is, as a
metric space, distinct from both (Rn, d1) and (Rn, d∞). Generally, Rn refers to Euclidean
space unless indicated otherwise.

With this notation and understating of the meaning of ‖ · ‖, the Cauchy-Schwarz in-
equality says

|〈x, y〉| ≤ ‖x‖ ‖y‖.
�

Do Problem 3.2.

3.3. Open Sets.

Definition 3.13. Let (X, d) be a metric space. A subset U ⊂ X is open if for each x ∈ U
there is an ε > 0 such that

Nε(x) := {p ∈ X : d(p, x) < ε} ⊂ U.

The set Nε(x) is the ε-neighborhood of x. More or less synonymously, an open ball is a set
of the form Nr(y) for some y ∈ X and r > 0. /

Proposition 3.14. Neighborhoods are open sets; i.e., if (X, d) is a metric space, y ∈ X
and r > 0, then the set

Nr(y) = {p ∈ X : d(p, y) < r}
is an open set. †

Proof. We must show, for each x ∈ Nr(y) there is an ε (depending on x) such that Nε(x) ⊂
Nr(y). Accordingly, let x ∈ Nr(y) be given. Thus, d(x, y) < r. Choose ε = r−d(x, y) > 0.
Suppose now that p ∈ Nε(x) so that d(x, p) < ε. Estimate, using the triangle inequality,

d(y, p) ≤ d(y, x) + d(x, p) < d(y, x) + ε = d(y, x) + (r − d(y, x)) = r.

Thus, p ∈ Nr(y). We have shown Nε(x) ⊂ Nr(y) and the proof is complete. �
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Do Problem 3.3.

Example 3.15. In R2 with the Euclidean distance, show E = {(x1, x2) : x1, x2 > 0} is
an open set. 4

Example 3.16. The set [0, 1) ⊂ R is not an open, since, for every ε > 0, the set
Nε(0) = (−ε, ε) contains negative numbers and is thus not a subset of [0, 1). 4

Proposition 3.17. Let (X, d) be a metric space.

(i) ∅, X ⊂ X are open;
(ii) if F ⊂ P (X) is a collection of open sets, then

∪U∈FU
is open; and

(iii) if n ∈ N+ and U1, . . . , Un ⊂ X are open, then

∩nj=1Uj

is open.

†

Corollary 3.18. A subset U of a metric space X is open if and only if it is a union of
neighborhoods. †

Example 3.19. Let Uj = (− 1
j+1

, 1) ⊂ R for j ∈ N. The sets Uj are open in R (they are

open balls). However, the set
[0, 1) = ∩∞j=0Uj

is not open. Thus it is not possible to improve on the last item in the proposition. 4

Example 3.20. The set (−∞, 0) = ∪∞n=0(−2n, 0) = ∪∞n=0Nn(−n) and is therefore open.
We could of course easily checked this directly from the definition of open set. 4

Example 3.21. The set

R2 ⊃ E = {(x1, x2) : xj > 0} = {x ∈ R2 : x1 > 0} ∩ {x ∈ R2 : x2 > 0}.
This provides yet another way to prove E is open. Namely, show that each of the sets on
the right hand side above is open. 4

Do Problem 3.4.

3.3.1. Open sets and norms.

Definition 3.22. Two norms ‖ · ‖ and ‖ · ‖∗ are equivalent if there exists constants
0 < c ≤ C such that

c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖.
/

Though there appears to be some asymmetry in the definition, the notion of equivalent
norms is in fact an equivalence relation on the set of norms on a given vector space.



22

Proposition 3.23. Suppose ‖ · ‖ and ‖ · ‖∗ are norms on a vector space X and let d and
d∗ denote the resulting metrics. If there is a constant C > 0 such that

‖x‖ ≤ C‖x‖∗,
and U ⊂ X is open in the metric space (X, d), then U is open in the metric space (X, d∗).

Hence, if the norms are equivalent, then a set is open in (X, d) if and only if it is open
in (X, d∗). †

Proof. Let Nr(z) and N∗r (z) denote the r-neighborhoods of the point z in the metric spaces
(X, d) and (X, d∗) respectively.

Given x, y ∈ V , the hypothesis imply that

d(x, y) = ‖x− y‖ ≤ C‖x− y‖∗ = Cd∗(x, y).

Hence, N∗r
C

(x) ⊂ Nr(x).

Now suppose U is open in X and x ∈ U . There is an r > 0 such that Nr(x) ⊂ U .
Thus, with ε = r

C
,

N∗ε (x) ⊂ Nr(x) ⊂ U

and it follows that U is open in X∗. �

Proposition 3.24. Let U ⊂ Rn be given. The following are equivalent,

(i) U is open in (Rn, d1);
(ii) U is open in (Rn, d2); and

(iii) U is open in (Rn, d∞).

†

Proof. By Proposition 3.23, it suffices to prove that the norms ‖ · ‖j for j = 1, 2,∞ are
all equivalent.

Let e ∈ Rn denote the vector with each entry equal to 1 and, given x ∈ Rn, let |x|
denote the vector obtained by taking entrywise absolute value. By the Cauchy-Schwarz
inequality,

‖x‖1 =
n∑
j=1

|xj| = 〈|x|, e〉 ≤ ‖x‖2‖e‖2 =
√
n‖x‖2.

On the other hand,

‖x‖2 =

√√√√ n∑
j=1

x2j ≤

√√√√ n∑
j=1

‖x‖2∞ =
√
n‖x‖∞.

Finally,

‖x‖∞ ≤
n∑
j=1

|xj|,

since, |xk| = ‖x‖∞ for some k. �
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Example 3.25. Returning to the example of the set E = {(x, y) : x, y > 0} ⊂ R2}
above, it is convenient to use the d∞ metric to prove E is open; i.e., show that E is open
in (R2, d∞) and conclude that E is open in R2. 4

3.3.2. Relatively open sets.

Definition 3.26. Suppose (Z, d) is a metric space and X ⊂ Z so that (X, d|X×X) is also
a metric space. A subset U ⊂ X is open relative to X or is relatively open, if U is open in
the metric space X. /

Example 3.27. Let X = [0,∞) ⊂ Z = R. The set [0, 1) is open in X, but not in Z. 4

Proposition 3.28. Suppose Z is a metric space and U ⊂ X ⊂ Z. The set U is open in
X if and only if there is an open set W in Z such that U = W ∩X. †

Proof. For notational convenience, given p ∈ U and r > 0, let NX
r (p) = {x ∈ X : d(x, p) <

r} and NZ
r (p) = {x ∈ Z : d(x, p) < r}, the r-neighborhoods of p in X and Z respectively.

Note that
NX
r (p) = NZ

r (p) ∩X.

First, suppose W ⊂ Z is open (in Z) and U = W ∩ X ⊂ X. Given p ∈ U , there is a
δp > 0 such that NZ

δp
(p) ⊂ W since p ∈ W and W is open in Z. Moreover,

NX
δp (p) = NZ

δp(p) ∩X ⊂ W ∩X = U.

It follows that
U ⊂ ∪p∈UNZ

δp(p) ∩X = ∪p∈UNX
δp (p) ⊂ U.

Hence U is a union of neighborhoods (in X) and is thus open in X.

Now suppose U ⊂ X is open relative to X. For each p ∈ U there is an εp > 0 such that
NX
εp (p) ⊂ U . Let

W = ∪p∈UNZ
εp(p)

and note that W is open in Z and

W ∩X = ∪p∈UNZ
εp(p) ∩X = ∪p∈U [NZ

εp(p) ∩X] = ∪p∈UNX
εp (p) = U.

�

Returning to Example 3.27, note that [0, 1) = (−1, 1) ∩X.

3.4. Closed Sets.

Definition 3.29. Let (X, d) be a metric space. A subset C ⊂ X is closed if X \ C is
open. /

Example 3.30. (i) In R the set [0,∞) is closed, since its complement, (−∞, 0) is open.
(ii) The set [0, 1) ⊂ R is neither open nor closed.

(iii) The set Q ⊂ R is neither open nor closed.
(iv) The set F = {(x1, x2) ∈ R2 : x1x2 = 0} is closed.
(v) The sets X and ∅ are both open and closed. They are clopen.
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(vi) Every subset of a discrete metric space is clopen. (See Problem 3.4.)

4

Proposition 3.31. Let (X, d) be a metric space and let x ∈ X and r ≥ 0 be given. The
set

{p ∈ X : d(p, x) ≤ r}
is closed. †

Proof. The complement of {p ∈ X : d(p, x) ≤ r} is the set

U = {p : d(p, x) > r}
and it suffices to prove that U is open. Let y ∈ U be given. Then d(y, x) > r. Let
ε = d(y, x)− r > 0. If z ∈ Nε(y) so that d(z, y) < ε, then,

d(x, z) ≥d(x, y)− d(y, z)

>d(x, y)− ε
=r.

It follows that Nε(y) ⊂ U and thus, since y ∈ U was arbitrary, U is open. �

Corollary 3.32. In a metric space, singleton sets are closed; i.e., if (X, d) is a metric
space and x ∈ X, then {x} is closed. †

Proposition 3.33. Let X be a metric space.

(i) X and ∅ are closed;
(ii) if C1, . . . , Cn are closed subsets of X, then ∪n1Cj is closed; and

(iii) if Cα, α ∈ J is a family of closed subsets of X, then

C = ∩α∈JCα
is closed.

†

Corollary 3.34. A finite set F in a metric space X is closed. †

Proposition 3.35. If C ⊂ R is bounded above, nonempty, and closed, then C has a
largest element. †

Proof. The hypotheses imply sup(C) exist. It is of course an upper bound for C. Suppose
β is an upper bound for C and β /∈ C. Since C is closed, C̃ is open and therefore there is
an ε > 0 such that Nε(β) ⊂ C̃. In particular, if β − ε < x ≤ β, then x /∈ C. Of course if
x > β, then x /∈ C. Hence, β − ε is an upper bound for C and thus β > sup(C) and the
result follows. �

Example 3.36. Let R = Q∩[0, 1] denote the rational numbers in the interval [0, 1]. Since
Q is countable, so is R. Choose an enumeration R = {r1, r2, . . . } of R. Fix 1 > ε > 0 and
let

Vj = N ε

2j+1
(rj)

and V = ∪Vj. Thus V is an open set which contains R.
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The set C = [0, 1] \V is closed because it is the intersection of the closed sets [0, 1] and
Ṽ . On the other hand, its complement contains every rational in the interval [0, 1], but
is also the union of intervals the sum1 of whose lengths is at most

∞∑
j=1

ε

2j
= ε < 1.

Thus C is a closed subset of [0, 1] which contains no rational number, but is large in the
sense that its complement can be covered by open intervals whose lengths sum to at most
ε.

A heuristic is that open sets are nice and closed sets can be strange, while most sets
are neither open nor closed. 4

Do Problem 3.5.

3.5. The interior, closure, and boundary of a set.

Definition 3.37. Let (X, d) be a metric space and S ⊂ X. The closure of S is

S := ∩{C ⊂ X : C ⊃ S, C is closed}.
/

Proposition 3.38. Let S be a subset of a metric space X.

(i) S ⊂ S;
(ii) S is closed;
(iii) if K is any other set satisfying (i) and (ii), then S ⊂ K.

Moreover, S is closed if and only if S = S. †

Definition 3.39. Let (X, d) be a metric space and S ⊂ X. The interior of S is the set

S◦ := ∪{U ⊂ X : U ⊂ S is open}.
/

Proposition 3.40. Let S be a subset of a metric space X.

(i) S◦ ⊂ S;
(ii) S◦ is open;
(iii) if V ⊂ S is an open set, then V ⊂ S◦.

Moreover, S is open if and only if S = S◦. †

Definition 3.41. A point x ∈ X is an interior point of S if there is an ε > 0 such that
Nε(x) ⊂ S. /

Do Problems 3.6, 3.7 and 3.8.

1Series are introduced in Problem 4.17 in the next section and will be treated in detail later, but this
particular series should be familiar from Calculus II.
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Definition 3.42. The boundary of a set S in a metric space X is ∂S = S ∩ S̃. /

Do Problem 3.9

3.6. Exercises.

Exercise 3.1. Show, if a, b, c ≥ 0 and a+ b ≥ c, then

a

1 + a
+

b

1 + b
≥ c

1 + c
.

Show if (X, d) is a metric space, then

d∗(x, y) =
d(x, y)

1 + d(x, y)

is a metric on X too.

Exercise 3.2. Show that the functions in Example 3.5 are both norms on Rn.

Exercise 3.3. Verify the claims made in Example 3.9.

Exercise 3.4. Show that the subset S = {(x, y) ∈ R2 : x 6= y} is open.

Exercise 3.5. Verify that the discrete metric is indeed a distance function.

Exercise 3.6. Let X be a nonempty set and d the discrete metric. Fix a point z ∈ X.
Is the closure of the set N1(z) equal to {x ∈ X : d(x, z) ≤ 1}?
Exercise 3.7. Show that the set

{(x1, x2) : x1, x2 ≥ 0} ⊂ R2

is closed.

Show that the set
{(x1, x2) ∈ R2 : x1x2 = 1}

is closed.

Exercise 3.8. By Proposition 3.6,

d(f, g) = (

∫ 1

0

|f − g|2dt)
1
2

defines a metric on the space of polynomials P . For n ∈ N, let

pn(t) =
√

2n+ 1 tn.

Find d(pn, pm).

Exercise 3.9. Determine the interior, closure and boundary of an interval (a, b] in R.
What is the boundary of (0, 1] as a subset of the metric space (0,∞)?

Exercise 3.10. Let S be a subset of a discrete metric space X. Determine the interior,
boundary and closure of S.

Exercise 3.11. Determine ∂∂(0, 1].

Let S = {(x, 0) : 0 < x < 1} ⊂ R2. Find ∂S and ∂∂S?
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3.7. Worked Examples.

Sample Problem 3.1. Let X be a metric space. Show,

(i) if S, T ⊂ X, then S ∪ T = S ∪ T ; and
(ii) if S1, S2, · · · ⊂ X, then

∪∞j=1Sj ⊃ ∪∞j=1Sj.

Solution. Since the finite union of closed sets is again closed, S ∪ T is a closed set which
contains both S and T and hence contains S ∪ T . The inclusion S ∪ T ⊂ S ∪ T now
follows from Proposition 3.38(iii).

Now suppose S1, S2, · · · ⊂ X and let, for notational ease, R = ∪∞j=1Sj. For each j the

inclusion Sj ⊂ R implies Sj ⊂ R. Hence, by Proposition 3.38(iii), Sj ⊂ R. Consequently,
∪∞j=1Sj ⊂ R. Thus, item (ii) is now proved. Moreover, choosing S1 = S and S2 = T and

Sj = ∅ for j ≥ 3 proves the inclusion S ∪ T ⊂ S ∪ T , and the proof of (i) is complete.

Though it was not asked for in the problem, here is an example where strict inclusion
holds in (ii). Let X = R and Sj = [1

j
, 1] for j ∈ N+. In particular, each Sj is closed so

that Sj = Sj. Note that ∪j=1Sj = (0, 1] which is not a closed set (so this is an example
where the union of closed sets is not closed).

Sample Problem 3.2. Fix p ∈ Rn and let r > 0 be given. Show that the closure of
Nr(p) is Br(p).

Solution. For notational purposes, let S = Nr(p) and T = Br(p). Since T is closed and
contains S, it follows from Proposition 3.38 that S ⊂ T . To prove the reverse inclusion,
we use the criteria that q ∈ S if and only if for each ε > 0

Nε(q) ∩ S 6= ∅.
Further we may assume that q ∈ T \ S. In this case, d(p, q) = r. Given ε > 0, choose
s = min{ ε

r
, 1} and let

z = q + s(p− q).
Since

d(q, z) = ‖z − q‖ = s‖p− q‖ < ε,

z ∈ Nε(q). On the other hand,

d(p, z) = ‖z − p‖ = ‖(1− s)(q − p)‖ = (1− s)r < r,

where s < 1 was used in the second equality. Hence z ∈ S and the proof is complete.

3.8. Problems.

Problem 3.1. Suppose (X, dX) and (Y, dY ) are metric spaces. Define d : (X×Y )× (X×
Y )→ R by

d((x, y), (a, b)) = dX(x, a) + dY (y, b).

Prove d is a metric on X × Y .
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Problem 3.2. Show, if V is a vector space with an inner product, then the norm

(1) ‖v‖ =
√
〈v, v〉

satisfies the parallelogram law ,

‖v + w‖2 + ‖v − w‖2 = 2(‖v‖2 + ‖w‖2).
Explain why this is called the parallelogram law.

Recall the norm ‖ · ‖1 on Rn defined in Example 3.5. Does this norm come from an
inner product?

Problem 3.3. Describe the neighborhoods in a discrete metric space (X, d).

Problem 3.4. Determine, with proof, the open subsets of the discrete metric space (X, d).

Problem 3.5. Given a metric space Z and F ⊂ X ⊂ Z define F is relatively closed in
X. Show, F is relatively closed in X if and only if there is a closed set C ⊂ Z such that
F = C ∩X.

Prove that the closure of F ⊂ X, as a subset of X, is X ∩ F , where F is the closure of
F in Z. Conclude, if F is relatively closed, then F = F ∩X.

Finally, show, if

(i) A,B ⊂ Z;
(ii) X = A ∪B; and
(iii) A ∩B = ∅,

then B = Ã ∩X and hence is open relative to X.

Problem 3.6. Show,

I(S) = {s ∈ S : s is an interior point of S} = S◦.

Problem 3.7. Prove,

S = (̃S̃)◦.

Suggestion: Use the properties of closure and interior. For instance, note that S̃ is open
and contained in S̃.

Problem 3.8. Show S consists of those points x ∈ X such that for every ε > 0, Nε(x) ∩
S 6= ∅. Equivalently, for every ε there exists a y ∈ S such that d(x, y) < ε.

Show also, if S is a non-empty subset of a metric space X and x ∈ X, then x is in S if
and only if

inf{d(x, s) : s ∈ S} = 0.

Problem 3.9. Prove that x ∈ ∂S if and only if for every ε > 0 there exists s ∈ S, t ∈ S̃
such that d(x, s), d(x, t) < ε.

Prove S is closed if and only if S contains its boundary; and S is open if and only if S
is disjoint from its boundary.
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Problem 3.10. Show, in R2, if x ∈ R2 and r > 0, then the closure of

Nr(x) = {y ∈ R2 : d(x, y) = ‖x− y‖ < r}

is the set

{y ∈ R2 : d(x, y) = ‖x− y‖ ≤ r}.

Is the corresponding statement true in all metric spaces?

Problem 3.11. Show if A and B are disjoint closed sets in a metric space X, then there
exists disjoint open sets U and V such that A ⊂ U and B ⊂ V . (This separation property
is expressed by saying a metric space is normal.) Suggestion: by Problem 3.8, for each
a ∈ A there exists an εa > 0 such that N2εa(a) ∩ B = ∅. Likewise there exists, for each
b ∈ B, an ηb > 0 such that N2ηb(b) ∩ A = ∅. Let U = ∪a∈ANεa(a) and define V similarly.

Problem 3.12. Prove Proposition 3.40.

Problem 3.13. Show that the closure of Q in R is all of R. (Suggestion: Use Problem
3.7 and Theorem 2.10 item iii). Compare with Remark 2.11.

Problem 3.14. Show that the closure of Q̃ (the irrationals) in R is all of R. Combine
this problem and Problem 3.13 to determine the boundary of Q (in R).

Problem 3.15. Suppose (X, d) is a metric space and x ∈ X and r > 0 are given. Show
that the closure of Nr(x) is a subset of the set

{y ∈ X : d(x, y) ≤ r}.

Give an example of a metric space X, an x ∈ X, and an r > 0 such that the closure of
Nr(x) is not the set

{y ∈ X : d(x, y) ≤ r}.

Compare with Problem 3.10.

Problem 3.16. Let (X, d) and d∗ be as in Exercise 3.1. Do the metric spaces (X, d) and
(X, d∗) have the same open sets?

Problem 3.17. Suppose d and d′ are metrics on the set X and there is a constant C
such that, for all x, y ∈ X,

d(x, y) ≤ Cd′(x, y).

Prove, if U is open in (X, d), then U is open in (X, d′).

Thus, if there is also a constant C ′ such that

d′(x, y) ≤ C ′d(x, y),

then the metric spaces (X, d) and (X, d′) have the same open sets.
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4. Sequences

4.1. Definitions and examples.

Definition 4.1. A sequence is a function a with domain of the form {n ≥ n0 : n ∈ Z}
for some n0 ∈ Z. It is customary to write an = a(n) to denote the value of this function
at n ∈ N and (an) or (an)n or (an)∞n=n0

for this function.

If the an lie in the set X, then (an) is a sequence from X.

Suppose (X, d) is a metric space and L ∈ X. The sequence (an) (from X) converges to
L, denoted

lim
n→∞

an = L,

if for every ε > 0 there is an N ∈ N such that d(an, L) < ε for all n ≥ N. In this case, L
is the limit of the sequence.

The sequence (an) converges if there exists an L ∈ X such that (an) converges to L. A
sequence which does not converge is said to diverge. /

Remark 4.2. From the (positive definite) axioms (items (i) and (ii) of Definition 3.1) of
a metric, if x, y are points in a metric space (X, d) and if d(x, y) < ε for every ε > 0, then
x = y. �

The following proposition list some of the most basic properties of limits. The first
justifies the terminology the limit (as opposed to a limit) above.

Proposition 4.3. Let (an)∞n=k and (bn)∞n=m be sequences from the metric space X.

(i) If (an) converges, then its limit is unique;
(ii) if there is an N and an ` such that for n ≥ N , bn = an+`, then (an) converges if and

only if (bn) converges and moreover in this case the sequences have the same limit;
(iii) If there is a sequence (rn) of real numbers which converges to 0, a real number C,

and positive integer M such that, for m ≥M ,

d(am, L) ≤ Crm,

then (an) converges to L; and
(iv) if (an)n is a sequence from R (X = R), c ∈ R, and (an) converges to L, then (can)

converges to cL.

†

Item (ii) says that we need not be concerned with keeping close track of k. In partic-
ular if ` ≥ k, then (aj)

∞
j=k converges if and only if (aj)

∞
j=` converges. Item (iv) follows

immediately from Item (iii).

Example 4.4. By Theorem 2.10(i), the sequence ( 1
n
)∞n=1 converges to 0 in R; however

it does not converge in the metric space (0, 1] (as a subspace of R of course) as can be
proved using item (i) of the previous proposition and the fact that the sequence converges
to 0 (and not a point in (0, 1]) in R.

The sequence ( n
n+1

)n converges to 1 (in R). 4
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Example 4.5. If 0 ≤ a < 1, then the sequence (an) converges to 0.

To prove this statement, recall that we have already shown (see Example 2.12) that
inf({an : n ∈ N}) = 0. Thus, given ε > 0 there is an N such that 0 ≤ aN < ε. Hence, if
n ≥ N , then |an − 0| ≤ aN < ε and the proof is complete. 4

Do Problems 4.1, 4.2, 4.3 and Exercise 4.2.

We will make repeated use of the following simple identity, valid for all real r and
positive integers m,

(2) 1− rm = (1− r)(1 + r + r2 + . . . rm−1).

Proposition 4.6. In (the metric space) R,

(i) if ρ > 0, then the sequence (ρ
1
n ) converges to 1; and

(ii) the sequence (n
1
n ) converges to 1.

†

Proof. To prove (i), first suppose ρ > 1. Using Equation (2) with m = n and r = ρ
1
n gives

ρ
1
n − 1 =

ρ− 1∑n−1
j=0 ρ

j
n

.

Consequently,

|ρ
1
n − 1| < ρ− 1

n
.

Thus (ρ
1
n ) converges to 1 by Proposition 4.3(iii) and Example 4.4.

If 0 < ρ < 1, then σ = 1
ρ
> 1 and (σ

1
n ) converges to 1. On the other hand,

|1− ρ
1
n | = ρ

1
n |σ

1
n − 1| ≤ |σ

1
n − 1|,

from which the result follows.

To prove (ii) note that the Binomial Theorem gives, for x > 0,

(1 + x)n =
n∑
j=0

(
n
j

)
xj ≥ n(n− 1)

2
x2.

Thus, with x = n
1
n − 1,

n ≥ n(n− 1)

2
(n

1
n − 1)2.

Hence, for n ≥ 2,

(
2

n− 1
)
1
2 ≥ |n

1
n − 1| ≥ 0.

To complete the proof it suffices, by Proposition 4.3 (iii), to show that the sequence

(( 2
n−1)

1
2 ) converges to 0. Accordingly, given ε > 0 choose N ∈ N+ such that N ≥ 2

ε2
+ 1

and observe if n ≥ N , then N ≥ 2 and

ε ≥
√

2

N − 1
≥
√

2

n− 1
.
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�

Remark 4.7. The limit of a sequence depends only upon the notion of open sets. See
Problem 4.4. In particular if (X, d) and (X, d∗) have the same open sets, then they have
the same convergent sequences. �

4.2. Sequences and closed sets.

Proposition 4.8. Suppose X is a metric space, S ⊂ X and L ∈ X.

(i) If for every ε > 0, there exists a point s ∈ S such that d(s, L) < ε (equivalently
Nε(L) ∩ S 6= ∅), then there is a sequence (sn) from S which converges to L.

(ii) Conversely, if there exists a sequence (sn) from S which converges to L, then for
every ε > 0 the set Nε(L) ∩ S 6= ∅.

(iii) The set S is closed if and only if every sequence from S which converges in X actually
converges in S.

†

Proof. To prove item (i), given n ∈ N+ there exists sn ∈ S such that d(sn, L) < 1
n
. It

follows that (sn) converges to L.

To prove item (ii), suppose there is a sequence (sn) from S which converges to L. Given
ε > 0 there is an N such that d(an, L) < ε for all n ≥ N . Hence sN ∈ Nε(L) ∩ S.

Now suppose that S is not closed, equivalently S̃ is not open. In this case, there exists
an L ∈ S̃ such that for every ε > 0 there is an s ∈ Nε(L)∩ S. Hence, by item (i), there is
a sequence from S which converges to L.

Finally, suppose S is closed and (an) is a sequence from S which converges to L ∈ X.
Since S̃ is open, if y /∈ S, then there is an ε > 0 such that Nε(y) ∩ S = ∅. In particular,
d(an, y) ≥ ε for all n and (an) does not converge to y. Hence L ∈ S and item (iii) is
established. �

Do Problems 4.5, 4.6 and 4.7.

Suppose X is a metric space and S is a subset of X. A point p ∈ X is a limit point
of S if there exists a sequence (sn) from S \ {p} which converges to p. Problem 4.5 gives
an often useful alternate characterization of limit point and in Problem 4.6 you are asked
to show that a set is closed if and only if it contains all its limit points. For examples of
limit points, see Exercise 4.12.

4.3. The monotone convergence theorem for real numbers. For numerical se-
quences, that is sequences from R, limits are compatible with the order structure on R.

Proposition 4.9. Suppose (an) and (bn) are sequences from R and c ∈ R.

(i) If an ≤ bn + c for all n and if both sequences converge, then

lim
n
an ≤ lim

n
bn + c.
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(ii) If (an), (bn), and (cn) are all sequences from R, if there is an N so that for n ≥ N ,

an ≤ bn ≤ cn

and if (an) and (bn) converge to the same limit L, then (bn) also converges to L.

†

The second part of the Proposition is a version of the squeeze theorem and in Problem
4.8 you are asked to provide a proof.

Proof. Let A and B denote the limits of (an) and (bn) respectively. Let ε > 0 be given.
There is an N so that for n ≥ N both |an−A| < ε and |bn−B| < ε. Hence, A−B− c =
(A− an) + (an − bn − c) + (bn −B) < 2ε. �

Definition 4.10. A sequence (an) from R is increasing (synonymously non-decreasing)
if an ≤ an+1 for all n. The sequence is strictly increasing if an < an+1 for all n.

A sequence is eventually increasing if there is an N so that the sequence (an)∞n=N is
increasing.

The notion of a decreasing sequence is defined analogously. A monotone sequence is a
sequence which is either increasing or decreasing.

The numerical sequence (an)∞n=n0
is bounded above if there is a C such that an ≤ C for

all n ≥ n0. Equivalently, (an) is bounded above if the set {an : n ≥ n0} (the range of the
sequence) is bounded above as a subset of R. /

Definition 4.11. A sequence (an) of real numbers diverges to infinity, written

lim
n→∞

an =∞,

if for each C > 0 there is an N such that an > C for all n ≥ N . /

If (an) diverges to infinity, then (an) diverges (does not converge). Indeed, given L ∈ R
there exists an N such that an ≥ L+ 1 for all n ≥ N . For a general result see Proposition
4.18.

Theorem 4.12 (monotone convergence for real numbers). If (an) is an increasing se-
quence from R, then (an)∞n=n0

converges if and only if it is bounded above. If it is bounded
above then it converges to

sup{an : n ≥ n0}
If it is not bounded above, then it diverges to infinity.

Remark 4.13. Generally, results stated for increasing sequences hold for eventually in-
creasing sequences in view of Proposition 4.3(ii). �

Proof. Suppose the sequence is bounded above. The set R = {an : n ∈ N} (the range
of the sequence) is nonempty and bounded above and therefore has a least upper bound.
Let A = sup(R). Given ε > 0 there is an r ∈ R such that A − ε < r. There is an N so
that r = aN . If n ≥ N , then, since the sequence is increasing, 0 ≤ A− an ≤ A− aN < ε.
Hence (an) converges to A.
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Suppose now that (an) is increasing and not bounded above. Since it is not bounded
above, given C there is an N such that aN > C. Since it is increasing, if n ≥ N , then
an ≥ aN > C and thus (an) diverges to infinity.

�

Do Problem 4.9.

4.3.1. The real numbers as infinite decimals. Here is an informal discussion of infinite
decimal (base ten) expansions. An infinite decimal expansion (base 10) is an expression
of the form

a = a0.a1a2a3 · · · ,
where a0 ∈ Z and aj ∈ {0, 1, 2, . . . , 9}. Let

sn = a0 +
n∑
j=1

aj
10j

and note that the sequence (sn) is increasing and bounded above by a0 + 1. Thus the
sequence (sn) converges to some real number s and we identify a with this real number.

Conversely, given a real number s there is a smallest integer m > s. Let a0 = m − 1.
Recursively choose aj so that, with sn = a0.a1 · · · an, we have 0 ≤ s − sn ≤ 1

10n
. In this

case (sn) converges to s and we can identify s with an infinite decimal expansion.

Note that a real number can have more than one decimal expansion. For example both
0.999 · · · and 1.000 · · · represent the real number 1.

Remark 4.14. Note too it makes sense to talk of expansions with other bases, not just
base 10. Base two, called binary, is common. Base three is called ternary. For n ∈ N
with n ≥ 2, expansions base n are called n-ary. �

Remark 4.15. Here is an informal argument that a rational number has a repeating
infinite decimal expansion.

Suppose x is rational, x = m
n

. Note that the Euclidean division algorithm produces
a decimal representation of x. At each stage there are at most n choices of remainder.
Hence, after at most n steps of the algorithm, we must have a repeat remainder. From
there the decimal repeats. �

4.3.2. An abundance of real numbers.

Proposition 4.16. The set R is uncountable. †

Proof. It suffices to show if f : N → R, then f is not onto. For notational ease, let
xj = f(j).

Choose b0 > a0 such that x0 /∈ I0 := [a0, b0]. Next choose a1 < b1 such that a0 ≤ a1 <
b1 ≤ b0 and x1 /∈ I1 = [a1, b1]. Continuing in this fashion, construct, by the principle of
recursion, a sequence of intervals Ij = [aj, bj] such that

(i) I0 ⊃ I1 ⊃ I2 ⊃ · · · ;
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(ii) bj − aj > 0; and
(iii) xj /∈ Ik for j ≤ k.

Observe that the recursive construction of the sequences of endpoints (aj) and (bj)
implies that a0 ≤ a1 ≤ a2 < · · · < b2 ≤ b1 ≤ b0; i.e., (aj) is increasing and is bounded
above by each bm. By Theorem 4.12 (aj) converges to

y = sup{aj : j ∈ N}.
In particular, am ≤ y ≤ bm for each m. Thus y ∈ Im for all m. On the other hand, for
each k,

xk /∈ Ik
and so y 6= xk. Hence y is not in the set {xk : k ∈ N} which is the range of f . �

Do Problem 4.10.

4.4. Limit theorems.

Definition 4.17. A sequence (an) from a metric space X is bounded if there exists an
x ∈ X and R > 0 such that {an : n ∈ N} ⊂ NR(x). /

Proposition 4.18. Convergent sequences are bounded. †

Proof. Suppose (an) converges to L in the metric space X. Observe, with ε = 1 there is
an N such that if n ≥ N , then d(an, L) < 1. Choosing

R = max({d(aj, L) : 0 ≤ j < N} ∪ {1}) + 1

gives {an : n ∈ N} ⊂ NR(L). Hence {an : n ∈ N} is bounded. �

Proposition 4.19. Let (an) be a sequence from Rg and write an = (a1,n, . . . , ag,n). The
sequence (an) converges to L = (L1, . . . , Lg) ∈ Rg if and only if (aj,n)n converges to Lj
for each 1 ≤ j ≤ g. †

Proposition 4.20. Let (an) and (bn) be sequences from Rg and c ∈ R. If (an) converges
to A and (bn) converges to B, then

(i) (an + bn) converges to A+B;
(ii) (can) converges to cA;
(iii) (an · bn) converges to A ·B; and
(iv) if g = 1 and bn 6= 0 for each n and B 6= 0, then an

bn
converges to A

B
.

†

Proof. Proofs of the first two items are routine and left to the reader.

To prove the third item, let ε > 0 be given. Since the sequence (bn) converges, it is
bounded by say M . Since (an) and (bn) converge to A and B respectively, there exists
Na and Nb such that if n ≥ Na, then

‖A− an‖ ≤
ε

2(M + 1)
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and likewise if n ≥ Nb, then

‖B − bn‖ <
ε

2(‖A‖+ 1)
.

Choose N = max{Na, Nb}. If n ≥ N , then

‖A ·B − an · bn‖ =‖A · (B − bn) + (A− an) · bn‖
≤‖A‖‖B − bn‖+ ‖A− an‖‖bn‖
≤‖A‖‖B − bn‖+ ‖A− an‖M
<ε.

In view of item (iii), to prove the last statement, it suffices to prove it under the

assumption that an = 1 for all n. Since (bn) converges to B 6= 0, with ε = |B|
2
> 0 there

is an M such that if n ≥ M , then |B − bn| < |B|
2

. Using this inequality and rearranging

|B − bn|+ |bn| ≥ |B| gives |bn| ≥ |B|
2

. For such n

| 1
B
− 1

bn
| = |B − bn|
|B| |bn|

≤ |B − bn|
2

|B|2
.

The remaining details are left to the gentle reader. �

Proposition 4.21. In the metric space R, if 0 ≤ r < 1, then both (rn) and (nrn) converge
to 0. †

Proof. That (rn) converges to 0 is Example 4.5. To prove that (nrn) converges to 0, note
that, by Example 4.4, for n sufficiently large

n

n+ 1
> r.

It follows that there is an N such that for n ≥ N the sequence (nrn) is decreasing. Since
it also bounded below by 0 it converges to some L ≥ 0. Hence, using (rn) converges to 0,

rL = rL+ 0 = r limnrn + lim rn+1 = lim(n+ 1)rn+1 = L.

Since r 6= 1, it follows that L = 0. �

Do Problem 4.11.

Proposition 4.22. Suppose (an) is a sequence of nonnegative numbers, p, q ∈ N+ and
r = p

q
. If (an) converges to L, then (arn) converges to Lr. †

Proof. Item (iii) of Proposition 4.20 with g = 1 and bn = an shows that (a2n) converges to
L2. An induction argument now shows that (apn) converges to Lp.

To show (a
1
q
n ) converges to L

1
q , first observe that L ≥ 0. Suppose L > 0. In this case,

the identity,

(xq − yq) = (x− y)

q−1∑
j=0

xjyq−1−j
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applied to x = a
1
q
n and y = L

1
q gives,

|an − L| = |a
1
q
n − L

1
q |

q−1∑
j=0

a
j
q
nL

q−1−j
q ≥ |a

1
q
n − L

1
q |L

q−1
q .

From here the remainder of the argument is easy and left to the gentle reader. �

Have another look at Problem 4.11.

4.5. Subsequences.

Definition 4.23. Given a sequence (an) and an increasing sequence n1 < n2 < . . . of
natural numbers, the sequence (bj = anj)j is a subsequence of (an).

Alternately, a sequence (bj) is a subsequence of (an) if there is a strictly increasing
function σ (from the domain of b to that of a) such that bj = aσ(j). /

Example 4.24. The sequence ( 1
j2

) is a subsequence of ( 1
n
) (choosing nj = j2 for j ≥ 1).

The constant sequences (−1) and (1) are both subsequences of ((−1)n). 4

Proposition 4.25. Suppose (an) is sequence in a metric space X. If (an) converges to
L ∈ X, then every subsequence of (an) converges to L. †

This proposition is an immediate consequence of Problem 4.1.

Note that Proposition 4.25 gives convenient criteria for a sequence to diverge. Namely,
if (an) has a divergent subsequence, then (an) is divergent. Similarly, if (an) has subse-
quences (bj) and (ck) which converge to B and C respectively and B 6= C, then (an) is
divergent.

Do Problem 4.12.

Proposition 4.26. Let (xn) be a sequence from a metric space X and let y ∈ X be given.
There exists a subsequence (xnk) of (xn) such that (xnk)k converges to y if and only if for
every ε > 0 the set

Jε = {n ∈ N : d(y, xn) < ε}
is infinite. †

Proof. Suppose for each ε the set Jε is infinite. With ε = 1 there is an n1 such that
d(y, xn1) < 1. Suppose now that n1 < n2 · · · < nk have been constructed so that
d(y, xnj) <

1
j

for each 1 ≤ j ≤ k. Since the set {n : d(y, an) < 1
k+1
} is infinite, there

exists a nk+1 > nk such that d(y, ank+1
) < 1

k+1
. Thus, by recursion, we have constructed

a subsequence (ank) which converges to y.

For the converse, suppose the subsequence (xnk)k converges to y. Given ε > 0 the set

Iε = {nk : d(xnk , y) < ε}
is infinite (since there is a K such that d(ank , y) < ε for k ≥ K). The observation Iε ⊂ Jε
completes the proof. �
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4.6. The limits superior and inferior.

Proposition 4.27. Given a bounded sequence (an) of real numbers, let

(3) αn = sup{aj : j ≥ n}.
The sequence (αn) is decreasing and bounded below and hence converges. †

The proof of the Proposition is left as an exercise (see Problem 4.13.)

Definition 4.28. The limit of the sequence (αn) of Equation (3) is called the limsup or
limit superior of the sequence (an) and denoted lim sup an or liman. The liminf is defined
analogously. /

In the case that (an) is not bounded above, define lim sup an = ∞. In the case that
(an) is bounded above, but not necessarily below, the sequence (αn) is defined and it is
not bounded below if and only if (an) converges to −∞. In this latter case, define the
lim sup an = −∞.

Proposition 4.29. Suppose (an) is a bounded sequence and let L = lim sup an. Then
the set {n : an ≥ ρ} is finite for all ρ > L, and infinite for all ρ < L.

Conversely, if L′ is a real number such that {n : an ≥ ρ} is finite for all ρ > L′, and
infinite for all ρ < L′, then L′ = L.

†

Proof. Suppose ρ > L. With notation as above, with ε = ρ− L, there is an N such that
αn−L < ρ−L for all n ≥ N . Thus there is an N such that αN < ρ and thus, an < ρ for
all n ≥ N . Now suppose ρ < L. In this case, αN ≥ L > ρ for all N . In particular, there
exists an element of the set {am : m ≥ N} which exceeds ρ; i.e., there is an n ≥ N such
that an > ρ.

The proof of the converse is left as an exercise. See Problem 4.18. �

Do Problem 4.16.

Example 4.30. Here are some simple examples.

(i) The lim sup and lim inf of (sin(π
2
n)) are 1 and −1 respectively.

(ii) The lim sup and lim inf of the sequence ((−1)n(1+ 1
n
)) are also 1 and −1 respectively.

(iii) The lim inf of the sequence ((1 − (−1)n)n) is 0. It has no lim sup. Alternately, the
lim sup could be interpreted as ∞.

4

Observe that inf{aj : j ≥ n} ≤ an ≤ sup{aj : j ≥ n} for each n. Do Exercise 4.10.

Proposition 4.31. A bounded sequence (an) converges if and only if

lim sup an = lim inf an

and in this case (an) converges to this common value. †
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Proof. For notational purposes, let αn = sup{aj : j ≥ n} and let γn = inf{aj : j ≥ n}.
Suppose

limαn = lim sup an = lim inf an = lim γn

and let A denote this common value. Observe that γn ≤ an ≤ αn for all n. Hence, by the
Squeeze Theorem, Problem 4.8, (an) converges to A.

Now suppose (an) converges to a. Given ε > 0, there is an N such that if j ≥ N ,
then |aj − a| < ε. In particular, for j ≥ N , we have aj ≤ a + ε and thus αN ≤ a + ε.
Consequently, if n ≥ N , then

a− ε < an ≤ αn ≤ αN ≤ a+ ε

and therefore |αn − a| ≤ ε. It follows that (αn) converges to a and therefore

lim sup an = a.

By symmetry,
lim inf an = a.

�

Do Problem 4.14.

Lemma 4.32. If (an) is a bounded sequence of non-negative real numbers, and if (cn) is
a sequence of nonnegative reals which converges to the c, then lim sup cnan = c lim sup an.
(If (an) is unbounded (but still nonnegative) so that lim sup an = ∞, and c > 0, then
lim sup cnan =∞ too.) †

The proof is left to the gentle reader as Problem 4.15.

Proposition 4.33. [Optional] Suppose (an) is a bounded sequence of real numbers. Given
x ∈ R, let Jx = {n : an > x} and let

S = {x ∈ R : Jx is infinite}.
Then,

lim sup an = sup(S).

†

Proof. For notational ease, let αm = sup{an : n ≥ m} and let α = lim sup an

Observe that Jx is infinite if and only if for each n ∈ N there is an m ≥ n such m ∈ Jx;
i.e., there is an m ≥ n such that that am > x.

To prove α is an upper bound for S, let x ∈ S be given. Given an integer n there is an
m ≥ n such that am > x. Hence αn > x. It follows that α ≥ x.

To prove that α is the least upper bound of S, suppose x < α. Given n, it follows that
x < αn. Hence, x is not an upper bound for the set {aj : j ≥ n} which means there is
an m ≥ n such that x < am ≤ αn. This shows Jx is infinite. Thus x ∈ S. It follows that
(−∞, α) ⊃ S and thus if β is an upper bound for S, then β ≥ α. Hence α is the least
upper bound of S. �
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4.7. Worked Examples.

Sample Problem 4.1. Let x0 = 2 and define, recursively, xn+1 = xn
2

+ 1
xn

. Show that

(xn) converges (in R).

Solution. It suffices to show that the sequence is decreasing and bounded below. To see
that (xn) is bounded below, it is enough to observe that xn > 0 and show that (x2n) is
bounded below. To this end, note that, if a > 0 and a2 ≥ 2, then

(
a

2
+

1

a
)2 − 2 = (

a

2
− 1

a
)2 ≥ 0

Thus, arguing by induction, if xn > 0, then x2n+1 ≥ 2. Since x0 = 2, we conclude x2n ≥ 2
for all n.

Now to see that (xn) is decreasing, note that

xn − xn+1 =
xn
2
− 1

xn
=
x2n − 2

2xn
≥ 0.

Sample Problem 4.2. Show, arguing directly from the definitions, that the numerical
sequence (sequence from R) (an) given by

an =
n2 + 2

n2 − n+ 1

converges to 1.

Solution. Observe that,

n2

2
− n+ 1 =

1

2
[(n− 1)2 + 1] ≥ 0.

Hence n2 − n+ 1 ≥ n2

2
. Further, n+ 1 ≤ 2n for n ≥ 1.

Now, given ε > 0 choose, by Theorem 2.10, an N ∈ N+ such that N ≥ max{1, 4
ε
}. For

n ≥ N ,

|an − 1| = | n+ 1

n2 − n+ 1
| ≤ 2n

n2

2

=
4

n
≤ 4

N
< ε.

4.8. Exercises.

Exercise 4.1. Show, arguing directly from the definitions, that the numerical sequences

an =
2n− 3

n+ 5
, n ≥ 0;

bn =
n+ 3

n2 − n− 1
n ≥ 2

converge.
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Exercise 4.2. By negating the definition of convergence of a sequence, state carefully
what it means for the sequence (an) from the metric space X to not converge. The
statement should start with: For every L ∈ X there exists ... .

Show that the sequence (from R) (an = (−1)n) does not converge, arguing directly
from the definitions. Suggestion, show if L 6= 1, then (an) does not converge to L; and if
L 6= −1, then (an) does not converge to L.

Exercise 4.3. Consider the sequence (sn) from R defined by

sn =
n∑
j=1

j−2.

Show by induction that

sn ≤ 2− 1

n
.

Prove that the sequence (sn) converges.

Exercise 4.4. Define a sequence from R as follows. Fix r > 1. Let a1 = 1 and define
recursively,

an+1 =
1

r
(an + r + 1).

Show, by induction, that (an) is increasing and bounded above by r+1
r−1 . Does the sequence

converge?

Exercise 4.5. Return to Exercise 4.1, but now verify the limits using Theorem 4.20
together with a little algebra.

Exercise 4.6. Find the limit in Exercise 4.4.

Exercise 4.7. A point p in a metric space X is a subsequential limit of a sequence (an)
if there is a subsequence (ank)k of (an) which converges to p. Let σ : N→ Q ∩ [0, 1] be a
bijection. What are the subsequential limits of the sequence (σ(n))?

Exercise 4.8. Prove Proposition 4.3(iii). Show that Item (iv) is a consequence of Item
(iii).

Exercise 4.9. Show, if (an) is a bounded sequence of real numbers, then lim sup an =
− lim inf(−an).

Exercise 4.10. Suppose (an) is a bounded sequence of real numbers. Prove

lim inf an ≤ lim sup an.

Give an example which shows the inequality can be strict.

Exercise 4.11. Show, with out appealing to the existence of square roots, if (an) is a
sequence of real numbers and (a2n) converges to 0, then (an) converges to 0. (Suggestion:
prove the contrapositive.) Note that this exercise provides a route to complete the proof
of Propsition 4.6(ii) without appealing to the existence of square roots.

Exercise 4.12. Let X be a set and S ⊂ X. Let S ′ denote the set of limit points of S (in
X). Determine carefully the sets S ′ for the sets S below.
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(i) S is finite;
(ii) X = R and S = Z;
(iii) X = R and S = (0, 1);
(iv) X = R and S = [0, 1];
(v) X = R and S = { 1

n
: n ∈ N+};

(vi) S = X = { 1
n

: n ∈ N+}.
(vii) X = R and S = [0, 1] ∪ {2}.

4.9. Problems.

Problem 4.1. Suppose (an), a sequence in a metric space X, converges to L ∈ X. Show,
if σ : N→ N is one-one, then the sequence (bn = aσ(n))n also converges to L.

Problem 4.2. Suppose (an) is a sequence from R. Show, if (an) converges to L, then the
sequence (of Cesaro means) (sn) defined by

sn =
1

n+ 1

n∑
j=0

aj

also converges to L. Is the converse true?

Problem 4.3. Suppose (an) and (bn) are sequences from a metric space X. Show, if
both sequences converge to L ∈ X, then (cn), defined by c2n = an and c2n+1 = bn, also
converges to L.

Problem 4.4. Suppose d and d′ are both metrics on X and that the metric spaces (X, d)
and (X, d′) have the same open sets. Show, the sequence (an) from X converges in (X, d)
if and only if it converges in (X, d′) and then to the same limit.

Problem 4.5. Let S be a subset of a metric space X.

Prove that y ∈ X is a limit point of S if and only if for every ε > 0 there exists a point
s ∈ S such that s 6= y and d(s, y) < ε (equivalently Nε(y) ∩ (S \ {y}) 6= ∅).

Prove that S is closed if and only if S contains all its limit points. (Often this limit
point criteria is taken as the definition of closed set.)

Problem 4.6. Let S ′ denote the set of limit points of a subset S of a metric space X.
(See Problem 4.5.) Prove that S ′ is closed.

Problem 4.7. Show, if C is a subset of R which has a supremum, say α, then there is a
sequence (cn) from C which converges to α. Use this fact, plus Proposition 4.8, to give
another proof of Proposition 3.35.

Problem 4.8. [A squeeze theorem] Suppose (an), (bn), and (cn) are sequences of real
numbers. Show, if an ≤ bn ≤ cn for all n and both (an) and (cn) converge to L, then (bn)
converges to L.

Problem 4.9. Suppose (an) is a sequence of positive real numbers and assume

L = lim
an+1

an
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exists. Show, if L < 1, then (an) converges to 0 by completing the following outline (or
otherwise).

(i) Choose L < ρ < 1.
(ii) Show there is an M so that if m ≥M , then am+1 ≤ ρam;

(iii) Show aM+k ≤ ρkaM for k ∈ N;
(iv) Show an ≤ ρn aM

ρM
for n ≥M ;

(v) Complete the proof.

Give an example where (an) converges to 0 and L = 1; and give an example where (an)
does not go to 0, but L = 1.

Prove, if 0 ≤ L < 1, and p is a positive integer, then (npan) converges to 0 too.

Problem 4.10. A subset S of a metric space X is dense in X if S = X. Use Theorem 2.10
to prove for each real number r there is a sequence (qn) of rational numbers converging
to r. Use Proposition 4.8 to conclude that the closure of Q (in R) is R; i.e., Q is dense in
R. (See Remark 2.11.)

Problem 4.11. Let a0 =
√

2 and define, recursively, an+1 =
√
an + 2. Prove, by induc-

tion, that the sequence (an) is increasing and is bounded above by 2. Does the sequence
converge? If so, what should the limit be?

Problem 4.12. Suppose (an) and (bk) are sequences in a metric space X and L ∈ X.
Show,

(i) if there is an η > 0 such that d(bk, L) ≥ η for all k, then no subsequence of (bk)
converges to L; and

(ii) if every subsequence of (an) has a further subsequence which converges to L, then
(an) converges to L. (Suggestion: prove the contrapositive using part (i).)

(iii) Give an example of a sequence (an) which doesn’t converge, but such that every
subsequence of (an) has a subsequence which does converge.

Problem 4.13. Prove Proposition 4.27.

Problem 4.14. Suppose both (an) and (bn) are bounded sequences of real numbers.
Prove,

lim sup(an + bn) ≤ lim sup an + lim sup bn.

[Hint: Use {aj + bj : j ≥ n} ⊂ {aj + bk : j, k ≥ n} and sup(S + T ) = sup(S) + sup(T )
(under appropriate hypotheses as in Problem 2.6) to show

sup({aj + bj : j ≥ n}) ≤ sup({aj + bk : j, k ≥ n})
= sup{aj : j ≥ n}+ sup{bk : k ≥ n}.

Give an example which shows the inequality can be strict.

Problem 4.15. Prove Lemma 4.32.
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Problem 4.16. Let (an) be a bounded sequence of real numbers. Prove there is a
subsequence (anj)j which converges to y = lim sup an. Here is one way to proceed. Show,
for each ε > 0 the set {n : |y − an| < ε} is infinite and apply Proposition 4.26.

Show if z is a subsequential limit (See Exercise 4.7) of (an), then z ≤ lim sup an. Hence
lim sup an is the largest subsequential limit of the sequence (an).

Problem 4.17. Given a sequence (aj)
∞
j=0 of real numbers, let

sm =
m∑
j=0

aj.

The expression
∑∞

n=0 an is called a series and the sequence (sn) is its sequence of partial
sums. If the sequence (sn) converges, then the series is said to converge and if, moreover,
(sn) converges to L, then the series converges to L written

∞∑
n=0

an = L = lim
m→∞

sm.

In particular, the expression
∑∞

n=0 an is used both for the sequence (sn) and the limit of
this sequence, if it exists.

Show, if an ≥ 0, then the series either converges or diverges to∞ depending on whether
the partial sums form a bounded sequence or not.

Show, if 0 ≤ r < 1, then, for each m,

(1− r)
m∑
n=0

rn = 1− rm+1

and thus,
∞∑
n=0

rn =
1

1− r
.

Problem 4.18. Suppose {an : n ≥ n0} is a bounded sequence of real numbers and L ∈ R¿
Show if for every ρ > L there is an N so that for all n ≥ N , an < ρ and for every ρ < L
and for every N there is an n ≥ N such that an ≥ ρ, then L = lim sup an. See Remark
4.29.

5. Cauchy sequences and completeness

Definition 5.1. A sequence (an) in a metric space (X, d) is Cauchy if for every ε > 0
there is an N such that if n,m ≥ N , then d(an, am) < ε. /

Proposition 5.2. Convergent sequences are Cauchy; i.e., if (an) is a convergent sequence
in a metric space X, then (an) is Cauchy. †

Proposition 5.3. Cauchy sequences are bounded. †
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Let X be a metric space and L ∈ X. Problem 5.1 asks you to prove, if (an) is a
Cauchy sequence from X and (an) has a subsequence (bk) which converges to L, then (an)
converges to L.

Definition 5.4. A metric space X is complete if every Cauchy sequence in X converges
(in X). /

Example 5.5. Cauchy sequences in a discrete metric space are eventually constant and
hence converge. Thus, a discrete metric space is complete. 4

Example 5.6. The metric space Q is an example of an incomplete space. Exercise 5.2
gives further examples of incomplete spaces. 4

Proposition 5.7. If (an) is a bounded sequence of real numbers, then there is a subse-
quence (ank) of (an) which converges to lim sup an. †

Proof. (See Problem 4.16.) Let L = lim sup an and let ε > 0 be given. By Proposition
4.29, the set

{n : an > L− ε}
is infinite and the set

{n : an > L+ ε}
is finite. Hence, the set

{n : |an − L| < ε}
is infinite. By Proposition 4.26, there is a subsequence (bk) of (an) which converges to
L. �

Theorem 5.8. R is a complete metric space.

Proof. Let (an) be a given Cauchy sequence from R. By Proposition 5.3, this sequence is
bounded. Hence it has a limsup α and a subsequence converges to α by Proposition 5.7.
By Problem 5.1 the sequence itself converges to α. �

Proposition 5.9. A closed subset of a complete metric space is complete. †

Proof. Apply Proposition 4.8. �

Proposition 5.10. A complete subset of a metric space is closed. †

Proof. Apply Proposition 4.8. �

Definition 5.11. A sequence (an)∞n=n0
from a metric space X is super Cauchy if there

exists an N and a constant 0 ≤ k < 1 such that

(4) d(an+1, an) ≤ kd(an, an−1)

for all n ≥ N . /

The following result is a version of the contraction mapping principle.

Proposition 5.12. If (an) is super Cauchy, then (an) is Cauchy. In particular, super
Cauchy sequences in a complete metric space converge. †
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Do Exercise 5.1 and Problem 5.2.

Proof. We assume, without loss of generality, that (an)∞n=0 satisfies d(an+2, an+1) ≤ kd(an+1, an)
for all n ≥ 0.

First observe, by Equation (2),

n∑
j=0

kj ≤ 1

k − 1
.

Next note that, by iterating the inequality of Equation (4),

d(am+1, am) ≤ kmd(a1, a0)

for all m. Thus, for ` ≥ 0,

d(an+`, an) ≤
`−1∑
j=0

d(an+j+1, an+j)

≤
`−1∑
j=0

kn+jd(a1, a0)

= knd(a1, a0)
`−1∑
j=0

kj

≤ knd(a1, a0)

1− k
.

Now, given ε > 0, using Example 4.5, choose N such that if n ≥ N , then kn d(a1,a0)
1−k ε.

Then for m ≥ n ≥ N and choosing ` such that m = n + `, it follows that d(am, an) < ε
and the sequence (an) is Cauchy. �

Example 5.13. For n ∈ N+, let

sn =
n∑
j=2

1

j
.

Note that

s2n =
n−1∑
k=0

2k+1∑
j=2k+1

1

j
≥ n

2

and thus (sn) is not a bounded sequence and is therefore not Cauchy.

On the other hand,

|sn+2 − sn+1| =
1

n+ 2
<

1

n+ 1
= |sn+1 − sn|.

4
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5.1. Worked Examples.

Sample Problem 5.1. Choose x0 > 0. Show that the sequence (from R) defined recur-
sively by

xn+1 =
xn
2

+
1

xn
converges.

Solution. If suffices to prove that the sequence is Cauchy since R is complete. Hence, it
suffices to prove that the sequence is super Cauchy by Proposition 5.12. To this end, first
observe that, an induction argument shows that xn > 0 for all n. Hence,

xn+1xn =
x2n
2

+ 1 ≥ 1.

Thus,

|1
2
− 1

xn+1xn
| ≤ 1

2
.

Since

|xn+2 − xn+1| = |(
1

2
− 1

xn+1xn
)(xn+1 − xn)| ≤ k|xn+1 − xn|

with k = 1
2
< 1, the conclusion follows.

See Newton’s method. Note too that using properties of limits it is not hard to see that
the limit is the square root of two.

Sample Problem 5.2. Suppose U1, U2, . . . is a sequence of open sets in a nonempty
complete metric space X. Show, if, for each j, the closure of Uj is all of X, then

∩∞1 Uj 6= ∅.
This fact is a version of the Baire Category Theorem.

Solution. Observe that for each x ∈ X, r > 0, and j ∈ N+, that Nr(x) ∩ Uj 6= ∅ by
Problem 3.7. Let, as usual, Br(x) = {y ∈ X : d(x, y) ≤ r} (the closed ball of radius r
with center x).

Pick a point x1 ∈ U1. There is an r1 ≤ 1 such that Br1(x1) ⊂ U1. There is a point
x2 ∈ N r1

2
(x) ∩ U2. There is an 0 < r2 <

r1
2

such that Br2(x2) ⊂ U2. In particular,

Br2(x2) ⊂ Br1(x1). Continuing in this fashion constructs a sequence of nonempty sets
Bj = Brj(xj) such that

(i) d(p, q) ≤ 2−j for each j ∈ N and p, q ∈ Bj,
(ii) B1 ⊃ B2 ⊃ · · · ;

(iii) and Bj ⊂ Uj. By

In view of (i) and (ii), Problem 5.3 implies ∩Bj is not empty. On the other hand (iii)
implies that ∩Bj ⊂ ∩Uj and the conclusion follows.
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5.2. Exercises.

Exercise 5.1. Define a sequence of real numbers recursively as follows. Let a1 = 1 and

an+1 = 1 +
1

1 + an
.

Show (an) is not monotonic (that is neither increasing or decreasing). Show that an ≥ 1
for all n and then use Proposition 5.12 to show that (an) is Cauchy. Conclude that the
sequences converges and find its limit.

Exercise 5.2. Suppose y is a limit point (see Problem 4.5) of the metric space X. Show
Y = X \ {y} is not complete.

Exercise 5.3. Show directly that the sequence ((−1)n) is not Cauchy and conclude that
it doesn’t converge. Compare with Exercise 4.2.

Exercise 5.4. Suppose (an) is an increasing sequence of real numbers. Show, if (an) has
a bounded subsequence, then (an) converges; and (an) diverges to infinity if and only if
(an) has an unbounded subsequence.

5.3. Problems.

Problem 5.1. Suppose (xn) is a Cauchy sequence in a metric space X. Show, if (xn) has
a subsequence (xnk) which converges to some y ∈ X, then (xn) converges to y.

Problem 5.2. Fix A > 0 and define a sequence from R as follows. Let a0 = 1. For n ≥ 1,
recursively define

an+1 = A+
1

an
.

Show, for all n ≥ 1, an ≥ A and anan+1 ≥ 1 + A2. Use Proposition 5.12 to prove that
(an) converges. What is the limit?

Problem 5.3. The diameter of a set S in a metric space X is

diam(S) = sup{d(s, t) : s, t ∈ S}.
(In the case that the set of values d(s, t) is not bounded above this supremum is interpreted
as plus infinity.)

Prove, if X is a complete metric space, S1 ⊃ S2 ⊃ . . . is a nested decreasing sequence
of nonempty closed subsets of X, and the sequence (diam(Sn))n converges to 0, then

∩∞n=1Sn

contains exactly one point.

Show that this result fails if any of the hypotheses - completeness, closedness of the Sn,
or that the diameters tend to 0 - are omitted.

Problem 5.4. Show that the sequence (an) from Exercise 5.1 is not eventually monotone.
As a suggestion, first show that, for each n, an+1 6= an as otherwise an would be irrational.

Problem 5.5. Given metric spaces (X, dX) and (Y, dY ) let Z denote the metric space
built from X and Y as in Problem 3.1. Show, if X and Y are complete, then so is X×Y .
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6. Compact Sets

6.1. Definitions and Examples.

Definition 6.1. A subset K of a metric space X is compact if for every U ⊂ P (X) such
that

(i) each U ∈ U is open;
(ii) K ⊂ ∪U∈UU ,

there exists a finite subset V ⊂ U such that

(iii) K ⊂ ∪U∈VU .

A subset U of P (X) satisfying conditions (i) and (ii) is an open cover of K. A subset
V ⊂ U satisfying (iii) is a subcover (of the open cover U). /

Remark 6.2. Compactness is often expressed as: the subset K of a metric space X is
compact provided every open cover of K has (or admits) a finite subcover.

Often it is convenient to view covers as an indexed family of sets, rather than a subset
of P (X). In this case an open cover of S consists of an index set I and a collection of
open sets U = {Uj : j ∈ I} whose union contains S. A subcover is then a collection
V = {Uj : j ∈ J}, for some subset J of I. A set K is compact if for each collection
{Uj : j ∈ I} such that

K ⊂ ∪j∈IUj,
there is a finite subset F ⊂ I such that

K ⊂ ∪j∈FUj.
�

Example 6.3. Consider the set K = {0, 1, 1
2
, 1
3
, . . . } as a subset of the metric space R.

Let U be a given open cover of K. There is then a U0 ∈ U such that 0 ∈ U0. Since U0

is open, there is an ε > 0 such that Nε(0) ⊂ U0. Since 1
n

converges to 0, there is an N

such that if n ≥ N , then 1
n
∈ Nε(0). For each j = 1, 2, . . . , N − 1 there is a Uj ∈ U such

that 1
j
∈ Uj. It follows that V = {U0, . . . , UN−1} ⊂ U is a finite subcover (of K). Thus K

is compact. 4

Do Problems 6.1 and 6.2.

Example 6.4. Let S = (0, 1] ⊂ R and consider the indexed family of sets Uj = (1
j
, 2) for

j ∈ N+. It is readily checked that
S ⊂ ∪∞j=1Uj

and of course each Uj is open. Thus U = {Uj : j ∈ N+} is an open cover of S.

Now suppose F ⊂ N+ is a finite set. In particular, there is an N such that F ⊂
{1, . . . , N} and therefore,

∪j∈FUj ⊂ ∪Nj=1Uj = (
1

N
, 2).
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Thus there is no finite subset F of the index set N+ such that K ⊂ ∪j∈F and we conclude
that S is not compact. 4

Do Problem 6.3 which says that a subset K of a discrete metric space X is compact if
and only if K is finite. In particular, if the set K in Example 6.3 is considered with the
discrete metric, then it is not compact.

Theorem 6.5. Closed bounded intervals in R are compact.

Proof. Let [a, b] be a given closed bounded interval and, without loss of generality, suppose
b > a (as finite sets are compact). Let U be a given open cover of [a, b]. Let

S = {x ∈ [a, b] : [a, x] has a finite subcover from U}.

As an initial observation, note that if a ≤ t ≤ s and s ∈ S, then t ∈ S. By definition S is
bounded above by b. There is a U ∈ U such that a ∈ U and hence [a, a] ⊂ U . Thus S is
not empty. Thus sup(S) exists and a ≤ sup(S) ≤ b. In fact, since U is open and contains
a, there is b > c > a such that [a, c] ⊂ U . Therefore, b ≥ sup(S) ≥ c > a.

There is a U0 ∈ U such that sup(S) ∈ U0 since sup(S) ∈ [a, b] and U is an open cover
of [a, b]. Because U0 is open and sup(S) > a, there is an ε > 0 such that a < sup(S)− ε
and Nε(sup(S)) ⊂ U0. There is an s ∈ S such that sup(S)− ε

2
< s ≤ sup(S). Since s ∈ S,

there is a finite subcover V ⊂ U of [a, s]; i.e., V is finite and

[a, s] ⊂ ∪{U : U ∈ V}.

It follows that

[a, sup(S)] ⊂[a, sup(S) +
ε

2
]

⊂[a, s] ∪ [sup(S)− ε

2
, sup(S) +

ε

2
]

⊂ ∪ {U : U ∈ V} ∪ {U0}.

Consequently, if a ≤ t ≤ b and t ≤ sup(S) + ε
2
, then t ∈ S. Hence sup(S) ∈ S and

sup(S) ≥ b. Thus b = sup(S) ∈ S and the proof is complete.

�

Theorem 6.6. If Y is a metric space and K ⊂ X ⊂ Y , then K is compact in X if and
only if K is compact in Y .

Remark 6.7. The proposition says that compactness is intrinsic and thus, unlike for open
and closed sets, we we can speak of compact sets without reference to a larger ambient
metric space. �

Proof. First suppose K is compact in X. To prove K is compact in Y , let U ⊂ P (Y ) an
open (in Y ) cover of K be given. Let W = {U ∩ X : U ∈ U}. By Proposition 3.28, W
consists of relatively (in X) open sets. Thus W ⊂ P (X) is an open (in X) cover of K.
Hence there is a finite subset V of U such that {U ∩X : U ∈ V} covers K. It follows that
V is a finite subset of U which covers K and hence K is compact as a subset of Y .
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Conversely, supposeK is compact in Y . To prove thatK is compact inX, let U ⊂ P (X)
be a given open (in X) cover of K. By Proposition 3.28, for each U ∈ U there exists an
open in Y set WU such that U = X ∩WU . The collection W = {WU : U ∈ U} ⊂ P (Y )
is an open cover of X. Hence there is a finite subset V of U such that {WU : U ∈ V}
covers K. It follows that V is a finite subset of U which covers K. Hence K is compact
in X. �

Do Problems 6.4 and 6.6.

6.2. Compactness and closed sets.

Definition 6.8. A subset B of a metric space X is bounded if there exists x ∈ X and
R > 0 such that B ⊂ NR(x). /

Equivalently, B is bounded if for every y ∈ X there is a C > 0 such that B ⊂ NC(y).
An easy exercise is to show that a subset B of R is bounded if and only if it is bounded
both above and below if and only if there exists a C such that |b| ≤ C for all b ∈ B
(equivalently B ⊂ [−C,C]). In particular, this definition of bounded for a subset B of R
agrees with our earlier definition of bounded.

Proposition 6.9. Compact sets are closed and bounded. †

Proof. Suppose K is a compact subset of a metric space X. If K̃ is empty, then it is
open and K is closed. Suppose now that K̃ is not empty. Let y /∈ K be given. Let
Vn = {x ∈ X : d(x, y) > 1

n
}. The sets Vn are open and

∪∞n=1Vn ⊃ X \ {y} ⊃ K.

Since K is compact, there is an N so that

VN = ∪Nn=1Vn ⊃ K.

It follows that, for each x ∈ K, d(x, y) > 1
N

. Hence N 1
N

(y) ⊂ K̃ and so K̃ is open and K

is closed.

To prove that K is bounded, fix x0 ∈ X and let Wn = {x ∈ X : d(x0, x) < n}. Then

K ⊂ X = ∪Wn.

By compactness of K, there is an N so that K ⊂ WN and thus K is bounded. �

Proposition 6.10. A closed subset of a compact set is compact. †

Proof. Suppose X is a metric space, C ⊂ K ⊂ X, K is compact, and C is closed.

To prove C is compact, let U be a given open cover of C. Then W = U ∪ {C̃} is an
open cover of K. Hence some finite subset G of W covers K. Without loss of generality,
there is a finite subset V ⊂ U such that G = V ∪ {C̃}. In particular,

C ⊂ K ⊂ ∪U∈VU ∪ C̃.
Intersecting with C gives,

C = K ∩ C ⊂ ∪U∈V(U ∩ C) ⊂ ∪U∈VU.
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Hence V is a finite subset of U which covers C and the proof is complete. �

Corollary 6.11. Closed bounded subsets of R are compact. Thus a subset of R is
compact if and only if it is closed and bounded. †

Proof. Suppose K ⊂ R is both closed and bounded. Since K is bounded, there is a
positive real M such that K ⊂ [−M,M ]. Now K is a closed subset of the compact set
[−M,M ] and is hence itself compact. �

It turns out that this corollary is true with R replaced by Rg, a result which is called
the Heine-Borel Theorem. A proof, based upon the Lebesgue number Lemma, and the
concomitant fact that compactness and sequential compactness are the same for a metric
space, is in Subsection 6.4 below.

Remark 6.12. If X is an infinite set with the discrete metric, then X is complete (hence
closed) and bounded, but not compact. Hence, in general, complete (or closed) and
bounded does not imply compact.

For another example, consider the metric d (see Exercise 3.1) on R defined by

d(x, y) =
|x− y|

1 + |x− y|
.

The metric space (R, d) is bounded as

R ⊂ Nd
1 (0) = {x ∈ R : d(x, 0) < 1}.

On the other hand the open sets in (R, d) are the same as the ordinary open sets in R
(with the usual metric |x− y|) and thus both metric spaces have the same compact sets.
To see that R is not compact, consider the collection,

U = {(−n, n) : n ∈ N+}.
It is an open cover of R, but it admits no finite subcover. Hence R is a closed and bounded
subset of the metric space (R, d) which is not compact.

While these examples may seem a bit contrived, we will encounter other more natural
metric spaces for which closed or complete and bounded is not the same as compact. (See
for instance Problems 6.8 and 6.7.) �

6.3. Sequential Compactness.

Definition 6.13. A subset K of a metric space X is sequentially compact if every sequence
in K has a subsequence which converges in K; i.e., if (an) is a sequence from K, then
there exists p ∈ K and a subsequence (anj)j of (an) which converges to p. /

Remark 6.14. The notion of sequentially compact does not actually depend upon the
larger metric space X, just the metric space K. �

Proposition 6.15. If X is sequentially compact, then X is complete. †

Problem 6.9 asks you to provide a proof of this Proposition.
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Proposition 6.16. Let X be a metric space. If X is compact, then X is sequentially
compact. †

Proof. Let (sn)∞n=n0
be a given sequence from X. If there is an s ∈ X such that for every

ε > 0 the set Jε(s) = {n : sn ∈ Nε(s)} is infinite, then, by Proposition 4.26, (sn) has a
convergent subsequence (namely one that converges to s).

Arguing by contradiction, suppose for each s ∈ X there is an εs > 0 such that J(s) =
{n : sn ∈ Nεs(s)} is a finite set. The collection {Nεs(s) : s ∈ X} is an open cover of X.
Since X is compact there is a finite subset F ⊂ X such that V = {Nεt(t) : t ∈ F} is a
cover of X; i.e.,

X ⊂ ∪{Nεt(t) : t ∈ F}.
For each n there is a t ∈ F such that sn ∈ Nεt(t) and thus {n ∈ Z : n ≥ n0} = ∪t∈FJεt(t).
But then, for some u ∈ F , the set Jεu(u) is infinite, a contradiction. �

Do Problem 6.10.

Proposition 6.17. If X is compact, then X is complete. †

Corollary 6.18. The metric space R is complete. †

Proof. Suppose (an) is a Cauchy sequence from R. It follows that (an) is bounded and
hence there is a number R > 0 such that each an is in the interval I = [−R,R]. Since
I is compact, it is complete by Proposition 6.17. Hence (an) converges in I and thus in
R. �

The remainder of this section is devoted to proving the converse of Proposition 6.16.

Lemma 6.19. [Lebesgue number lemma] If K is a sequentially compact metric space
and if U is an open cover of K, then there is a δ > 0 such that for each x ∈ K there is a
U ∈ U such that Nδ(x) ⊂ U . †

Proof. We argue by contradiction. Accordingly, suppose for every n ∈ N+ there is an
xn ∈ K such that, for each U ∈ U , N 1

n
(xn) is not a subset of U . The sequence (xn) has a

subsequence (xnk)k which converges to some w ∈ K because K is sequentially compact.
There is a W ∈ U such that w ∈ W . Hence there is an ε > 0 such that Nε(w) ⊂ W.
Choose k so that 1

nk
< ε

2
and also so that d(xnk , w) < ε

2
. Then N 1

nk

(xnk) ⊂ Nε(w) ⊂ W ,

a contradiction. �

Definition 6.20. A metric space X is totally bounded if, for each ε > 0, there exists a
finite set F ⊂ X such that

X = ∪x∈FNε(x).

/

Proposition 6.21. If X is sequentially compact, then X is totally bounded. †
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Proof. We prove the contrapositive. Accordingly, suppose X is not totally bounded. Then
there exists an ε > 0 such that for every finite subset F of X,

X 6= ∪x∈FNε(x).

Choose x1 ∈ X. Choose x2 /∈ Nε(x1). Recursively choose,

xn+1 /∈ ∪n1Nε(xj).

The sequence (xn) has no convergent subsequence since, for j 6= k, d(xk, xj) ≥ ε. Thus X
is not sequentially compact. �

Proposition 6.22. If X is sequentially compact, then X is compact. †

Proof. Let U be a given open cover of X. From the Lebesgue Number Lemma, there is a
δ > 0 such that for each x ∈ X there is a U ∈ U such that Nδ(x) ⊂ U .

Since X is totally bounded, there exists a finite set F ⊂ X so that

X = ∪x∈FNδ(x).

For each x ∈ F , there is a Ux ∈ U such that Nδ(x) ⊂ Ux. Hence,

X = ∪x∈FUx;
i.e., {Ux : x ∈ F} ⊂ U is an open cover of X. Hence X is compact. �

6.4. The Heine-Borel theorem.

Lemma 6.23. Cubes in Rg are compact. †

Proof for the case g = 2. Either an induction argument or an argument similar to the
proof below for g = 2 handles the case of general d.

Consider the cube C = [a, b]× [c, d]. It suffices to prove that every sequence (zn) from
C has a subsequence which converges in C; i.e., that C is sequentially compact. To this
end, let (zn) = (xn, yn) be a given sequence from C. Since [a, b] is compact, there is a
subsequence (xnk)k of (xn) which converges to some x ∈ [a, b]. Similarly, since [c, d] is
compact the sequence (ynk)k has a subsequence (ynkj )j which converges to a y ∈ [c, d]. It

follows that (znkj )j converges to z = (x, y) ∈ C. �

Theorem 6.24. [Heine-Borel] A subset K of Rg is compact if and only if it is closed and
bounded.

Proof. We have already seen that compact implies closed and bounded in any metric space.
Suppose now that K is closed and bounded. There is a cube C such that K ⊂ C ⊂ Rg.
The cube C is compact and K is a closed subset of C and is therefore compact by
Proposition 6.10. �

Do Problem 6.13.

Corollary 6.25. Rg is complete. †

The proof is similar to that of Corollary 6.18. The details are left as an exercise for the
gentle reader.
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6.5. Worked Example.

Sample Problem 6.1. Show, if K is a compact metric space, then it contains an at most
countable subset S such that the closure of S is K. In other words, a compact metric
space contains a countable dense set. A metric space which contains an at most countable
dense set is called separable.

Solution. Since K is compact, it is totally bounded by Propositions 6.16 and 6.21. For
each n ∈ N+ there exists a finite set Fn such that

K ⊂ ∪x∈FnN 1
n
(x).

Let S = ∪∞n=1Fn. Since S is a countable union of finite sets, S is at most countable. Let
T denote the closure of S. Given y ∈ K, for each n ∈ N+ there is an xn ∈ Fn such that
y ∈ N 1

n
(xn). Thus, d(xn, y) < 1

n
. It follows that (xn) is a sequence from S, and hence

from T , which converges to y. Thus, by Proposition 4.8, y ∈ T . Hence T = X and the
proof is complete.

6.6. Exercises.

Exercise 6.1. Let X be a metric space. Show, if there is an r > 0 and a sequence (xn)
from X such that d(xn, xm) ≥ r for n 6= m, then X is not compact.

Exercise 6.2. Suppose X has the property that each closed bounded subset of X is
compact. Show X is complete.

Exercise 6.3. Let X be a (nonempty) metric space. Show, if X is totally bounded, then
X is bounded. Give an example where X is bounded, but not totally bounded.

6.7. Problems.

Problem 6.1. Prove, if X is a metric space and (an)∞n=1 is a sequence in X which
converges to A ∈ X, then {A, a1, a2, . . . } is compact.

Problem 6.2. Prove a finite subset of a metric space X is compact.

More generally, prove a finite union of compact sets is compact.

Problem 6.3. Show, a subset K of a discrete metric space X is compact if and only if it
is finite. In particular, if X is infinite, then X is complete (and thus closed) and bounded,
but not compact.

Problem 6.4. [The finite intersection property (fip)] Suppose X is a compact metric
space and F ⊂ P (X). Show, if each C ∈ F is closed and for each finite subset F ⊂ F
the set

∩C∈FC 6= ∅,
then in fact

∩C∈FC 6= ∅.
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As a corollary, show if C1 ⊃ C2 ⊃ is a nested decreasing sequence of non-empty compact
sets in a metric space X, then ∩Cj is non-empty too. (This fact is referred to as the nested
intersection property.)

Show the result fails if X is not assumed compact. On the other hand, even if X is
not compact, the result is true if it assumed that there is a D ∈ F which is compact.
Compare with Problem 5.3.

Problem 6.5. Suppose (Sn)∞n=1 is a sequence of non-empty compact subsets of a metric
space X that is nested decreasing; that is, S1 ⊃ S2 ⊃ S3 ⊃ · · · . Show, S = ∩Sn is
connected. show, if U ⊂ X is open and S ⊂ U , then there is a j such that Sj ⊂ U .

Problem 6.6. Prove that any open cover of R has an at most countable subcover.

More generally, prove, if there exists a sequence K1, K2, . . . of compact subsets of a
metric space X such that X = ∪Kj, then every open cover of X has an at most countable
subcover.

Problem 6.7. Let `∞ denote the set of bounded sequences a = (a(n)) of real numbers.
The function d : `∞ × `∞ → R defined by

d(a, b) = sup{|a(n)− b(n)| : n ∈ N}
is a metric on `∞.

Let ej denote the sequence from `∞ (so a sequence of sequences) with ej(j) = 1 and
ej(k) = 0 if k 6= j. Find, d(ej, e`).

Let 0 denote the zero sequence in `∞. Is

B = {a ∈ `∞ : d(a, 0) ≤ 1}
closed? Is it bounded? Is it compact?

As a challenge, show `∞ is complete.

Problem 6.8. This problem assumes Problem 4.17. Let `2 denote the set of sequences
(a(n)) of real numbers such that

∞∑
0

|a(n)|2

converges (to a finite number). Use the Cauchy Schwarz inequality to show, if a, b ∈ `2,
then

〈a, b〉 :=
∞∑
0

a(j)b(j)

converges and that 〈a, b〉 is an inner product on `2. Let

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉

denote the resulting metric.

Let ej denote the sequence with ej(j) = 1 and ej(k) = 0 if j 6= k. What is d(ej, ek)?
Does the sequence (of sequences) (ej) have a convergent subsequence? Let 0 denote the
zero sequence. Is the set

B = {x ∈ `2 : d(x, 0) ≤ 1}
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closed? Is it bounded? Is it compact?

As a challenge, prove that `2 is complete.

Problem 6.9. Prove Proposition 6.15. (See Problem 5.1.)

Problem 6.10. Suppose K is a nonempty compact subset of a metric space X and x ∈ X.

(i) Give an example of an x ∈ X for which there exists distinct points p, r ∈ K such
that, for all q ∈ K,

d(p, x) = d(r, x) ≤ d(q, x).

(ii) Show, there is a point p ∈ K such that, for all other q ∈ K,

d(p, x) ≤ d(q, x).

[Suggestion: As a start, let S = {d(x, y) : y ∈ K} and show there is a sequence (qn)
from K such that (d(x, qn)) converges to inf(S).]

(iii) Let X = R \ {0} and K = (0, 1]. Is there a point x ∈ X with no closest point in K?
Is K closed, bounded, complete, compact?

(iv) Let E = {e0, e1, . . . } be a countable set. Define a metric d on E by d(ej, ek) = 1 for
j 6= k and j, k 6= 0; d(ej, ej) = 0 and d(e0, ej) = 1 + 1

j
for j 6= 0. Show d is a metric

on E. Let K = {e1, e2, . . . } and x = e0. Is there a closest point in K to x? Is K
closed, bounded, complete, compact?

Problem 6.11. Suppose B is a compact subset of a metric space X and a /∈ B. Show
there exists disjoint open sets U and V such that a ∈ U and B ⊂ V. Suggestion, first use
Problem 6.10 to show there is an η > 0 such that for each b ∈ B Nη(b) ∩Nη(a) = ∅.

Problem 6.12. Show if A and B are disjoint compact sets in a metric space X, then
there exists disjoint open sets U and V such that A ⊂ U and B ⊂ V . Suggestion, by
the previous problem, for each a ∈ A there exists disjoint open sets Ua and Va such that
a ∈ Ua and B ⊂ Vb.

Problem 6.13. Show that K compact can be replaced by K closed in Problem 6.10 in
the case that X = Rg.

Problem 6.14. Given metric spaces (X, dX) and (Y, dY ) let Z denote the metric space
built from X and Y as in Problem 3.1. Show, if X and Y are compact, then so is X ×Y .

7. Connected sets

Definition 7.1. A metric space X is disconnected if there exists sets U, V ⊂ X such that

(i) U and V are open;
(ii) U ∩ V = ∅;
(iii) X = U ∪ V ; and
(iv) U 6= ∅ 6= V ;

The metric space X is connected if it is not disconnected.

A subset S of X is connected if the metric space (subspace) S is connected. /
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Do Exercise 7.1.

Remark 7.2. A metric space X is connected if and only if the only subsets of X which
are both open and closed are X and ∅.

By Proposition 3.28, subsets U0 and V0 of S are open relative to S if and only if there
exists subsets U, V of X which are open (in X) such that U0 = U ∩ S and V0 = V ∩ S.
Thus, a subset S of a metric space X is connected if and only if given subsets U and V
of X such that

(i) U and V are open;
(ii) U ∩ S ∩ V = ∅; and
(iii) S ⊂ U ∪ V

it follows that either U ∩ S or V ∩ S is empty (alternately, S ⊂ U or S ⊂ V ).

Note, if U, V satisfy (ii) and (iii), then Ṽ ∩ S = U ∩ S. �

Problem 7.1 gives an alternate condition for a subset S of a metric space X to be
connect in terms of subsets of X. Do also Problem 7.2.

Proposition 7.3. A nonempty subset I of R is connected if and only if x, y ∈ I and
x < z < y implies z ∈ I.

In particular, intervals in R are connected. †

Proof. Suppose I has the property that x, y ∈ I and x < z < y implies z ∈ I. Arguing by
contradiction, suppose U, V ⊂ R satisfy conditions (i)-(iv) of Remark 7.2. In particular,
U ∩ I 6= ∅ 6= V ∩ I. Choose u ∈ U ∩ I and v ∈ V ∩ I. Without loss of generality, u < v.
By hypothesis [u, v] ⊂ I. Consider A = U ∩ [u, v] and B = V ∩ [u, v] and observe that

A ∪B = [u, v] and A ∩B = ∅. Hence B̃ ∩ [u, v] = A. Since also B̃ = Ṽ ∪ [̃u, v], it follows
that A = Ṽ ∩ [u, v]. In particular, A is closed and bounded. Thus A has a largest element
a ∈ A. Since v ∈ B, we find a < v. Since U is open, there is an ε such that v− a > ε > 0
and (a − ε, a + ε) = Nε(a) ⊂ U . In particular, (a, a + ε) ⊂ U ∩ [u, v] = A. But then
a+ ε

2
∈ A, a contradiction.

To prove the converse, suppose there exists x, y ∈ I and z /∈ I such that x < z < y. In
this case, let U = (−∞, z) and V = (z,∞). Then U ∩ V = ∅, U and V are open, U ∩ I
and V ∩ I are nonempty, and I ⊂ U ∪ V , thus I is not connected. �

Do Problem 7.3.

Proposition 7.4. If C is a nonempty collection of connected subsets of a metric space X
and if A ∩B 6= ∅ for each A,B ∈ C, then Γ = ∪{C : C ∈ C} is connected. †

Proof. Arguing by contradiction, suppose there U, V ⊂ X open sets such that U ∩Γ∩V =
∅, Γ ⊂ U ∪ V and Γ ∩ U 6= ∅ 6= Γ ∩ V . From this last condition, there exists CU , CV ∈ C
such that CU ∩ U 6= ∅ and CV ∩ V 6= ∅. Now U, V are open; CU ⊂ U ∪ V ; and
U ∩ CU ∩ V ⊂ U ∩ Γ ∩ V = ∅. Thus, since CU is connected, either CU ∩ U = ∅ or
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CU ∩ V = ∅. It follows that CU ∩ V = ∅ and hence CU ⊂ U . By symmetry, CV ⊂ V and
thus,

CU ∩ CV ⊂ U ∩ Γ ∩ V = ∅,
contradicting the assumption that the intersection of any two sets in C is nonempty. �

Do Problem 7.4 and Exercise 7.6.

Corollary 7.5. Given a point x in a subset S of a metric space X there is a largest
connected set Cx containing x and contained in S; i.e.,

(i) x ∈ Cx ⊂ S,
(ii) Cx ⊂ X is connected; and

(iii) if x ∈ D ⊂ S and D ⊂ X is connected, then D ⊂ Cx.

†

The set Cx of Corollary 7.5 is called the connected component containing x.

Proof. Note that {x} is connected. Let C denote the collection of connected sets containing
x and contained in S and apply Proposition 7.4 to conclude that Γ = ∪{C : C ∈ C} is
connected. By construction, if D is connected and x ∈ D, then D ⊂ Γ. �

Do Problems 7.5, 7.6 and 7.7.

7.1. Exercises.

Exercise 7.1. Show singleton sets are connected, but finite sets with more than one
element are not.

Exercise 7.2. Determine the connected subsets of a discrete metric space.

Exercise 7.3. Let I = [0, 1] ⊂ R. If 0 < x < 1, is I \ {x} connected?

Let S ⊂ R2 denote the unit circle, {(x, y) ∈ R2 : x2 + y2 = 1}. If x ∈ S, is S \ {x}
connected? If x 6= y are both in S, is S \ {x, y} connected?

Let R ⊂ R2 denote the unit square R = [0, 1] × [0, 1]. If F ⊂ R is finite, is R \ F
connected?

Exercise 7.4. Let K = { 1
n

: n ∈ N+} ⊂ R and let

C = (K × [0, 1]) ∪ ([0, 1]× {0}) ⊂ R2.

Draw a picture of C. Is it connected?

Let D = C ∪ {(0, 1)}. Is D connected? (See Problem 7.2) Can you draw a path from
(0, 0) to (0, 1) without leaving D?

Exercise 7.5. Show if A,B,C are connected subsets of X and A∩B 6= ∅ and B∩C 6= ∅,
then A∪B∪C is connected. A more general statement, requiring a more elaborate proof,
can be found in Problem 7.4.

Exercise 7.6. Must the intersection of two connected sets be connected?
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7.2. Problems.

Problem 7.1. Prove, S ⊂ X is disconnected if and only if there exists subsets A,B ⊂ X
such that

(i) both A and B are nonempty;
(ii) A ∪B = S;

(iii) A ∩B = ∅; and
(iv) A ∩B = ∅.

Here the closures are taken with respect to X. [Suggestion: Given A and B, let U = B̃

and V = Ã.]

Problem 7.2. Show, if S is a connected subset of a metric space X, then S is also
connected. In fact, each S ⊂ T ⊂ S is connected.

Problem 7.3. Suppose I ⊂ R is open. Prove that I is also connected if and only if either

(1) I is an open interval;
(2) there is an a ∈ R such that I = (a,∞);
(3) there is a b ∈ R such that I = (−∞, b); or
(4) I is empty or all of R.

The term open interval is expanded to refer to a set of any of the above forms.

Problem 7.4. Prove the following stronger variant of Proposition 7.4. Suppose C is
collection of connected subsets of a metric space X and B ∈ C. Show, if for each A ∈ C,
A ∩ B 6= ∅, then Γ = ∪{C : C ∈ C} is connected. [Suggestion: Consider the collection
D = {C ∪B : C ∈ C}
Problem 7.5. Let X be a metric space. For each x ∈ X, let Cx denote the connected
component containing x. Prove that the collection {Cx : x ∈ X} is a partition of X; i.e.,

(i) if x, y ∈ X then either Cx = Cy or Cx ∩ Cy = ∅; and
(ii) X = ∪x∈XCx.

Problem 7.6. Prove, if O ⊂ R is open, then each connected component of O is open;
i.e., if U ⊂ O is connected in R and if U ⊂ V ⊂ O is connected implies U = V , then U is
open.

Problem 7.7. Prove that every open subset O of R is a disjoint union of open intervals
(in the sense of Problem 7.3). Further show that this union is at most countable by noting
that each component must contain a rational.

Problem 7.8. Given c ∈ R show that

Sc = {(x, y) ∈ R2 : |x| = 1} ∪ {(x, y) ∈ R2 : |x| < 1, y ≥ c}
is connected.

Show,
S = ∩∞n=1Sn

is not connected.
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Problem 7.9. Suppose (Sn)∞n=1 is a sequence of non-empty compact connected subsets of
a metric space X that is nested decreasing; that is, S1 ⊃ S2 ⊃ S3 ⊃ · · · . Show, S = ∩Sn
is connected. show, if U ⊂ X is open and S ⊂ U , then there is a j such that Sj ⊂ U .
(Suggestion: Use problem 6.5.)

8. Continuous Functions

8.1. Definitions and Examples.

Definition 8.1. Suppose X, Y are metric spaces, a ∈ X and f : X → Y . The function
f is continuous at a if for every ε > 0 there is a δ > 0 such that if dX(a, x) < δ, then
dY (f(a), f(x)) < ε.

The function f is continuous if it is continuous at each point a ∈ X. /

Example 8.2. (i) Constant functions are continuous.
(ii) For a metric space X, the identity function id : X → X given by id(x) = x is

continuous.
(iii) If f : X → Y is continuous and Z ⊂ X, then f |Z : Z → Y is continuous.
(iv) The function f : R → R given by f(x) = 1 if x ∈ Q and f(x) = 0 if x /∈ Q is

nowhere continuous.
To prove this last statement, given x ∈ R, choose ε0 = 1

2
.

(v) The function f : (0, 1]→ R defined by f(x) = 0 if x /∈ Q and f(x) = 1
q
, where x = p

q
,

p ∈ N, q ∈ N+, and gcd(p, q) = 1, is continuous precisely at the irrational points.
Lets prove that f is continuous at irrational points, leaving the fact that it is not

continuous at each rational point as an easy exercise.
Suppose x /∈ Q (x ∈ [0, 1]) and let ε > 0 be given. Choose N ∈ N+ so that 1

N
< ε.

Let

δ = min{|x− m

n
| : m,n ≤ N, m, n ∈ N+}.

This minimum exists and is positive since it is a minimum over a finite set and 0 is
not an element of the set (since x /∈ Q). If |x − y| < δ and y ∈ [0, 1], then either
y /∈ Q in which case |f(x) − f(y)| = |0 − 0| = 0; or y ∈ Q and y = p

q
(in reduced

form) where q > N in which case |f(x)− f(y)| = 1
q
< ε.

(vi) If X is a metric space and a ∈ X, then the function f : X → R given by f(x) =
d(a, x) is continuous.

Fix x and let ε > 0 be given. Choose δ = ε. If d(x, y) < δ, then

|f(x)− f(y)| = |d(x, a)− d(a, y)| ≤ d(x, y) < δ = ε.

(vii) Given γ ∈ Rg, the function pγ : Rg → R defined by

pγ(x) = 〈x, γ〉
is continuous.

4

Do Problems 8.1 and 8.2.
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Proposition 8.3. A function f : X → Y is continuous if and only if f−1(U) ⊂ X is open
for every open set U ⊂ Y . †

Note that the result doesn’t change if Y is replaced by any Z with f(X) ⊂ Z ⊂ Y .

Proof. Suppose f is continuous and U ⊂ Y is open. To prove f−1(U) is open, let x ∈
f−1(U) be given. Since U is open and f(x) ∈ U , there is an ε > 0 such that Nε(f(x)) ⊂ U .
Since f is continuous at x, there is a δ > 0 such that if dX(x, z) < δ, then dY (f(x), f(z)) <
ε. Thus, if z ∈ Nδ(x), then f(z) ∈ Nε(f(x)) ⊂ U and consequently z ∈ f−1(U). Hence
Nδ(x) ⊂ f−1(U). We have proved that f−1(U) is open.

Conversely, suppose that f−1(U) is open in X whenever U is open in Y . Let x ∈ X
and ε > 0 be given. The set U = Nε(f(x)) is open and thus f−1(U) is also open. Since
x ∈ f−1(U), there is a δ > 0 such that Nδ(x) ⊂ f−1(U); i.e., if dX(x, z) < δ, then
f(z) ∈ U which means dY (f(x), f(z)) < ε. Hence f is continuous at x; and thus f is
continuous. �

Corollary 8.4. A function f : X → Y is continuous if and only if f−1(C) is closed (in
X) for every closed set C (in Y ). †

Do Problems 8.4 and 8.5. See also Problem 3.8.

Proposition 8.5. Suppose X, Y, Z are metric spaces, f : X → Y and g : Y → Z. If both
f and g are continuous, then so is h = g ◦ f : X → Z. †

Proof. Let V an open subset of Z be given. Since g is continuous, U = g−1(V ) is open
in Y . Since f is continuous, f−1(U) is open in X. Thus, h−1(V ) = f−1(U) is open and
hence h is continuous. �

There are local versions of Propositions 8.5 and 8.3 (See Problems 8.7 and 8.6). Here
is a sample whose proof is left to the reader.

Proposition 8.6. Suppose X, Y, Z are metric spaces, f : X → Y and g : Y → Z. If f is
continuous at a and g is continuous at b = f(a), then h = g ◦ f is continuous at a. †

8.2. Continuity and Limits.

Definition 8.7. Let S be a subset of a metric space X. Recall, from Problem 4.5, a point
p ∈ X is a limit point of S if there exists a sequence (sn) from S \ {p} which converges to
p.

A point p ∈ S is an isolated point of S if p is not a limit point of S. /

Proposition 8.8. Let S be a subset of the metric space X and suppose p ∈ X. The
following are equivalent.

(i) p is a limit point of S;
(ii) for every δ > 0 the set (S \ {p}) ∩Nδ(p) 6= ∅; and

(iii) for every δ > 0 the set S ∩Nδ(p) is infinite.
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A point p ∈ S is an isolated point of S if and only if the set {p} is an open set in S;
i.e., open relative to S. †

The proof of this proposition is left as an exercise. See Proposition 4.8 and Exercise
8.1 and compare with Problems 4.5 and 4.6.

Example 8.9. (i) If S 6= ∅ is an open set in Rg, then every point of S is a limit point
of S. In fact, as an exercise, show in this case the set of limit points of S is the
closure of S.

(ii) The set Z in R has no limit points.
(iii) The only limit point of the set { 1

n
: n ∈ N+} is 0.

4

Definition 8.10. Let X and Y be metric spaces and let a ∈ X and b ∈ Y. Suppose a is
a limit point of X and either f : X → Y or f : X \ {a} → Y . The function f has limit b
as x approaches a, written

lim
x→a

f(x) = b,

if for every ε > 0 there is a δ such that if 0 < dX(a, x) < δ, then dY (b, f(x)) < ε. /

Remark 8.11. The limit b, if it exists, is unique. �

Proposition 8.12. Let X, Y be metric spaces and a ∈ X.

(i) Suppose f : X → Y and a ∈ X is a limit point of X. The function f is continuous
at a if and only if limx→a f(x) exists and equals f(a).

(ii) Suppose Z = X or Z = X \ {a} and b ∈ Y . If f : Z → Y and limx→a f(x) exists
and equals b, then the function g : X → Y defined by g(x) = f(x) for x 6= a and
g(a) = b is continuous at a.

(iii) If a is not a limit point of X and h : X → Y , then h is continuous at a.

†

Proposition 8.13. Suppose a ∈ X and f : W → Y , where W = X or W = X \ {a}. If
limx→a f(x) = b and if g : Y → Z is continuous at b, then limx→a g ◦ f(x) = g(b). †

Proof. The function h : X → Y defined by h(x) = f(x) if x 6= a and h(a) = b is continuous
at a by Proposition 8.12. Hence g ◦ h is continuous at a by Proposition 8.6. It follows
from Proposition 8.12 that

lim
x→a

g ◦ f(x) = lim
x→a

g ◦ h(x) = g(h(a)) = g(b).

�

For a variation on this composition law for limits, see Problem 8.8.

The following Proposition gives a sequential formulation of limit.
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Proposition 8.14. Suppose X is a metric space, a is a limit point of X, and f : Z → Y
where Z is either X or X \{a}. The limit limx→a f(x) exists and equals b ∈ Y if and only
if for every sequence (an) from X \ {a} which converges to a, (f(an)) converges to b.

Moreover, if f : X → Y and a ∈ X, the following are equivalent:

(i) f is continuous at a.
(ii) For every sequence (an) from X \ {a} converging to a, (f(an)) converges to f(a).

(iii) For every sequence (an) from X converging to a the sequence (f(an)) converges
to f(a).

†

Proof. The “moreover” part of the proposition readily follows from the first part and
Proposition 8.12(i).

To prove the the first part of the lemma, suppose limx→a f(x) = b and (an) is a sequence
from X \ {a} which converges to a. To see that (f(an)) converges to b, let ε > 0 be given.
There is a δ > 0 such that if 0 < dX(a, x) < δ, then dY (b, f(x)) < ε. There is an N so
that if n ≥ N , then 0 < dX(a, an) < δ. Hence, if n ≥ N , then dY (b, f(an)) < ε and thus
(f(an)) converges to b.

Conversely, suppose limx→a f(x) 6= b. Then there is an ε0 > 0 such that for each n
there exists an such that 0 < dX(a, an) < 1

n
, but dY (b, f(an)) ≥ ε0. The sequence (an) is

a sequence from X \ {a} which converges to a, but (f(an)) does not converge to b. �

8.3. Continuity of Rational Operations.

Proposition 8.15. Let X be a metric space and a ∈ X be a limit point of X. Suppose
f : Y → Rk where Y is either X or X \ {a}. Write f = (f1, . . . , fk) with fj : X → R.

The limit limx→a f(x) exists and equals A = (A1, . . . , Ak) ∈ Rk if and only if the limit
limx→a fj(x) exist and equals Aj. In particular, if f : X → Rk, then f is continuous at a
if and only if each fj is continuous at a. †

Proof. First suppose the limits limx→a fj(x) exists and equal Aj. Let (an) be a given
sequence from X \ {a} which converges to a. By Proposition 8.14 the sequences (fj(an))
converges to Aj. By Proposition 4.19, the sequence An = f(an) converges to A. Another
application of Proposition 8.14 implies that limx→a f(x) exists and equals A.

Conversely, suppose limx→a f(x) = A and let (an) be a given sequence from X \ {a}
which converges to a. It follows, from Proposition 8.14, that (f(an)) converges to A.
Hence, by Proposition 4.19, the sequences (fj(an)) converge to Aj. Another application
of Proposition 8.14 implies the limits limx→a fj(x) exist and equal Aj. �

Proposition 8.16. Suppose a ∈ X is a limit point of the metric space X, W is either X
or X \ {a} and f, g : W → Rk. If limx→a f(x) and limx→a g(x) exist and equal A and B
respectively, then

(i) limx→a f(x) · g(x) = A ·B;
(ii) limx→a(f + g)(x) = A+B;
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(iii) if k = 1, g is never 0 and B 6= 0, then limx→a
1

g(x)
= 1

B
.

†

Proof. To prove item (i), suppose (an) is a sequence in X \ {a} which converges to a.
From Proposition 8.14, (f(an)) and (g(an)) converge to A and B respectively. Hence
(f(an) · g(an)) converges to A · B, by Proposition 4.20. Finally, another application of
Proposition 8.14 completes the proof.

The proofs of the other items are similar. �

Corollary 8.17. If f, g : X → Rk are continuous at a, then so are f · g and f + g. If
k = 1 and g is never 0, then 1

g
is continuous at a. †

Example 8.18. For each j, the function πj : Rd → R given by πj(x) = xj is continuous
since it can be expressed as

πj(x) = 〈x, ej〉 = x · ej,
where ej is the j-th standard basis vector of Rd; i.e., ej has a 1 in the j-th entry and 0
elsewhere.

If p(x1, . . . , xd) and q(x1, . . . , xd) are polynomials, then the rational function

r(x) =
p(x)

q(x)

is continuous (wherever it is defined). 4

Do Problems 8.9 and 8.10.

8.4. Continuity and Compactness.

Proposition 8.19. If f : X → Y is continuous and X is compact, then f(X) is compact;
i.e., the continuous image of a compact set is compact. †

Proof. Let W be a given open cover of f(X). By continuity of f , the set

U = {f−1(U) : U ∈ W} ⊂ P (X)

is an open cover of X. Since X is compact, there is a finite subset F ⊂ W such that
{f−1(U) : U ∈ F} is a cover of X.

Using the fact that f(f−1(B)) ⊂ B and Worked Example 1.2, it follows that

∪U∈FU ⊃ ∪U∈Ff(f−1(U)) = f
(
∪U∈Ff−1(U)

)
⊃ f(X).

Thus, {U : U ∈ F} ⊂ U is a finite subset of U which covers f(X). Hence f(X) is
compact. �

Do Problem 8.11.

Corollary 8.20 (Extreme Value Theorem). If f : X → R is continuous and X is non-
empty and compact, then there exists x0 ∈ X such that f(x0) ≥ f(x) for all x ∈ X; i.e.,
f has a maximum on X. †
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Proof. By the previous proposition, the set f(X) is a compact subset of R. It is also
non-empty. In view of Proposition 3.35, non-empty compact subsets of R have a largest
element; i.e., there is an M ∈ f(X) such that M ≥ f(x) for all x ∈ X. Since M ∈ f(X),
there is an x0 ∈ X such that M = f(x0). �

Return to Problem 6.10.

Corollary 8.21. If X is compact, and if f : X → Y is one-one, onto and continuous,
then f−1 is continuous. †

Proof. Let C ⊂ X, a closed set, be given. Since X is compact C ⊂ X is closed, C is
compact by Proposition 5.9. Since f is continuous and C is compact, f(C) is compact
by Proposition 8.19. Thus f(C) is closed in Y . Since (f−1)−1(C) = f(C) is closed, it
follows, from Corollary 8.4 that f−1 is continuous. �

Example 8.22. Let T = {z ∈ C : |z| = 1} = {(x, y) ∈ R2 : x2 + y2 = 1} and define
f : [0, 2π) → T by f(t) = exp(it) = (cos(t), sin(t)). Then f is continuous and invertible,
but f−1 is not continuous at 1.

In fact, if g : T→ [0, 2π) is continuous, then it is not onto since its image g(T) will then
be a compact, and hence proper, subset of [0, 2π). Consequently there does not exists a
one-one onto continuous map f : [0, 2π)→ T. (See Problem 8.14.) 4

8.5. Uniform Continuity and Compactness.

Definition 8.23. A function f : X → Y is uniformly continuous if for every ε > 0 there
is a δ > 0 such that if x, y ∈ X and dX(x, y) < δ, then dY (f(x), f(y)) < ε.

Given S ⊂ X, f is uniformly continuous on S if f |S : S → Y is uniformly continuous. /

See Exercise 8.7.

Proposition 8.24. If f : X → Y is continuous on X and if X is compact, then f is
uniformly continuous on X. †

Proof. Let ε > 0 be given. For each x ∈ X there is a rx > 0 such that if dX(x, y) < rx,
then d(f(x), f(y)) < ε

2
.

The collection U = {N rx
2

(x) : x ∈ X} is an open cover of X. Since X is compact, there

is a finite subset F ⊂ X such that V = {N rx
2

(s) : s ∈ F} is a cover of X.

Let δ = 1
2

min{rx : x ∈ F}. Suppose y, z ∈ X and dX(y, z) < δ. There is an x ∈ F such
that y ∈ N rx

2
(x); i.e., dX(x, y) < rx

2
. Hence

dX(x, z) ≤ dX(x, y) + dX(y, z) <
rx
2

+ δ ≤ rx.

Consequently,

dY (f(y), f(z)) ≤ dY (f(y), f(x)) + dY (f(x), f(z)) < ε.

�
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See Problem 8.25 for an alternate proof of Proposition 8.24.

Example 8.25. The function f : R→ R given by f(x) = x2 is not uniformly continuous.

Choose ε0 = 1. Given δ > 0, let x = 2
δ

and y = 2
δ

+ δ
2
. Then |x− y| < δ, but,

|f(y)− f(x)| = 2 +
δ2

4
≥ ε0 = 1.

On the other hand, the function from Problem 8.1 is uniformly continuous. 4

Do Problems 8.13 and 8.12.

8.6. Continuity and Connectedness.

Proposition 8.26. If f : X → Y is continuous and X is connected, then f(X) is
connected. †

Proof. Suppose U and V are open subsets of f(X) such that f(X) = U∪V and U∩V = ∅.

The sets A = f−1(U) and B = f−1(V ) are open, X = A ∪ B and A ∩ B = ∅ (since
if x ∈ A ∩ B, then f(x) ∈ U ∩ V ). Hence, without loss of generality, A = X. Hence,
f(A) = f(X) = f(f−1(U)) ⊂ U and V = ∅. It follows that f(X) is connected. �

Example 8.27. Returning to Example 8.22, there does not exist a one-one onto con-
tinuous mapping f : [0, 2π] → T. If there were, then g = f−1 would be a continuous
one-one mapping of T onto [0, 2π]. Let z = f(π) and Z = T \ {z}. Now Z is connected
and g|Z : Z → [0, π) ∪ (π, 2π] is one-one and onto. But then g|Z(Z) = [0, π) ∪ (π, 2π] is
connected which is a contradiction. 4

Do Problems 8.14, 8.15, and 8.16.

Corollary 8.28. [Intermediate Value Theorem] If f : [a, b] → R is continuous and
f(a) < 0 < f(b), then there is a point a < c < b, such that f(c) = 0. †

Definition 8.29. Let S denote a subset of R. A function f : S → R is increasing
(synonymously non-decreasing) if x, y ∈ S and x ≤ y implies f(x) ≤ f(y). The function
is strictly increasing if x, y ∈ S and x < y implies f(x) < f(y). /

Corollary 8.30. If f : [a, b]→ R is continuous and increasing, then f([a, b]) = [f(a), f(b)].
†

Example 8.31. Returning to the discussion in Subsection 2.2, fix a positive integer n
and let f : [0,∞) → [0,∞) denote the function with rule f(x) = xn. To show that f is
onto, let y ∈ [0,∞) be given. With b the larger of 1 and y, consider g = f |[0,b] : [0, b]→ R.
Since f(b) ≥ y, it follows that y is in the interval [0, g(b)]. By Corollary 8.30, y is in the
range of g and hence in the range of f . The conclusion is then that positive numbers have
n-th roots. 4
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8.6.1. More on connectedness - optional. The following property of a metric space X is
sometimes expressed by saying that X is completely normal. It is evidently stronger than
the statement that disjoint closed sets can be separated by disjoint open sets, a property
known as normality. . Compare with Problem 6.12.

Proposition 8.32. If A,B are subset of a metric space such that A∩B = ∅ and A∩B = ∅,
then there exists U, V ⊂ X such that

(i) U and V are open;
(ii) A ⊂ U , B ⊂ V ; and
(iii) U ∩ V = ∅.

†

Proof. If either A or B is empty, then the result is immediate. Accordingly, suppose that
A 6= ∅ and B 6= ∅ and of course that A ∩ B = ∅ and B ∩ A = ∅. By Problem 8.1, the
function f : X → R given by

f(x) = d(x;B)− d(x;A)

is continuous. Observe, if x ∈ A, then x /∈ B and hence d(x;A) = 0, but d(x;B) > 0 by
Problem 3.8. Thus, f(x) > 0 for x ∈ A. Similarly, f(x) < 0 for x ∈ B. Let U = f−1(0,∞)
and V = f−1(−∞, 0). It follows that U and V are open, A ⊂ U , B ⊂ V , and U ∩ V = ∅.
Thus U and V satisfy conditions (i)–(iv). �

Remark 8.33. Proposition 8.32 gives another characterization of connected subsets S of
a metric space X. Namely, S is not connected if and only if there exist nonempty, open,
disjoint subsets U, V of X such that S ⊂ U ∪ V . �

8.7. The Completion of a Metric Space - optional.

Definition 8.34. Let X, Y be metric spaces. A mapping f : X → Y is isometric or an
isometry, if

dY (f(a), f(b)) = dX(a, b)

for all a, b ∈ X. /

Evidently, an isometry f is continuous.

Definition 8.35. The metric spacesX and Y are equivalent if there is a isometric bijection
f : X → Y . /

The notion of equivalent metric spaces satisfies the axioms of an equivalence relation.

Proposition 8.36. Let X be a given metric space. Suppose Y, Z are complete metric
spaces and f : X → Y and g : X → Z are isometric. If f(X) and g(X) are dense in Y
and Z respectively, then Y and Z are equivalent. †

Sketch of proof. Given y ∈ Y , there is a sequence (xn) from X such that (yn = f(xn))
converges to y. It follows, using the fact that d(f(xn), f(xm)) = d(g(xn), g(xm)), that
(zn = g(xn)) is Cauchy in Z and hence converges to some z ∈ Z. Define h : Y → Z by
h(y) = z. �
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Definition 8.37. Given X, a metric space Y is the completion of X if there exists an
isometry f : X → Y such that f(X) is dense in Y . (The proposition above justifies the
use of the instead of a.) /

8.8. Exercises.

Exercise 8.1. Prove Proposition 8.8

Exercise 8.2. Show that f : (0, 1] → R defined by f(x) = 1
x

is continuous, but not
uniformly so.

Exercise 8.3. Fix n ∈ N+. Use the Intermediate Value Theorem 8.28 along with Corollary
8.21 to argue that the function n

√
exists (as a mapping from [0,∞) to [0,∞) and is

continuous.

Exercise 8.4. Use Exercise 8.3 to show if the sequence (an) of nonnegative real numbers
converges to A, and r = m

n
(m,n ∈ N+) is a rational number, then (arn) converges to Ar.

Exercise 8.5. Give an alternate proof of the statement of Problem 6.10 using Example
8.2(f) and Corollary 8.20.

Exercise 8.6. Suppose f : X → Rk, the point a ∈ X is a limit point of X and A ∈ Rk.
Show, if

lim
x→a

[f(x)− A] = 0

(that is that the indicated limit exists and is 0), then

lim
x→a

f(x) = A.

Exercise 8.7. Verify that the functions in parts (a), (b), (f) and (g) of Example 8.2 are
actually uniformly continuous.

Exercise 8.8. Formulate and prove a squeeze theorem for limits of functions.

8.9. Problems.

Problem 8.1. Let A be a nonempty subset of a metric space X. Define f : X → [0,∞)
by f(x) = inf{d(x, a) : a ∈ A}. Prove that f is continuous.

Problem 8.2. Let X be a metric space and Y a discrete metric space.

(i) Determine all continuous functions f : Y → X.
(ii) Determine all continuous functions g : R→ Y ;

Problem 8.3. Suppose (X is not empty and) f : X → Y is continuous. Show, if X is
connected and for each x ∈ X there is an r > 0 such that f(y) = f(x) for all y ∈ Nr(x),
then f is constant.

Problem 8.4. Prove Corollary 8.4.
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Problem 8.5. Show, if f : X → R is continuous, then the zero set of f ,

Z(f) = {x ∈ X : f(x) = 0}

is a closed set.

Show that the set

{(x, y) : xy = 1} ⊂ R2

is a closed set. Compare with Exercise 3.7.

Problem 8.6. Prove the following local version of Proposition 8.3.

Suppose f : X → Y and a ∈ X. The function f is continuous at a if and only if
for every open set U containing b = f(a), there is an open set V containing a so that
V ⊂ f−1(U).

Problem 8.7. Prove Proposition 8.6.

Problem 8.8. Suppose X is a metric space, a ∈ X is a limit point of X and f : X\{a} →
Y . Show, if

(i) limx→a f(x) exists and equals b;
(ii) g : Z → X is continuous at c;

(iii) g(c) = a; and
(iv) g(z) 6= a for z 6= c,

then

lim
z→c

f ◦ g(z) = b.

Problem 8.9. Define f : R \ {0} → R by f(x) = sin( 1
x
). Show

(i) f does not have a limit at 0;
(ii) show g : R \ {0} → R defined by g(x) = xf(x) has a limit at 0;
(iii) more generally, show if h : R → R is continuous at 0 and h(0) = 0, then hf (with

domain R \ {0} of course) has a limit at 0.

Problem 8.10. Define f : R2 → R by

f(x, y) =

{
xy√
x2+y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Is f continuous at 0 = (0, 0)?

Define g : R2 → R by

g(x, y) =

{
xy

x2+y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

Is g continuous at 0 = (0, 0)?
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Problem 8.11. Suppose X and Y are metric spaces and let Z denote the metric space
Z = X × Y with distance function

d((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}.

Prove, if f : X → Y is continuous, then F : X → Z defined by F (x) = (x, f(x)) is also
continuous.

Prove, if f is continuous and X is compact, then the graph of f ,

graph(f) = {(x, f(x)) ∈ Z : x ∈ X} ⊂ Z

is compact.

As a challenge, show, if the graph of f is compact, then f is continuous. As a suggestion,
consider the function H : graph(f)→ X defined by H(x, f(x)) = x.

Problem 8.12. Prove if f : X → Y is uniformly continuous and (an) is a Cauchy
sequence from X, then (f(an)) is Cauchy in Y .

Problem 8.13. Given a metric space Y, a point L ∈ Y , and f : [0,∞)→ Y , f has limit
L ∈ Y at infinity, written,

lim
x→∞

f(x) = L,

if for every ε > 0 there is a C > 0 such that if x > C, then dY (f(x), L) < ε.

Prove, if f : [0,∞) → Y is continuous and has a limit at infinity, then f is uniformly
continuous.

Problem 8.14. A function f : X → Y is a homeomorphism if it is one-one and onto and
both f and f−1 are continuous.

Suppose f : X → Y is a homeomorphism. Show, if Z ⊂ X, then f |Z : Z → f(Z) is
also a homeomorphism. In particular, if Z is connected, then so is f(Z).

Problem 8.15. Does there exist a continuous onto function f : [0, 1]→ R?

Does there exist a continuous onto function f : (0, 1)→ (−1, 0) ∪ (0, 1)?

Problem 8.16. Suppose f : [0, 1] × [0, 1] → R. Prove, if f is continuous, then f is not
one-one. (See Exercise 7.3.)

Problem 8.17. Let I = (c, d) be an interval and suppose a ∈ I. Let E denote either
I or I \ {a} and suppose f : E → R. We say f has a limit as x approaches a from the
right (above) if the function f |(a,d) : (a, d)→ R has a limit at a. The limit, if it exists, is
denoted,

lim
x→a+

f(x) = lim
a<x→a

f(x).

The limit from the left (below) is defined similarly.

Show f has a limit at a if and only if both the limits from the right and left at a exist
and are equal.
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Problem 8.18. Suppose f : (c, d) → R is monotone increasing and c < a < d. Show, f
has a limit from the left at a and this limit is

sup{f(t) : c < t < a}.

Problem 8.19. Suppose f : [a, b] → [c, d] is one-one and onto and (strictly) monotone
increasing. Prove f is continuous.

Problem 8.20. A function f : X → X is a contraction mapping if there is an 0 ≤ r < 1
such that

d(f(x), f(y)) ≤ rd(x, y)

for all x, y ∈ X.

A point p is a fixed point of f if f(p) = p.

Prove that a contraction mapping can have at most one fixed point.

Prove, if f is a contraction mapping and X is complete, then f has a (unique) fixed
point. In fact, show, for any point x ∈ X, the sequence (xn) defined recursively by x0 = x
and xn+1 = f(xn) converges to this fixed point. (See Proposition 5.12.)

Problem 8.21. Suppose K is compact and f : K → K. Show, if f is continuous, then
the function g : K → [0,∞)

g(x) = d(f(x), x)

attains its infimum (achieves a minimum). Show further that if this minimum is taken at
z ∈ X, then

d(f(f(z)), f(z)) ≥ d(f(z), z).

Show that x is a fixed point of f if and only if g(x) = 0.

Suppose now that f satisfies

d(f(x), f(y)) < d(x, y)

for all x 6= y in K.

Prove f has a unique fixed point.

Show by example, that the hypothesis that K is compact can not be dropped.

Problem 8.22. Suppose f : X → Y maps convergent sequences to convergent sequences;
i.e., if (an) converges in X, then (f(an)) converges in Y .

Show, if (an) converges to a, and (bn) is the sequence defined by b2n = an and b2n+1 = a,
then (bn) converges to a. Now prove that f(bn) converges to f(a).

Prove f is continuous.

Problem 8.23 (Pasting Lemma). Suppose f : X → Y and X = S∪T , where S and T are
closed. Show, if the restriction of f to both S and T is continuous, then f is continuous.
The same is true if both S and T are open. (Suggestion: in the case S and T are closed,
fix a closed set C ⊂ Y and express f−1(C) = (f−1(C)∩S)∪ (f−1(C)∩T ) in terms of f |S
and f |T .)
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Problem 8.24. Show, if f : X → X is continuous, X is compact, and f does not have a
fixed point, then there is an ε > 0 such that d(x, f(x)) ≥ ε for all x ∈ X.

Problem 8.25. Fill in the following outline of an alternate proof of Proposition 8.24.
Arguing by contradiction, suppose f is not uniformly continuous. Hence there is an
ε0 > 0 such that for each n ∈ N there exists xn, yn ∈ X such that dX(xn, yn) < 1

n
, but

dY (f(xn), f(yn)) ≥ ε0. There exists a point z ∈ X and some choice of positive integers
n1 < n2 < . . . , such that (xnk)k and (ynk)k both converge to z. Explain why this last
statement contradicts the assumption that f is continuous.

9. Sequences of Functions and the Metric Space C(X)

9.1. Sequences of Functions.

Definition 9.1. Let X be a set and Y a metric space. A sequence (fn) of functions
fn : X → Y converges pointwise if there exists an f : X → Y such that for each x ∈ X
the sequence (fn(x)) converges to f(x) in Y ; i.e., if for every x ∈ X and every ε > 0 there
is an N such that for every n ≥ N , dY (fn(x), f(x)) < ε. The function f is the limit of
the sequence, written

lim
n→∞

fn = f (pointwise),

and (fn) is said to converge pointwise to f . /

Example 9.2. (i) Let f : [0, 1] → R denote the function defined by f(1) = 1 and
f(x) = 0 for 0 ≤ x < 1. The sequence fn : [0, 1] → R defined by fn(x) = xn

converges pointwise to f .
(ii) The sequence fn : [0, 1]→ R defined by

fn(x) =
x

1 + nx2

converges pointwise to 0.

4

Definition 9.3. Let X be a set and Y a metric space. A sequence (fn) of functions
fn : X → Y is uniformly convergent or converges uniformly if there exists f : X → Y
such that for every ε > 0 there is an N such that dY (fn(x), f(x)) < ε for every x ∈ X
and every n ≥ N.

In this case (fn) converges uniformly to f . /

Remark 9.4. If (fn) converges uniformly to f , then (fn) converges pointwise to f . On
the other hand, if (fn) converges pointwise, but not uniformly, to f , then (fn) does not
converge uniformly. �

Example 9.5. (i) The sequence in item (i) of Example (9.2) above does not converge
uniformly to its pointwise limit f (and thus does not converge uniformly). To prove

this statement, choose ε0 = 1
2
. Given N , choose n = N and xN = (1

2
)

1
N . Then

|fN(xN)− f(xN)| = 1
2
≥ ε0.
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(ii) The sequence from item (ii) of Example (9.2) does converge uniformly to the zero
function f . To prove this claim, let ε > 0 be given. Choose, using the uniform
convergence of the sequence, N ∈ N+ such that 1

N
< ε2. Suppose n ≥ N and let

x ∈ [0, 1] be given. If 0 ≤ x < ε, then

|fn(x)− f(x)| = fn(x) ≤ x < ε.

On the other hand, if 1 ≥ x ≥ ε, then

|fn(x)− f(x)| ≤ x

nx2
≤ 1

nε
< ε.

(iii) Let hn : [0, 1] → [0, 1] be the piecewise linear function whose graph consists of line
segments joining (0, 0) to ( 1

2n
, 1), then ( 1

2n
, 1) to ( 1

n
, 0), and finally ( 1

n
, 0) to (1, 0).

The sequence (hn) converge pointwise to 0, but doesn’t converge uniformly to 0.
This sequence is sometimes called the moving hats.

4

Theorem 9.6. Suppose X, Y are metric spaces and (fn) is a sequence fn : X → Y . If
each fn is continuous and if (fn) converges uniformly to f , then f is continuous.

Proof. Let x and ε > 0 be given. Choose N such that if n ≥ N and y ∈ X, then
dY (fn(y), f(y)) < ε. Since fN is continuous at x, there is a δ > 0 such that if dX(x, y) < δ,
then dY (fN(x), fN(y)) < ε. Thus, if dX(x, y) < δ, then

dY (f(x), f(y)) ≤dY (f(x), fN(x)) + dY (fN(x), fN(y)) + dY (fN(y), f(y))

< 3ε.

�

Example 9.7. Example (9.5)(iii) shows that a sequence of continuous functions can
converge pointwise to a continuous function, but not uniformly; i.e., pointwise convergence
of a sequence of continuous functions to a continuous function does not imply uniform
convergence.

The sequence fn : [0, 1]→ R given by fn(x) = xn cannot converge uniformly, since the
limit f fails to be continuous at 1. Note that the same is true for any subsequence. 4

9.2. The Metric Space C(X).

Definition 9.8. Suppose X is a set and Y is a metric space. A function f : X → Y is
bounded if the range of f is bounded. /

Remark 9.9. Suppose X is a set and Y is a metric space. If f, g : X → Y are bounded
functions, then, as is easily proved, the set {dY (f(x), g(x)) : x ∈ X} is a bounded set
of real numbers and hence has a supremum. In the case that f is continuous and X is
compact, then f is bounded. Further, if both f and g are continuous (and still X is
compact), then because that mapping D : X → R defined by D(x) = dY (f(x), g(x)) is
continuous, the supremum is attained. �



75

Definition 9.10. Given a compact metric space X and a metric space Y , let C(X, Y )
denote the set of continuous functions from X to Y .

The function d : C(X, Y )× C(X, Y )→ R defined by

d(f, g) = sup{dY (f(x), g(x)) : x ∈ X}
is called the uniform metric. /

Remark 9.11. (i) In the case that Y is either R (resp. C) it is customary to write
C(X) instead of C(X,R) (resp. C(X,C)).

(ii) Note that C(X) is a vector space (under pointwise addition and scalar multiplica-
tion).

(iii) The metric d on C(X) is induced by the (supremum or max) norm, ‖f‖∞ =
max{|f(x)| : x ∈ X} on C(X).

�

Proposition 9.12. Suppose X and Y are metric spaces and X is compact.

(i) The function d is a metric on C(X, Y ).
(ii) A sequence (fn) from C(X, Y ) converges to f in the metric space (C(X, Y ), d) if and

only if (fn) converges to f uniformly.
(iii) If Y is complete, then C(X, Y ) is also complete.

†

Definition 9.13. Suppose X is a compact metric space and Y is a metric space. A
sequence (fn) of functions fn : X → Y is uniformly Cauchy if it is Cauchy in C(X, Y ). /

An easy variation of Proposition 9.12(ii) is the fact that (fn) is uniformly Cauchy if
and only if for every ε > 0 there is an N such that d(fn(x), fm(x)) < ε for all n,m ≥ N
and all x ∈ X.

Proof. We will prove that d satisfies the triangle inequality, the other properties of a
metric being easily verified.

Accordingly, let f, g, h ∈ C(X, Y ) be given. Given x ∈ X, the triangle inequality in Y
and the definition of d gives,

dY (f(x), h(x)) ≤ dY (f(x), g(x)) + dY (g(x), h(x)) ≤ d(f, g) + d(g, h).

Hence, d(f, g) + d(g, h) is an upper bound for the set {dY (f(x), h(x)) : x ∈ X} and
therefore, d(f, h) ≤ d(f, g) + d(g, h).

Now suppose (fn), a sequence from C(X, Y ), converges to f ∈ C(X, Y ) in the metric
space (C(X, Y ), d). Given ε > 0 there is an N such that if n ≥ N , then d(fn, f) < ε.
In particular, for all x ∈ X, dY (fn(x), f(x)) ≤ d(fn, f) < ε and (fn) converges to f
uniformly.

Conversely, suppose (fn) converges to f ∈ C(X, Y ) uniformly. Given ε > 0 there is
an N such that if n ≥ N , then, for all x ∈ X, dY (fn(x), f(x)) < ε. Hence, for n ≥ N ,
d(fn, f) ≤ ε (in fact strict inequality holds) and (fn) converges to f in C(X, Y ).
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Finally, suppose that Y is complete and that (fn), a sequence from C(X, Y ), is uniformly
Cauchy. Then, for each x ∈ X, the sequence (fn(x)) is Cauchy in Y . Since Y is complete,
(fn(x)) converges to some f(x). Thus, there is a function f : X → Y such that (fn)
converges pointwise to f .

Now, let ε > 0 be given. There is an N such that if n,m ≥ N , then d(fn, fm) < ε. In
particular, dY (fn(x), fm(x)) < ε for each x ∈ X and m,n ≥ N. Given n ≥ N and x ∈ X,
choose m ≥ N such that d(fm(x), f(x)) < ε (using pointwise convergence) and observe
that

dY (fn(x), f(x)) ≤ dY (fn(x), fm(x)) + dY (fm(x), f(x)) < 2ε.

Hence (fn) converges uniformly to f . Since each fn is continuous, so is f , by Theorem
9.6. Thus f ∈ C(X, Y ) and (fn) converges to f . �

Remark 9.14. The unit ball in C([0, 1]) is the set

B = {f ∈ C([0, 1]) : d(0, f) ≤ 1} = {f ∈ C([0, 1]) : ‖f‖∞ ≤ 1}.

The set B is closed (it is a closed ball in C([0, 1])) and hence complete as C([0, 1]) is
complete. It is also bounded - it is contained in the r-neighborhood of 0 for any r > 1.
But it is not compact since fn(x) = xn is a sequence from B which has no uniformly
convergent subsequence. See Problem 9.8 for a more general statement. �

9.3. Exercises.

Exercise 9.1. Show that the sequence of continuous real-valued functions (fn) defined
on the interval (−1, 1) by fn(x) = xn does not converge uniformly, even though it does
converge pointwise to a continuous function.

Exercise 9.2. Show, for a fixed 0 < a < 1, the sequence of real-valued functions (fn)
defined on the interval [−a, a] by fn(x) = xn does converge uniformly.

Exercise 9.3. Does the sequence of functions (fn) defined on the interval [0, 1] by

fn(x) =
nx

1 + nx2

converge pointwise? Does it converge uniformly?

Exercise 9.4. Same as Exercise 9.3, but with

fn(x) =
nx

1 + n2x2
.

Exercise 9.5. Show, if (fn) and (gn) are uniformly convergent sequences of functions
mapping the set X into R, then the sequence (hn = fn + gn) converges uniformly too.

Exercise 9.6. Consider the sequence (fn) where fn : R→ R is defined by fn(x) = x+ 1
n
.

Show fn converges uniformly. Does the sequence (f 2
n) converge uniformly? Compare with

Exercise 9.5.
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9.4. Problems.

Problem 9.1. Let X be a set and suppose g : X → R. Define fn : X → R by fn(x) =
g(x)n.

(i) Show, (fn) converges pointwise if and only if the range of g lies in (−1, 1] and in this
case find the pointwise limit; and

(ii) Show, (fn) converges uniformly if and only if there exists 0 < a < 1 such that the
range of g lies in [−a, a] ∪ {1}.

Problem 9.2. Suppose f : [0, 1] → R is continuous and let gn : [0, 1] → R denote the
function gn(t) = tnf(t). Show, if (gn) converges uniformly, then f(1) = 0; and conversely,
if f(1) = 0, then (gn) converge uniformly. [Note that it suffices to assume that f is
bounded and continuous at 1.]

Problem 9.3. Here is an application of Problem 8.20. Suppose g : [0, 1]→ R is continu-
ous and ∫ 1

0

|g(t)|dt < 1.

Show, for k ∈ R, that the mapping F : C([0, 1])→ C([0, 1]) defined by

F (f)(x) = kx+

∫ x

0

g(t)f(t)dt

is a contractive mapping (see Problem 8.20).

Show that the equation F (f) = f has a unique solution.

Note that this solution satisfies f ′ = k + gf and f(0) = 0 (though a proof will have to
wait until after a discussion of differentiation of course).

Problem 9.4. Show, if (fn) converges to f in C(X, Y ), then (fn) is equicontinuous ; i.e.,
given ε > 0 there is a δ > 0 such that, for every n, if d(x, y) < δ, then d(fn(x), fn(y)) < ε.
(Thus the collection {fn : n ∈ N} is uniformly uniformly continuous.) (Recall, implicit is
the assumption that X is compact.)

Note that the conclusion holds if (fn) is a Cauchy sequence from C(X, Y ), not neces-
sarily convergent with a slight modification of the proof for the case above.

Problem 9.5. Let X be a compact metric space. A subset C of C(X) is equicontinuous
if for each ε > 0 there is a δ > 0 such that for every f ∈ C and x, y ∈ X with d(x, y) < δ,

|f(x)− f(y)| < ε.

If C is compact, then C is closed and bounded (in the metric space C(X)). Show that C
is also equicontinuous.

It turns out that the converse is true too, but more challenging to prove. Namely, if C
is closed, bounded and equicontinuous, then C is compact.

Problem 9.6. Show, if (fn) converges to f in C(X, Y ) and if (zn) is a sequence from
X which converges to z, then (fn(zn)) converges to f(z). Use this fact to show that the
sequence (hn) from Example 9.5 (iii) does not converge uniformly. See also Exercise 9.4.
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Note the following variant of this problem. If (fn) is a Cauchy sequence from C(X, Y )
and if (zn) is Cauchy from X, then (fn(zn)) is Cauchy in Y .

Problem 9.7. Prove the following partial converse to Problem 9.6. Suppose X is com-
pact, (fn) is a sequence from C(X, Y ) and f ∈ C(X, Y ). Show, if (fn(xn)) converges
to f(x) for each x ∈ X and sequence (xn) converging to x, then (fn) converges to f
uniformly. Give an example to show that the assumption that X is compact is needed.

Problem 9.8. Given a point a in a compact metric space X, let

g(x) =
1

1 + d(a, x)
.

Let fn : X → R denote the sequence of functions fn(x) = g(x)n (for n ≥ 1).

Recall that a point a ∈ X is an isolated point of X if the set {a} is open in X.

(i) Find the pointwise limit f of (fn);
(ii) Explain why each fn is continuous;
(iii) Prove that f is continuous if and only if a is an isolated point of X;
(iv) Prove, if a is not an isolated point of X, then the unit ball of C(X) is not compact;
(v) Prove, if the closed unit ball of C(X) is compact, then every point of X is an isolated

point of X;
(vi) Prove the closed unit ball of C(X) is compact if and only if X is a finite set.

Problem 9.9. Given a set X and metric space Y , let B(X, Y ) denote the bounded
functions from X to Y . Prove that d(f, g) = sup{dY (f(x), g(x)) : x ∈ X} defines a
metric on B(X, Y ) and that most of Proposition 9.12 holds with B(X, Y ) in place of
C(X, Y ).

10. Differentiation

This section treats the derivative of a real-valued function defined on an open set
in R. Subsections 10.1 and 10.2 contain the definitions and basic properties respectively.
Subsections 10.3 and 10.4 treat the Mean Value Theorem and Taylor’s Theorem. The brief
subsection 10.5 introduces the derivative of a vector-valued function of a real variable.

10.1. Definitions and Examples.

Definition 10.1. Suppose D ⊂ R, a ∈ D is a limit point of D and f : D → R. The
function f is differentiable at a provided the limit

lim
x→a

f(x)− f(a)

x− a
exists. In this case the value of the limit is called the derivative of f at a , denoted f ′(a).

If f is differentiable at each point in D, then f is differentiable and in this case f ′ :
D → R is called the derivative of f . /

Example 10.2. (i) Fix c ∈ R. The function f : R→ R defined by f(x) = c is differen-
tiable and f ′ = 0.
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(ii) The identity function g : R→ R given by g(x) = x is is differentiable and g′(x) = 1.

(iii) The function ϕ : [0,∞)→ R defined by f(x) = x
3
2 is differentiable at 0.

(iv) The function ψ : [0,∞)→ R defined by ψ(t) = t
1
2 is not differentiable at 0.

4

Do Exercise 10.1.

10.2. Basic Properties.

Proposition 10.3. Suppose D ⊂ R and a ∈ D is an accumulation point of D. If
f : D → R is differentiable at a, then f is continuous at a. †

Proof. Since the limit limx→a
f(x)−f(a)

x−a exist and and 0 = limx→a x− a, it follows that

0 = lim
x→a

f(x)− f(a)

x− a
lim
x→a

x− a = lim
x→a

[f(x)− f(a)].

An application of Exercise 8.6 shows that the limit limx→a f(x) exists and equals f(a). �

Proposition 10.4. Suppose D ⊂ R and a ∈ D is an accumulation point of D. If
f, g : D → R are differentiable at a, then

(i) fg is differentiable at a and (fg)′(a) = f ′(a)g(a) + f(a)g′(a);
(ii) f + g is differentiable at a and (f + g)′(a) = f ′(a) + g′(a);
(iii) if g′(a) exists and g is never 0 then 1

g
is differentiable at a and(

1

g

)′
(a) = − g

′(a)

g(a)2
.

†

Proof. To prove item (i) consider,

f ′(a)g(a) + f(a)g′(a) = lim
x→a

f(x)− f(a)

x− a
lim
x→a

g(x) + lim
x→a

g(x)− g(a)

x− a
f(a)

= lim
x→a

f(x)− f(a)

x− a
g(x) + lim

x→a

g(x)− g(a)

x− a
f(a)

= lim
x→a

f(x)g(x)− f(a)g(a)

x− a

The proofs of the other items are similar. �

The proofs of the chain rule and inverse function theorem, while similar to the proofs
of the items in the proposition above, are more subtle.

Proposition 10.5. [Chain Rule] Suppose U, V ⊂ R and a ∈ U and b ∈ V are accumula-
tion points of U and V respectively. If f : U → V and g : V → R are differentiable at a
and b = f(a) respectively, then h = g◦f is differentiable at a and h′(a) = g′(f(a))f ′(a). †
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Proof. The function

F (y) =

{
g(y)−g(b)
y−b y 6= b

g′(b) y = b,

is continuous at b and f is continuous at a (since g and f are differentiable at b and a
respectively). Thus, F ◦ f is continuous at a by Proposition 8.13 and hence

g′(b)f ′(a) = lim
x→a

F (f(x)) lim
x→a

f(x)− f(a)

x− a

= lim
x→a

F (f(x))
f(x)− f(a)

x− a

= lim
x→a

g(f(x))− g(b)

x− a
,

where the limit of a product is a product of the limits, provided they both exist, has been
used in the second equality. �

Recall Corollary 8.30.

Proposition 10.6. [Inverse Function Theorem I] Suppose f : [a, b] → R is continuous,
strictly increasing, and differentiable at c ∈ [a, b]. If f ′(c) 6= 0, then f−1 : [f(a), f(b)] →
[a, b] is differentiable at f(c) and

(f−1)′(f(c)) =
1

f ′(c)
.

†

Proof. For notational ease, let g = f−1 and d = f(c). The function

F (x) =

{
x−c

f(x)−f(c) x 6= c
1

f ′(c)
x = c

is defined and continuous, including at c by the assumption that f is differentiable at
c and Proposition 8.16(iii). Since also g(y) is continuous (by Corollary 8.21) and the
composition of continuous functions is continuous, it follows that

lim
y→d

F (g(y)) = F (g(d)) = F (c).

Noting that F (g(y)) = g(y)−d
y−d and F (g(d)) = 1

f ′(c)
completes the proof. �

Example 10.7. The product rule and induction show that if n ∈ N+ and f(x) = xn,
then f is differentiable and f ′(x) = nxn−1. Using the quotient rule, the same formula
holds for n ∈ Z, n 6= 0.

Given n ∈ N+, the function g : (0,∞)→ (0,∞) defined by g(x) = x
1
n is the inverse of

f(x) = xn. Hence, by the inverse function theorem, g is differentiable and

g′(xn) =
1

f ′(x)
=

1

nxn−1
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Thus, g′(x) = 1
n
x

1
n
−1. That this last formula holds for negative integers follows from the

quotient rule.

Finally, if q = m
n

is rational with m,n ∈ Z, n > 0 and f(x) = xq, an application of the
chain rule shows f is differentiable and f ′(x) = qxq−1. 4

10.3. The Mean Value Theorem. Suppose X is a metric space. A function f : X → R
has a local maximum at a ∈ X if there is an open set V such that a ∈ V ⊂ X and if
x ∈ V , then f(a) ≥ f(x).

Proposition 10.8. Suppose W is an open subset of R, a ∈ W , and f : W → R. If f is
differentiable at a and if f has a local maximum at a, then then f ′(a) = 0. †

Proof. There is an open set a ∈ U ⊂ W such that f(x) ≤ f(a) for all x ∈ U . By
assumption, the limit

f ′(a) = lim
x→a

f(x)− f(a)

x− a
exists. Since U is open in R, there is a sequence (xn) from U converging to a with xn > a.
It follows, as f(xn)− f(a) < 0, that

f ′(a) = lim
n→∞

f(xn)− f(a)

xn − a
≤ 0.

Likewise, choosing a sequence (xn) from U converging to a with xn < a shows f ′(a) ≥ 0.
Hence f ′(a) = 0. �

Proposition 10.9. [Rolle’s Theorem] Suppose f : [a, b] → R is continuous, and f is
differentiable at each point in (a, b). If f(a) = 0 = f(b), then there is a point a < c < b
such that f ′(c) = 0. †

Proof. Since f is continuous and real valued on a compact set f has both a maximum and
minimum. Since f(a) = f(b), at least one of either the maximum or minimum occurs at
a point a < c < b (of course it is possible for both the maximum and minimum to occur
at the endpoints in which case f is identically 0). By Proposition 10.8, f ′(c) = 0. �

Theorem 10.10. [Mean Value Theorem, Cauchy’s Version] If f, g : [a, b]→ R are contin-
uous, and if both are differentiable at each point in (a, b), then there is a c with a < c < b
so that (f(b)− f(a))g′(c) = f ′(c)(g(b)− g(a)).

Proof. Let F (x) = (f(x)− f(a))(g(b)− g(a))− (f(b)− f(a))(g(x)− g(a)). Then F (a) =
F (b) = 0 and F satisfies the hypotheses of Rolle’s Theorem. Hence there is a a < c < b
such that F ′(c) = 0; i.e., f ′(c)(g(b)− g(a)) = (f(b)− f(a))g′(c). �

Choosing g(x) = x in the Cauchy Mean Value Theorem captures the usual Mean Value
Theorem.

Corollary 10.11. [Mean Value Theorem, MVT] If f : [a, b] → R is continuous, and
if f is differentiable at each point in (a, b), then there is a c with a < c < b so that
f(b)− f(a) = f ′(c)(b− a). †
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Recall the definition of an increasing function, Definition 8.29.

Corollary 10.12. Suppose f : (a, b) → R is differentiable. The function f is increasing
if and only if f ′ ≥ 0 (meaning f ′(x) ≥ 0 for all x ∈ (a, b)).

Further, if f ′(x) > 0 for all x ∈ (a, b), then f is strictly increasing. †

The function f : R→ R, defined by f(x) = x3 is strictly increasing, but f ′(0) = 0.

Do Problem 10.1.

Proof. If f is increasing, then, for a fixed point a < p < b and any q ∈ (a, b) with q 6= p,

f(p)− f(q)

p− q
≥ 0.

It follows from this inequality that f ′(p) ≥ 0.

For the converse, given a < x < y < b, by the MVT there is a x < c < y such that

f(y)− f(x) = f ′(c)(y − x) ≥ 0,

where the inequality follows from the assumption that f ′ takes nonnegative values and
y − x > 0. Thus f is increasing. If f ′ takes only positive values, then f is strictly
increasing. �

Proposition 10.13. [A version of L’hopitals rule] Let I = (a, b) and f, g : I → R and
suppose

(i) both f and g are differentiable;
(ii)

lim
x→a

f(x) = 0 = lim
x→a

g(x); and;

(iii) both g and g′ are never 0.

If

lim
x→a

f ′(x)

g′(x)

exists, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

†

The article http://en.wikipedia.org/wiki/Johann_Bernoulli#L.27H.C3.B4pital_
controversy gives an amusing account of the (mis)naming of L’hopital’s rule.

Proof. The functions f and g extend to be continuous on [a, b) by defining f(a) = g(a) = 0.

Let

L = lim
x→a

f ′(x)

g′(x)
.

http://en.wikipedia.org/wiki/Johann_Bernoulli#L.27H.C3.B4pital_controversy
http://en.wikipedia.org/wiki/Johann_Bernoulli#L.27H.C3.B4pital_controversy
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Given ε > 0 there is a δ > 0 such that if a < y < a+ δ, then

|L− f ′(y)

g′(y)
| < ε.

From the Cauchy mean value theorem and hypothesis (iii), given a < x < a + δ there
is a a < c < x such that

f ′(c)

g′(c)
=
f(x)− f(a)

g(x)− g(a)
=
f(x)

g(x)
.

Thus, if a < x < a+ δ, then,

|L− f(x)

g(x)
| = |L− f ′(c)

g′(c)
| < ε.

�

10.4. Taylor’s Theorem.

Theorem 10.14. Let I = (u, v) ⊂ R be an open interval, n ∈ N, and suppose f : I → R
is (n+ 1) times differentiable. If u < a < b < v, then there is a c such that a < c < b and

f(b) =
n∑
j=0

f (j)(a)(b− a)j

j!
+
f (n+1)(c)(b− a)n+1

(n+ 1)!
.

The result remains true with b < a. See Exercise 10.3.

Proof. Define Rn : I → R by

Rn(x) = f(b)−
n∑
j=0

f (j)(x)(b− x)j

j!
.

There is a K so that Rn(a) = K (b−a)n+1

(n+1)!
and the goal is to prove there is a a < c < b such

that K = f (n+1)(c).

Let

ϕ(x) = Rn(x)−K (b− x)n+1

(n+ 1)!
.

Note that ϕ : [a, b]→ R is continuous and differentiable at each point in (a, b). Moreover,
ϕ(a) = 0 = ϕ(b). Thus, by the MVT, there is a a < c < b such that ϕ′(c) = 0. Since,

ϕ′(x) = −f (n+1)(x)
(b− x)n

n!
+K

(b− x)n

n!
,

it follows that

0 = (−f (n+1)(c) +K)
(b− c)n

n!
.

The conclusion of the theorem follows. �
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10.5. Vector-Valued Functions. Given an open set U ⊂ R, the derivative of a function
f : U → Rk can be defined coordinate-wise. An alternate, but equivalent, definition
appears later. In any case, if D ⊂ R and f : D → Rk is differentiable at p ∈ D, then, for
each vector v ∈ Rk, the function g : D → R given by g(x) = 〈f(x), v〉 is differentiable at
p and g′(p) = 〈f ′(p), v〉.

Problem 10.6 explores the extent to which the MVT extends to vector-valued functions
(of a real variable). You may first wish to do Exercise 10.2.

10.6. Exercises.

Exercise 10.1. Determine which of the following functions f : R→ R are differentiable
at 0.

(i) f(x) = x2 sin( 1
x
) for x 6= 0 and f(0) = 0;

(ii) f(x) = x sin( 1
x
) for x 6= 0 and f(0) = 0;

(iii) f(x) = x2 for x ≤ 0 and f(x) = x3 for x > 0;
(iv) f(x) = |x|.

Exercise 10.2. Compute the derivative of f : R→ R2 defined by

f(x) =

(
x2

x3

)
.

Can you find a 0 < c < 1 such that

f ′(c) = f(1)− f(0)?

Exercise 10.3. Show Taylor’s Theorem remains true if b < a by applying the Theorem
to g(x) = f(−x) and the points −a < −b.

Exercise 10.4. Show, if f : (a, b)→ R is differentiable and f ′ = 0, then f is constant.

Show, if f, g : (a, b)→ R are differentiable, f ′ = g′ and there is a point a < y < b such
that f(y) = g(y), then f = g.

10.7. Problems.

Problem 10.1. Consider the function f : R→ R given by

f(x) =

{
x
2

+ x2 sin( 1
x
) x 6= 0

0 x = 0.

Show, f is differentiable and f ′(0) > 0, yet there is no open interval containing 0 on which
f is increasing. [You may assume the usual rules of calculus in which case differentiability
of f away from 0 is automatic. Thus, you need to show that f is differentiable at 0 and
the derivative at 0 is positive. Using Corollary 10.12, to finish the problem it is enough
to show, f ′ is not nonnegative on any open interval containing 0.]

Problem 10.2. Suppose f : R → R is differentiable. Use the MVT to show, if f ′ is
bounded, then f is uniformly continuous.
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Problem 10.3. A function f : (a, b)→ R has limit ∞ at a if for every C > 0 there is a
δ > 0 such that if a < x < a+ δ, then f(x) > C.

Prove that condition (ii) in Proposition 10.13 can be replaced by

(ii′) lim
x→a

g(x) =∞ = lim
x→a

f(x).

Suggestion: Fix a a < y < b. Given x < y, by the Cauchy MVT, there is a t (depending
on this choice of x and y) such that

f(x)− f(y)

g(x)− g(y)
=
f ′(t)

g′(t)
.

Deduce that
f(x)

g(x)
=
g(x)− g(y)

g(x)

f ′(t)

g′(t)
+
f(y)

g(x)
.

Proceed.

Problem 10.4. Suppose f : R→ R is differentiable. Show, if |f ′(t)| < 1 for all t, then f
has at most one fixed point (a point y such that f(y) = y). Show, if there is an 0 ≤ A < 1
such that |f ′(t)| ≤ A for all t, then f has exactly one fixed point. [As a suggestion for
the second part, choose any point x1, let xn+1 = f(xn) and use Proposition 5.12.]

Note that the function any function f : R → R of the form f = t + g where g takes
only positive values, is differentiable and |1 + g′(x)| < 1 for all x has no fixed points, but
does satisfy |f ′(x)| < 1 for all x.

Problem 10.5. Let f(x) = sin(x) and let pn denote the n-th Taylor polynomial for f ;
i.e.,

pn(x) =
n∑
j=0

ajx
j,

where

aj =


0 j = 0 mod 2;
1
j!

j = 1 mod 4

− 1
j!

j = 3 mod 4.

Use Taylor’s Theorem to show that pn(x) converges to sin(x) uniformly on the interval
[−1, 1]. (Later we will see that, for any given C, the sequence (C

n

n!
) converges to 0 from

which it follows that the sequence (pn) converges uniformly to sin(x) on the interval
[−C,C].)

Problem 10.6. Give an example, if possible, of a function f : [a, b]→ R2 such that f ′ is
continuous, but for each t ∈ [a, b],

f(b)− f(a) 6= f ′(t)(b− a).

Prove, if f : [a, b]→ Rk is continuous and is differentiable at each point in (a, b), then
there is an a < c < b such that

‖f(b)− f(a)‖ ≤ ‖f ′(c)‖(b− a).
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(Suggestion: Let u be a unit vector in the direction of f(b) − f(a) and apply the usual
Mean Value Theorem to g(x) = 〈f(x), u〉.)

Problem 10.7. Prove the following variant of the second part of Corollary 10.12. Namely,
if h : [a, b]→ R is continuous and differentiable at each point in (a, b) and if f ′(x) > 0 at
each such point, then f is strictly increasing.

Now assume that f, g : [a, b) → R are continuous, and are differentiable at each point
in (a, b). Assume also that f(a) = g(a) and that f ′(x) > g′(x) for all x ∈ (a, b). Prove
that f(x) > g(x) for all x ∈ (a, b).

Problem 10.8. Show, if f : R → R is differentiable, then between any two zeros of f
there is a zero of f ′.

Using induction, prove that a (real) polynomial of degree n can have at most n distinct
real roots. (Don’t use the Fundamental Theorem of Algebra to do this problem. The
Fundamental Theorem of Algebra says that over the complex numbers, any polynomial
can be factored essentially uniquely into linear terms. It’s much deeper and much harder
to prove than the result of this problem.)

Problem 10.9. Let X and Y be metric spaces. A function f : X → Y is called Lipschitz
continuous at p0 ∈ X if there exist K, δ > 0 such that

(5) dY (f(p), f(p0)) ≤ KdX(p, p0)

for all p ∈ Nδ(p0). We call f Lipschitz continuous (or just Lipschitz)—with no “at p0”—if
there exists K > 0 such that

(6) dY (f(p), f(q)) ≤ KdX(p, q)

for all p, q ∈ X. We call f locally Lipschitz if for all p0 ∈ X, there exists δ > 0 such that
the restriction of f to Nδ(p0) is Lipschitz continuous.

(Note that “locally Lipschitz” is stronger than “Lipschitz continuous at every point;” for
the latter, there would be aK(q) that works in (6) for each q ∈ X and all p sufficiently close
to q, but there might not be a single K that works simultaneously for all p, q sufficiently
close to a given p0. Somewhat more logical terminology for “locally Lipschitz” might
be “locally uniformly Lipschitz”, and a similar comment applies to “Lipschitz function”
[with no “locally”]. Some mathematicians do insert the word “uniformly” in these cases,
but most do not.)

(a) Prove that if f : X → Y is Lipschitz continuous at p0 ∈ X, then f is continuous
at p0.

(Note: the converse is false. For example, the function [0,∞) → R defined by
x 7→

√
x is not Lipschitz continuous at 0.]

For the remainder of this problem, let U ⊂ R be an open interval, and f : U → R a
function.

(b) Let x0 ∈ U . Prove that if f is differentiable at x0, then f is Lipschitz continuous
at x0.
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(c) Prove that if f is differentiable, and the function f ′ : U → R is bounded, then f
is Lipschitz continuous.

(d) Prove that if f is differentiable, and the function f ′ : U → R is continuous, then
f is locally Lipschitz.

Problem 10.10. Show that the conclusion of Proposition 10.6 holds assuming only that

(i) D,E ⊂ R;
(ii) c ∈ D is a limit point of D,
(iii) f : D → E has an inverse g; and
(iv) g is continuous at d = f(c).

Problem 10.11. Suppose f : R→ R is differentiable and f ′ is differentiable at 0. Show

f ′′(0) = lim
h→0

f(h) + f(−h)− 2f(0)

h2
.

11. Riemann Integration

This chapter develops the theory of the Riemann integral of a bounded real-valued
function f on an interval [a, b] ⊂ R. The approach used, approximating from above and
below, is very efficient and intuitive, though a bit limited because it relies on the order
structure of R.

11.1. Definition of the Integral.

Definition 11.1. A partition P of the interval [a, b] consists of a finite set of points
P = {a = x0 < x1 < · · · < xn = b}.

Given the partition P, let ∆j = xj − xj−1. Given a bounded function f : [a, b]→ R, let

mj = inf{f(x) : xj−1 ≤ x ≤ xj}
Mj = sup{f(x) : xj−1 ≤ x ≤ xj};

define the lower and upper sums of f with respect to P by

L(P, f) =
n∑
j=1

mj∆j

U(P, f) =
n∑
j=1

Mj∆j;

define the lower and upper Riemann integrals of f (on [a, b]) by

¯

∫ b

a

f dx = sup{L(P, f) : P}∫̄ b

a

f dx = inf{U(P, f) : P}.

Finally, say f is Riemann integrable on [a, b] if the upper and lower integrals agree. The
set of Riemann integrable functions on [a, b] is denoted by R([a, b]). In this case, the
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common value of the upper and lower integrals is the Riemann integral of f on [a, b],
denoted ∫ b

a

f dx.

/

Example 11.2. For the function f : [0, 1]→ [0, 1] defined by f(x) = 1 it is evident that
U(P, f) = 1 = L(P, f) for every P . Hence f is Riemann integrable and∫ 1

0

1 dx = 1.

4

Example 11.3. Let g : [0, 1] → [0, 1] denote the identity function, g(x) = x. Given a
partition P as in the definition, observe,

U(P, g) =
n∑
j=1

xj(xj − xj−1)

≥
n∑
j=1

1

2
(xj + xj−1)(xj − xj−1)

=
1

2

n∑
j=1

x2j − x2j−1 =
1

2
.

Hence the upper integral of g is at least 1
2
. A similar argument shows the lower integral

is also at most 1
2
.

Given a positive integer n, let Pn denote the partition

Pn = {xj =
j

n
: j = 0, . . . , n}.

The corresponding upper and lower sums are easily seen to be

U(Pn, g) =
n∑
j=1

j

n

1

n
=
n+ 1

2n

and

L(Pn, g) =
n−1∑
j=0

j

n

1

n
=
n− 1

2n
.

It follows that ∫̄ 1

0

x dx ≤ 1

2
and

¯

∫ 1

0

x dx ≥ 1

2
.

Thus the upper and lower integrals are both 1
2
. Consequently g is integrable and its

integral is 1
2
. 4
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Do Problem 11.1.

Example 11.4. Let f : [0, 1] → R denote the indicator function of [0, 1] ∩ Q. Thus
f(x) = 1 if x ∈ Q and f(x) = 0 otherwise. Verify, for any partition P of [0, 1], that
L(P, f) = 0 and U(P, f) = 1. Thus

¯

∫ 1

0

f dx = 0 < 1 =

∫̄ 1

0

f dx

and so f is not Riemann integrable (on [0, 1]). 4
Remark 11.5. If f : [a, b]→ R and P is a partition of [a, b], then

L(P, f) ≤ U(P, f).

�
Definition 11.6. Let P and Q denote partitions of [a, b]. We say Q is a refinement of P
if P ⊂ Q. The common refinement of P and Q is P ∪Q. /

Lemma 11.7. Suppose f : [a, b]→ R is bounded and P and Q are partitions of [a, b].

(i) If Q is a refinement of P , then

L(P, f) ≤ L(Q, f) ≤ U(Q, f) ≤ U(P, f).

(ii) If P and Q are any partitions of [a, b], then

L(P, f) ≤ U(Q, f).

(iii) In particular,

¯

∫ b

a

f dx ≤
∫̄ b

a

f dx.

†

Sketch of proof. The middle inequality in item (i) has is evident from the definitions (as
already noted). The first and third inequalities can be reduced to the following situation:
P = {a < b} and Q = {a < t < b} where the result is evident.

To prove item (ii), let R denote the common refinement of P and Q and apply (i)
(twice) to obtain

L(P, f) ≤ L(R, f) ≤ U(R, f) ≤ U(Q, f).

To prove (iii), fix a partition Q. Since L(P, f) ≤ U(Q, f), for all partitions P , it follows
that

¯

∫ b

a

f dx ≤ U(Q, f).

Since this inequality holds for all Q, the result follows. �

Example 11.8. Returning to Example 11.3, observe that, an application of Lemma 11.7
avoids the need to first show that that the upper and lower integrals are bounded below
and above respectively by 1

2
. 4

Do Problem 11.2.
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11.2. Sufficient Conditions for Integrability.

Proposition 11.9. If f : [a, b] → R and f is bounded, then f ∈ R([a, b]) if and only if
for each ε > 0 there is a partition P of [a, b] such that

U(P, f)− L(P, f) < ε.

†

Proof. First suppose f ∈ R([a, b]) and let ε > 0 be given. There exists partitions Q,S
such that

¯

∫ b

a

f dx <L(Q, f) + ε∫̄ b

a

f dx >U(S, f)− ε.

Since the upper and lower integrals are equal, it follows that

L(Q, f) + ε > U(S, f)− ε.

Choosing P equal to the common refinement of Q and S and applying Lemma 11.7 gives,

L(P, f) + ε > U(P, f)− ε.

Hence,

0 ≤ U(P, f)− L(P, f) < 2ε

and the proof of one direction of the proposition is complete.

The estimate

L(P, f) ≤
¯

∫ b

a

f dx ≤
∫̄ b

a

f dx ≤ U(P, f)

proves the converse. �

Corollary 11.10. If f : [a, b]→ R is bounded, then f ∈ R([a, b]) if and only if there is an
I ∈ R such that for each ε > 0, there exists a partition P = {a = x0 < x1 < · · · < xn = b}
such that for any xj−1 ≤ sj ≤ xj,

|I −
n∑
j=1

f(sj)∆j| < ε.

In this case, I is the integral of f . †

The proof is Problem 11.4.

Theorem 11.11. If f is continuous on [a, b], then f ∈ R([a, b]).

Proof. Let ε > 0 be given. Since f is continuous on the compact set [a, b], f is uniformly
continuous. Hence, there is a δ > 0 so that if a ≤ s, t ≤ b and |s − t| < δ, then
|f(s)− f(t)| < ε.
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Choose a partition P of [a, b] of width less than δ; i.e., a = x0 < x1 . . . xn = b with
∆j < δ for all j. It follows that Mj −mj < ε. Hence

U(P, f)− L(P, f) < ε(b− a).

An appeal to Proposition 11.9 completes the proof. �

Do Problems 11.5 and 11.6.

Proposition 11.12. If f : [a, b]→ R is increasing, then f ∈ R([a, b]). †

Proof. Let ε > 0 be given. Choose a partition P = {a = x0 < x1 < · · · < xn = b} so that
∆j ≤ ε. Since, by the increasing hypothesis,

Mj −mj = f(xj)− f(xj−1)

we have

U(P, f)− L(P, f) =
n∑
j=1

(f(xj)− f(xj−1))∆j

≤
n∑
j=1

(f(xj)− f(xj−1))ε

=(f(b)− f(a))ε.

Once again, an application of Proposition 11.9 completes the proof. �

Proposition 11.13. Suppose f : [a, b] → R is bounded. If f is continuous except at
finitely many points, then f ∈ R([a, b]). †

Sketch of proof. Here is the proof in the special case that f is continuous, except possible
at the point a < c < b.

Let M and m denote the supremum and infimum of the range of f . Let ε > 0 be given.
Choose δ so that

0 < δ < min{ ε

M −m+ 1
, c− a, b− c}.

The function f restricted to the interval [a, c − δ] is continuous and hence integrable by
Theorem 11.11. Thus, by Proposition 11.9, there is a partition Q of [a, c− δ] such that

U(Q, f)− L(Q, f) < ε.

Likewise there is a partition R of [c+ δ, b] such that

U(R, f)− L(R, f) < ε.

Let P = Q ∪R. Then P is a partition of [a, b] and

U(P, f)−L(P, f)

=[U(Q, f)− L(Q, f)] + (M∗ −m∗)2δ + [U(R, f)− L(R, f)]

<ε+ 2(M −m)δ + ε < 4ε,

where M∗ and m∗ are the supremum and infimum of f on [c− δ, c+ δ] respectively. �
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Theorem 11.14. Suppose f ∈ R([a, b]) and f : [a, b] → [m,M ]. If ϕ : [m,M ] → R is
continuous, then h = ϕ ◦ f ∈ R([a, b]).

Proof. Let ε > 0 be given. By the uniform continuity of ϕ, there exists a 0 < δ < ε so
that if m ≤ s, t ≤M and |s− t| < δ, then |ϕ(s)− ϕ(t)| < ε.

Choose a partition P = {a = x0 < x1 < · · · < xn = b} such that U(P, f)−L(P, f) < δ2.
Let

Mj = sup{f(x) : xj−1 ≤ x ≤ xj}
mj = inf{f(x) : xj−1 ≤ x ≤ xj}
M∗

j = sup{h(x) : xj−1 ≤ x ≤ xj}
M∗

j = inf{h(x) : xj−1 ≤ x ≤ xj}.
Thus, we have,

n∑
j=1

(Mj −mj)∆j < δ2

and it suffices to prove

U(P, h)− L(P, h) =
n∑
j=1

(M∗
j −m∗j)∆j < ε.

Let A = {j : Mj −mj < δ} ⊂ {1, 2, . . . , n} and let B = {j : Mj −mj ≥ δ}. Observe,

δ2 >
∑
j∈B

(Mj −mj)∆j ≥ δ
∑
j∈B

∆j.

Thus,

(7)
∑
j∈B

∆j < δ

On the other hand, M∗
j −m∗j ≤ ε, for j ∈ A. Thus, with K = sup{|h(x)| : a ≤ x ≤ b},

U(P, h)− L(P, h) =
∑
j∈A

(M∗
j −m∗j)∆j +

∑
j∈B

(M∗
j −m∗j)∆j

≤ε
∑
j∈A

∆j + 2K
∑
j∈B

∆j

≤ε(b− a) + 2Kε

=ε[(b− a) + 2K].

An application of Proposition 11.9 completes the proof. �

Remark 11.15. There is a simple proof, which you are asked to provide in Problem 11.8,
in the case ϕ is Lipschitz continuous; i.e., if there is a C > 0 such that if m ≤ s, t ≤ M ,
then |ϕ(s)− ϕ(t)| ≤ C|s− t|.

Given an subset D of R, a function f : D → R is continuously differentiable if it is
differentiable and f ′ : D → R is continuous. If ϕ is continuously differentiable (on a
closed bounded interval), then it is Lipschitz continuous.
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Regardless of the domain, a Lipschitz continuous function is automatically uniformly
continuous. On the other hand, the function ϕ(x) =

√
|x| on the interval [0, 1] is not

Lipschitz continuous, though it is uniformly continuous. �

Corollary 11.16. If f ∈ R([a, b]), then so are

(i) |f |p for p ≥ 0;
(ii) f+ = max{f, 0};
(iii) f− = min{f, 0}; and

†

Proof. The function ϕ(t) = |t|p is continuous for p ≥ 0. (Actually, to this point, it has
been shown that |t|p is continuous for rational p only. Later in this section Problem 11.15
explains how to handle general p > 0.)

To prove (ii), consider ϕ : R→ R given by ϕ(t) = max{t, 0} = 1
2
(|t|+ t).

To prove (iii), consider ϕ(t) = − |t|−t
2
. �

11.3. Properties of the Integral. Here is a list of properties of the Riemann Integral.
The proofs are mostly left to the reader.

Proposition 11.17. If f1, f2 ∈ R([a, b]) and c1, c2 are real, then c1f1 + c2f2 ∈ R([a, b])
and ∫ b

a

(c1f1 + c2f2) dx = c1

∫ b

a

f1 dx+ c2

∫ b

a

f2 dx.

†

Remark 11.18. The proposition says R([a, b]) is a (real) vector space and the mapping
I : R([a, b])→ R determined by the integral is linear. �

Do Problem 11.10.

Corollary 11.19. If f, g ∈ R([a, b]), then so is fg. †

Proof. By the previous proposition f + g ∈ R([a, b]). By the corollary to Theorem 11.14
and several more applications of the previous proposition, it then follows that fg =
1
2
[(f + g)2 − f 2 − g2] ∈ R([a, b]). �

Proposition 11.20. If f1, f2 ∈ R([a, b]) and f1 ≤ f2, then∫ b

a

f1 dx ≤
∫ b

a

f2 dx.

In fact, if f1, f2 : [a, b]→ R are bounded and f1 ≤ f2, then

¯

∫ b

a

f1 dx ≤
¯

∫ b

a

f2 dx
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and ∫̄ b

a

f1 dx ≤
∫̄ b

a

f2 dx.

†

It turns out that if f1 and f2 are integrable and f1 < f2 (meaning f1(x) < f2(x) for all
x in the interval), then in fact ∫ b

a

f1 dx <

∫ b

a

f2 dx,

though the proof is more involved than that of the Proposition. See Problem 11.12.

Corollary 11.21. If f ∈ R([a, b]), then

|
∫ b

a

f dx| ≤
∫ b

a

|f | dx.

†

Proof. Use |f | ≥ ±f and the previous proposition twice. �

Do Problems 11.13 and 11.14.

Proposition 11.22. If f ∈ R([a, b]) and a < c < b then f |[a,c] ∈ R([a, c]) and∫ b

a

f dx =

∫ c

a

f dx+

∫ b

c

f dx.

†

11.4. The Lp norms. Fix a < b and 1 ≤ p < ∞. For f ∈ C([a, b]), the function |f |p is
integrable and, by Problem 11.5, ∫ b

a

|f |p dx = 0

if and only if f = 0 (is the zero function). It turns out that the function ‖·‖p : C([a, b])→
[0,∞) defined by

‖f‖p =
( ∫ b

a

|f |p dx
) 1
p

is a norm on the vector space C([a, b]). For p = 1 it is easy to show ‖ · ‖1 is a norm.

It is easy to see that the mapping 〈·, ·〉 : C([a, b])× C([a, b])→ R defined by

〈f, g〉 =

∫ b

a

fg dx

is an inner product on C([a, b]) and hence,

‖f‖2 =
√
〈f, f〉

is a norm on C([a, b]).
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The norms ‖ · ‖p give rise, in the usual way, to metrics on C([a, b]),

dp(f, g) = ‖f − g‖p.
The limiting case (as p tends to infinity) gives the uniform metric,

‖f‖∞ = max{|f(t)| : a ≤ t ≤ b}.
(See Problem 11.6.)

For 1 ≤ p < ∞, the metric space (C([a, b], dp) is not complete. Constructing the
completion of (C([a, b], d1) naturally leads to the notion of Lebesgue measure and the
Lebesgue integral, topics for a more advanced course in analysis.

11.5. Integration and Differentiation.

Theorem 11.23. [Second Fundamental Theorem of Calculus] If f ∈ R([a, b]), then the
function F : [a, b]→ R defined by

F (x) =

∫ x

a

f(t) dt

is continuous. Further, if f is continuous at a < y < b, then F is differentiable at y and
F ′(y) = f(y).

Proof. Let M = sup{|f(x)| : a ≤ x ≤ b}. Given ε > 0, choose δ = ε
M+1

. For a ≤ x < z ≤
b and z − x < δ we have,

|F (z)− F (x)| =|
∫ z

a

f(t) dt−
∫ x

a

f(t) dt|

=|
∫ z

x

f(t) dt|

≤
∫ z

x

|f(t)| dt

≤M(z − x) < ε.

Thus F is (uniformly) continuous.

Next, suppose f is continuous at y. Given ε > 0, there is a δ > 0 so that if a ≤ t ≤ b
and |t− y| < δ, then |f(t)− f(y)| < ε. Thus, if a ≤ y < z ≤ b and z − y < δ, then

|F (z)− F (y)

z − y
− f(y)| =| 1

z − y

∫ z

y

f(t) dt− f(y)|

=| 1

z − y
[

∫ z

y

(f(t)− f(y)) dt]|

≤ 1

z − y

∫ z

y

ε dt ≤ ε.

A similar argument prevails for a ≤ z < y ≤ b and the conclusion follows. �

Corollary 11.24. If f : [a, b] → R is continuous, then there is a continuous function
F : [a, b]→ R such that F is differentiable on (a, b) and F ′ = f on (a, b). †
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Example 11.25. Consider f : (0,∞)→ R defined by f(t) = 1
t
. Define log : (0,∞)→ R

by

F (x) = log(x) =

∫ x

1

1

t
dt.

Thus F ′(x) = 1
x
, from which the usual properties of the log follow. (See Problems 11.16

and 11.15.) In particular log( 1
x
) = − log(x).

Note that, by considering appropriate lower sums,

log(n+ 1) ≥
n+1∑
j=2

1

j
.

Since the harmonic series diverges and the log is continuous, it follows that the range of
the log contains [0,∞). Using log( 1

x
) = − log(x) it must also be the case that the range

of log contains (−∞, 0]. Hence the range of log is all of R.

Since the derivative of log is strictly positive, log is strictly increasing and in particular
one-one. Thus log has an inverse, which is called the exponential function exp : R →
(0,∞).

The usual properties of exp now follow from those of log. (See Problem 11.17.)

Recall, to this point, for positive real numbers x, the power xa has only been defined
for a a rational number. In Problem 11.15 the reader is asked to show log(xa) = a log(x)
for x > 0 and a ∈ Q. In view of this fact, we now define, for x > 0 and a any real number,

xa = exp(a log(x)).

In particular,
exp(1)a = exp(a).

Hence, letting e = exp(1) gives ea = exp(a) and it is customary to denote the exponential
function by ex. 4

Theorem 11.26. [First Fundamental Theorem of Calculus] If F : [a, b] → R is differen-
tiable, and F ′ is bounded, then, for all partitions P of [a, b],

L(P , F ′) ≤ F (b)− F (a) ≤ U(P , F ′).
In particular, if F ′ ∈ R([a, b]), then

F (b)− F (a) =

∫ b

a

F ′dx.

Proof. For notational ease, let f = F ′.

Let P = {x0 < x1 < · · · < xn = b} denote a given partition of [a, b]. For each j there
exists, by the mean value theorem, a xj−1 < tj < xj such that

(8) F (xj)− F (xj−1) = f(tj)(xj − xj−1).
Summing (8) over j gives and using the telescoping nature of the sum on the left hand
side gives,

(9) F (b)− F (a) =
∑

f(tj)(xj − xj−1).
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Further, by Exercise 11.1,

(10) L(P , f) ≤
∑

f(tj)(xj − xj−1) ≤ U(P , f).

Combining (9) and (10) gives

L(P , f) ≤ F (b)− F (a) ≤ U(P , f).

�

Do Problem 11.18.

Corollary 11.27. Suppose F,G : [a, b] → R are differentiable. If F ′, G′ are Riemann
integrable on [a, b], then FG′ and GF ′ are Riemann integrable on [a, b] and∫ b

a

FG′dx = F (b)G(b)− F (a)G(a)−
∫ b

a

F ′Gdx.

†

Proof. The hypotheses imply the function H = FG is differentiable and its derivative is
Riemann integrable. Hence, by the product rule and the first FTC,

H(b)−H(a) =

∫ b

a

H ′dx =

∫ b

a

FG′dx+

∫ b

a

G′Fdx.

Rearranging gives the result. �

11.6. Integration of vector valued functions.

Definition 11.28. Suppose f : [a, b] → Rk is bounded. Writing f = (f1, . . . , fk), the
function f is Riemann integrable , denoted f ∈ R([a, b]) if each fj ∈ R([a, b]). In this
case the Riemann integral of f is∫ b

a

f dx = (

∫ b

a

f1 dx, . . . ,

∫ b

a

fk dx) ∈ Rk.

Thus the integral of a Rk-valued function is defined entry-wise and is a vector in (element
of) Rk. /

Proposition 11.29. Suppose f : [a, b] → Rk and f ∈ R([a, b]). If γ ∈ Rk, then the
function

fγ(x) = 〈f(x), γ〉
is in R([a, b]) and ∫ b

a

fγ dx = 〈
∫ b

a

f dx, γ〉.

†
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The proof is simply a matter of writing everything out in terms of the standard basis for
Rk and using properties of the integral. The details are left to the reader. The proposition
provides a coordinate free way to define the integral of a vector valued function. Namely,
the integral, if it exists, is that unique vector I ∈ Rk such that for each γ ∈ Rk,

〈I, γ〉 =

∫ b

a

fγ dx.

Proposition 11.30. Suppose F : [a, b]→ R is differentiable. If F ′ ∈ R([a, b]), then

F (b)− F (a) =

∫ b

a

F ′dt.

†

The result follows immediately from applying the first fundamental theorem of calculus
coordinate-wise.

Proposition 11.31. Suppose f : [a, b]→ Rk. If f ∈ R([a, b]), then ‖f‖ ∈ R([a, b]), and

‖
∫ b

a

f dx‖ ≤
∫ b

a

‖f‖ dx.

†

Proof. By hypothesis, each fj ∈ R([a, b]). Thus each |fj|2 ∈ R([a, b]) by Corollary 11.16
part (i) (with p = 2). Since the sum of integrable functions is integrable, g =

∑
|fj|2 ∈

R([a, b]). Finally, another application of Corollary 11.16 (this time with p = 1
2
) implies

‖f‖ = (
∑
|fj|2)

1
2 ∈ R([a, b]).

Assuming it is not 0, let u denote a unit vector in the direction of the integral of f and
estimate, using Proposition 11.29 and the Cauchy-Schwarz inequality,

‖
∫ b

a

f dx‖ =|〈
∫ b

a

f dx, u〉|

=|
∫ b

a

〈f, u〉 dx|

≤
∫ b

a

|〈f, u〉| dx

≤
∫ b

a

‖f‖‖u‖ dx.

Since ‖u‖ = 1 the desired inequality follows. �
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11.7. Differentiability of a limit.

Theorem 11.32. Suppose fn : (a, b) → R is a sequence of continuously differentiable
functions which converges pointwise to f : (a, b) → R. If the sequence of functions f ′n :
(a, b)→ R converges uniformly to g : (a, b)→ R, then f is differentiable and f ′ = g.

Proof. Fix a point a < c < b. From the first fundamental theorem of calculus, for
a < x < b,

fn(x)− fn(c) =

∫ x

c

f ′n(t) dt.

The uniform limit g of f ′n is continuous and thus integrable on closed subintervals of (a, b)
and moreover, by Problem 11.14,∫ x

c

f ′n(t) dt→
∫ x

c

g(t) dt

for a < x < b. Since fn(x) and fn(c) converge to f(x) and f(c) respectively,

f(x) = f(c) +

∫ x

c

g(t) dt.

From the second fundamental theorem of calculus and using the fact that g is continuous,
f ′(x) = g(x). �

11.8. Exercises.

Exercise 11.1. Suppose f : [a, b] → R is a bounded function and P = {a = x0 < x1 <
· · · < xn = b} is a partition. Show, if xj−1 ≤ tj ≤ xj, then

L(P, f) ≤
n∑
j=1

f(tj)(xj − xj−1) ≤ U(P, f).

The sum above is a Riemann sum.

Exercise 11.2. Give an example of a sequence (fn) of Riemann integrable functions
f : [a, b] → R that converge pointwise to a bounded function f which is not Riemann
integrable.

Exercise 11.3. Define fn : [0, 1]→ R by fn(x) = n if 0 < x ≤ 1
n

and fn(x) = 0 otherwise.
Explain why each fn is Riemann integrable, the sequence (fn) converges pointwise to a
Riemann integrable function, but

lim
n→∞

∫ 1

0

fn dx 6=
∫ 1

0

f dx,

even though the limit on the left hand side exists. Compare with Problem 11.14.

Exercise 11.4. Let f : [−1, 1] → R denote the function with f(x) = 0 for x 6= 0 and
f(0) = 1. Show f ∈ R([−1, 1]) and ∫ 1

−1
f dx = 0.

Compare with Problem 11.5 and 11.12. See also Problem 11.9.
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11.9. Problems.

Problem 11.1. Let f : [−1, 1] → R denote the function f(x) = 1 if 0 ≤ x ≤ 1 and
f(x) = 0 otherwise. Prove, directly from the definitions, that f ∈ R([−1, 1]) and∫ 1

−1
f dx = 1.

Problem 11.2. Recall that
n∑
j=1

j2 =
1

6
n(n+ 1)(2n+ 1).

Use this formula, the definition and Lemma 11.7 to show h : [0, 1] → R defined by
h(x) = x2 is Riemann integrable.

Problem 11.3. Suppose f : [a, b]→ R is Riemann integrable. Prove,

lim
c→b, c<b

∫ c

a

f dx =

∫ b

a

f dx.

Problem 11.4. Prove Corollary 11.10. [Suggestion: See Exercise 11.1.]

Problem 11.5. Suppose f : [−1, 1] → R takes nonnegative values. Show, if f is inte-
grable, continuous at 0 and if f(0) > 0, then∫ 1

−1
f dx > 0.

Problem 11.6. Prove,
lim
n→∞

‖f‖n = ‖f‖∞.

Here the limit is taken through n ∈ N+ (so is the limit of a sequence).

Problem 11.7. Show, for 1 ≤ p <∞, the metric spaces (C([a, b], dp) are not complete.

Problem 11.8. Give a simple proof of Theorem 11.14 under the assumption that ϕ is
Lipschitz continuous. See Problem 2.9.

Problem 11.9. Suppose f, g : [a, b]→ R and f and g are equal except possible at a point
c with a < c < b. Show, if f is Riemann integrable, then so is g and moreover,∫ b

a

f dx =

∫ b

a

g dx.

Note that, by induction, the result holds if f and g agree except possibly at finitely many
points. Compare with Exercise 11.4 and Proposition 11.13.

Problem 11.10. Prove Proposition 11.17. [Suggestion: Use Corollary 11.10.]

Problem 11.11. Show, if f : [0, 1]→ R is bounded and the lower integral of f is positive,
then there is an open interval on which f > 0. (Compare with problems 11.5 above and
11.12 below.)

Problem 11.12. (a) Returning to Problem 11.5, give an example where the conclusion
fails if f is not assumed continuous at 0 (but still assumed integrable).
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(b) Consider the following variant of the function from Example (8.2) (v) Define f :
[0, 1] → R by f(x) = 1 if x /∈ Q and f(x) = 1

q
, where x = p

q
, p ∈ N, q ∈ N+, and

gcd(p, q) = 1. Show that f takes only positive values, yet the lower integral of f is 0.
Show f is not Riemann integrable.

(c) Suppose now that f : [a, b]→ R is bounded. Show, if f ≥ 0 and the upper integral of
f is 0, then f is zero on a dense subset of [a, b] by completing the following outline.

(i) Show, if I = [α, β] ⊂ [a, b] is any nontrivial (meaning α < β) closed subinterval,
and ε > 0, then there is a further nontrivial closed subinterval J of I on which
0 ≤ f ≤ ε.

(ii) Starting with I = I0, construct a nested sequence In of nontrivial closed subin-
tervals, I0 ⊃ I1 ⊃ I2 ⊃ . . . such that 0 ≤ f(x) ≤ 1

n
for x ∈ In.

(iii) Conclude that there is a point y ∈ ∩∞n=0In and moreover, f(y) = 0.
(iv) Conclude that every open interval in [a, b] contains a point y such that f(y) = 0.
(v) Conclude that the set Z(f) = {y ∈ [a, b] : f(y) = 0} is dense in [a, b].
Finally, conclude, if f : [a, b] → R is Riemann integrable, f ≥ 0, and f > 0 on an

open set, then the integral of f is positive.

Problem 11.13. Prove Proposition 11.20.

Problem 11.14. Suppose fn : [a, b] → R is a sequence of Riemann integrable functions
which converges uniformly to a function f : [a, b]→ R. Prove, f ∈ R([a, b]) and

lim
n→∞

∫ b

a

fn dx =

∫ b

a

f dx.

[Suggestion: First observe that f is bounded and you may wish to apply Proposition
11.20]

Problem 11.15. Prove for a ∈ Q and x ∈ R+ (meaning x is a positive real number),
that log(xa) = a log(x). Suggestion, consider g(x) = log(xa) and compute g′(x).

It now makes sense to define xr = exp(r log(x)) for r ∈ R.

Problem 11.16. Let f(x) = log(x). Given a > 0, let g(x) = f(ax). Prove, g′(x) = f ′(x)
and thus there exists a c so that g(x) = f(x) + c. Prove, c = log(a) and thus log(ax) =
log(a) + log(x). (See Exercise 10.4.)

Problem 11.17. Prove exp(a+ b) = exp(a) exp(b) and exp(ab) = exp(a)b.

Problem 11.18. Suppose f : [a, b] → R is continuous and ϕ : [α, β] → [a, b] is strictly
increasing and continuously differentiable. Show,∫ ϕ(B)

ϕ(A)

f dx =

∫ B

A

f(ϕ(t))ϕ′(t) dt.

Problem 11.19. Suppose (sn) is uniformly distributed in [0, 1], meaning, for each 0 ≤
a < b ≤ 1,

lim
n→∞

|{k ≤ n : sk ∈ [a, b]}|
n

= b− a.
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Show, if f : [0, 1]→ R is Riemann integrable, then

lim
n→∞

∑n
j=1 f(sj)

n
=

∫ 1

0

f dx.

12. Series

Numerical series and power series are the subjects of this section. While it is possible
to work over the complex numbers C or even in a normed vector space, the exposition
here focuses on real-valued sequences and series. In particular, throughout this section a
sequence (an) is a numerical sequence; i.e., an ∈ R.

Much of the theory depends on the following elementary identity for r ∈ R. Namely,

(11) (1− r)
n∑
j=0

rj = 1− rn+1.

Use will also be made of the inequalities

2n−1∑
j=1

1

jp
≤

n−1∑
m=0

(
1

2p−1
)m

1

2p

n−1∑
m=0

(
1

2p−1
)m ≤

2n∑
j=2

1

jp

(12)

valid for natural numbers n and positive real numbers p. Both inequalities are obtained
by grouping terms as follows:

2n−1∑
j=1

1

jp
=

1

1
+ (

1

2p
+

1

3p
) + (

1

22p
+ · · ·+ 1

7p
) + · · ·+ (

1

2(n−1)p + · · ·+ 1

(2n − 1)p
),

and
2n∑
j=2

1

jp
=

1

2p
+ (

1

3p
+

1

22p
) + (

1

5p
+ · · ·+ 1

23p
) + · · ·+ (

1

(2(n−1) + 1)p
+ · · ·+ 1

2np
).

Do Problem 12.1.

12.1. Some Numerical Sequences. Recall that the sequence (an) from R converges if
there is an A ∈ R such that for every ε > 0 there is an N such that if n ≥ N , then
|an − A| < ε. In this case the sequence is said to converge to A and A is the limit of the
sequence, written

lim
n→∞

an = lim an = A.

Recall also, that if a sequence converges, then its limit is unique.

It is also convenient to introduce the following notion. A sequence (an) from R diverges
to ∞, denoted

lim
n→∞

an =∞
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if, for every C > 0 there exists an N such that an > C for all n ≥ N .

Proposition 12.1. Suppose r, ρ ∈ R and 0 ≤ r < 1 and 0 < ρ.

(i) The sequence (rn) converges to 0;
(ii) For each k ∈ N, the sequence (nkrn) converges to 0;

(iii) The sequence (ρ
1
n ) converges to 1;

(iv) The sequence ( log(n)
n

) converges to 0;

(v) For p real, the sequence (n
p
n ) converges to 1.

†

The proofs use Theorem 4.12 (a bounded increasing sequence of real numbers converges)
in several parts.

Proof. Item (i) and item (ii) in the case that k = 1 is the content of Proposition 4.21.
Problem 4.9 handles the case k > 1 in item (ii).

Item (iii) and item (iv) in the case p = 1 is Proposition 4.6. Using the fact that log is
continuous, it follows that

0 = log(1) = lim
n→∞

log(n
1
n ) = lim

n→∞

log(n)

n
.

In particular, for p ∈ R,

0 = lim
n→∞

p log(n)

n
= lim

n→∞
log(n

p
n ).

Using the fact that exp is continuous, it now follows that

1 = exp(0) = lim
n→∞

n
p
n .

�

12.2. Numerical Series. Given a sequence (an)∞n=k, the series

(13)
∞∑
j=k

aj =
∑

aj,

is the sequence (sn) of partial sums,

(14) sn =
n∑
j=k

aj.

The series converges if the sequence (sn) converges and in this case we write
∞∑
j=k

aj = lim sn.

Thus we have used the same symbol to denote the sequence (sn) and, if it converges, its
limit. Otherwise the series does not converge.
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If (sn) diverges to ∞, the the series diverges to infinity, written
∞∑
j=k

aj =∞.

Example 12.2 (The Geometric Series). The series
∑
rj is known as the geometric series.

Using (11), it is easy to show, if |r| < 1, then
∞∑
j=0

rj =
1

1− r
;

if r ≥ 1, then ∑
rj =∞;

and if r ≤ −1, then the series
∑
rj does not converge. 4

Do Problem 12.3.

Proposition 12.3. Consider the series (13) and its partial sums (14)

(i) The series (13) converges if and only if, for each ` ≥ k, the series
∑∞

j=` aj converges;

(ii) If aj ≥ 0 for all j, then the series (13) converges if and only if the partial sums (sn)
form a bounded sequence; i.e., if and only if there exists a constant M such that
sn ≤M for all n;

(iii) If there exists an ` ≥ k and a sequence (bj) such that bj ≥ aj ≥ 0 for all j ≥ ` and
∞∑
j=`

bj

converges, then the series (13) converges;
(iv) If there exists an ` ≥ k and a sequence (bj) such that aj ≥ bj for all j ≥ ` and

∞∑
j=`

bj

diverges to infinity, then the series (13) diverges to infinity;
(v) The series (13) converges if and only if for every ε > 0 there is an N such that for

all n > m ≥ N ,

|
n∑

j=m+1

aj| < ε.

(vi) If the series
∞∑
j=k

|aj|

converges, then so does the series (13) and moreover,

|
∞∑
j=k

aj| ≤
∞∑
j=k

|aj|;
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(vii) If the series (13) converges, then (an) converges to 0.

†

Remark 12.4. In this case (where aj ≥ 0), if the sequence is not bounded, then the
series diverges to ∞.

Items (iii) and (iv) together are the comparison test.

Item (v) is the Cauchy criteria (which applies since R is complete).

If
∑
|aj| converges, then

∑
aj converges absolutely. Thus, item (vi) says absolute

convergence implies convergence.

If the series (13) converges, but the series
∑
|aj| = ∞, then

∑
aj is said to converge

conditionally . An example of a conditionally convergent series is the alternating harmonic
series, see Example 12.12 below. �

Proof. To prove (i), note that the sequence of partial sums

tn =
n∑
j=`

aj

for the series
∑∞

j=` aj are related to the partial sums sn for the original series by,

tn = sn − c,
where c =

∑`−1
j=k aj. Hence (tn) converges if and only if (sn) converges.

For item (ii), if aj ≥ 0 for all j, then (sn) is an increasing sequence. Thus (sn) converges
if and only if it is a bounded sequence.

To prove item (iii), let s′n denote the partial of the series,
∞∑
j=`

aj.

Since the corresponding series with terms bj converges, its partial sums are bounded by
some positive number M . Hence,

s′n =
n∑
j=`

aj ≤
n∑
j=`

bj ≤M.

Thus (s′n) is bounded and by part (ii) converges. Hence the original series converges by
item (i).

Item (iv) is essentially the contrapositive of item (iii). The details of the proof are left
to the reader.

Item (v) is just a restatement of the Cauchy criteria.

To prove item (vi), let tn denote the partial sums

tn =
n∑
j=k

|aj|.
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Observe that, for n > m,

|sn − sm| =|
n∑

j=m+1

aj|

≤
n∑

j=m+1

|aj|

=|tn − tm|.

Since (tn) converges, it is a Cauchy sequence. It follows from the inequality above that
(sn) is Cauchy. Hence (sn) converges and item (vi) is proved.

If (sn) converges, then it is Cauchy. Hence, given ε > 0 there is an N such that if
n > m ≥ N , then |sn − sm| < ε. In particular, if n > N and m = n − 1, then |an| < ε.
This shows (an) converges to 0. �

Example 12.5 (The Harmonic Series). The series

∞∑
j=1

1

j

is the harmonic series.

Since its sequence (sn) of partial sums is increasing and, from the second inequality
in equation (12), the subsequence (s2n) is unbounded, the harmonic series diverges to
infinity. 4

Example 12.6 (p-series). More generally, for 0 < p, the series

∞∑
j=1

1

jp

is a p-series.

As we have already seen, the series diverges to infinity for p = 1 and thus diverges to
infinity for p < 1 by the comparison test, Proposition 12.3 part (v).

For p > 1, the first estimate of equation (12) shows that the partial sums are bounded
above by

∞∑
m=0

(
1

2p−1
)m =

2p−1

2p−1 − 1
.

Thus, by Proposition 12.3 part (ii), the series converges. 4

Do Problems 12.2, 12.4, 12.5, and 12.6.
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12.3. The Root Test. In preparation for the proof of the root test below recall the
notion of the limit superior (lim sup) of a sequence of non-negative real numbers (an).

Definition 12.7. Let (an) be a non-negative sequence of real numbers. If (an) is un-
bounded, then lim sup an =∞. If (an) is bounded, let

αn = sup{am : m ≥ n}.
Thus, (αn) is a decreasing sequence which is bounded below by 0 and hence converges to
some L. Set lim sup an = L. /

Theorem 12.8. [root test] Consider the series (13) and let

L = lim sup(|an|)
1
n .

(i) If L < 1, then the series converges;
(ii) If L > 1, then (an) is unbounded (so doesn’t converge to 0) and thus the series does

not converge;
(iii) If L = 1, then the test fails.

Proof. Suppose L < 1. Choose L < ρ < 1. From Remark 4.29, there is an N so that if
n ≥ N , then

(|an|)
1
n < ρ.

Thus, |an| < ρn for n ≥ N . Hence the series converges by comparison to the geometric
series

∑
ρj.

Suppose L > 1. Choose L > ρ > 1. For each n there is an m ≥ n such that |am| > ρm.
It follows that (an) is not bounded above. Hence, by Proposition 12.3(vi), the series
diverges.

The sequence (( 1
np

)
1
n ) = (n

−p
n ) converges to 1 by Proposition 12.1(v). It follows that

hypothesis of part (iii) prevails for all p-series; however some p series converge (p > 1),
while others diverge to infinity (0 < p ≤ 1). Hence, if L = 1, the root test fails. �

12.4. Series Squibs. A squib (among other meanings) refers to a short, sometimes hu-
morous piece in a newspaper or magazine, usually used as a filler. It also can mean a
firecracker which burns out without exploding (a dud).

Theorem 12.9. [Ratio test] Let (cn) be a sequence of positive real numbers and let

an =
cn+1

cn
.

(i) If lim sup an < 1, then the series
∑
cn converges; and

(ii) If lim inf an > 1, then the sequence (cn) tends to infinity (does not converge to 0)
and hence the series

∑
cn diverges to infinity.

Note the asymmetry between the hypotheses of the root and ratio tests. Problem 12.13
shows that the root test is a stronger result than the ratio test, though of course when
it does apply, often the ratio test is easier to use. In the case that the sequence ( cn+1

cn
)

converges, say to L, then the series converges if L < 1 and diverges if L > 1. In the case
that L = 1, the test fails.
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Proof. Suppose L = lim sup an < 1. Choose L < ρ < 1. By Remark 4.29, there is an N
so that if n ≥ N , then an ≤ ρ. It follows that

cn ≤ ρcn−1.

Iterating this inequality and writing n = N +m give

cn ≤ ρmcN = ρn(ρ−NcN)

Thus
∑
cn converges by comparison to the geometric series

∑
ρn.

Now suppose L = lim inf an > 1. Choose L > ρ > 1. There is an N so that

inf{an : n ≥ N} ≥ ρ.

Arguing as before,

cn+N ≥ ρncN ,

which tends to infinity. �

Remark 12.10. The root and ratio tests are rather crude tests for divergence. Indeed,
the sufficient condition in each case implies the terms of the series do not converge to 0.
On the other hand, the root and ratio test can be used to determine whether a sequence
(an) of positive terms converges to 0. Indeed, if either lim sup |an|

1
n or lim sup an+1

an
is

(strictly) less than 1, then lim an = 0. (See Problem 4.9.)

As an example, for r > 0 and fixed,

lim
n→∞

rn

n!
= 0.

�

Theorem 12.11. [Alternating Series] If an is a decreasing sequence of positive numbers
which converges to 0, then the alternating series

∞∑
j=k

(−1)jaj

converges.

Proof. Let sn denote the partial sums. For a natural numbers m, k with k even,

|sm+k − sm| = |
m+k∑
j=m+1

(−1)jaj|

=|(am+1 − am+2) + (am+3 − am+4) + · · ·+ (am+k−1 − am+k)|
=(am+1 − am+2) + (am+3 − am+4) + · · ·+ (am+k−1 − am+k)

=am+1 − (am+2 − am+3)− · · · − (am+k−2 − am+k−1)− am+k

≤am+1,

where the decreasing hypothesis is used in the third equality and the inequality.
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For k odd,

|sm+k − sm| = |
m+k∑
j=m+1

(−1)jaj|

=|(am+1 − am+2) + (am+3 − am+4) + · · ·+ (am+k−2 − am+k−1) + am+k|
=(am+1 − am+2) + (am+3 − am+4) + · · ·+ (am+k−2 − am+k−1) + am+k

=am+1 − (am+2 − am+3)− · · · − (am+k−1 − am+k) ≤ am+1.

Since an converges to 0, the sequence (sn) is Cauchy and thus converges. �

Example 12.12. The alternating harmonic series
∞∑
j=1

(−1)j+11

j

converges, but not absolutely. Thus it is a conditionally convergent series. 4

12.5. Power Series.

Definition 12.13. Let (an) be a sequence of real numbers. The expression

(15)
∞∑
j=0

ajx
j

is a power series. /

Remark 12.14. Let D denote those real numbers x for which the series (15) converges.
The power series (15) determines a function s : D → R defined by

(16) s(x) =
∞∑
j=0

ajx
j.

Let

(17) sn =
n∑
j=0

ajx
j.

denote the partial sums of the power series. The sn can be thought of as either functions
on D or on all of R, as dictated by context.

The following theorem says that D is not too complicated. �

Theorem 12.15. Given the power series (15), let L = lim sup |an|
1
n and let R = 1

L

(interpreted as 0 if L =∞, and ∞ if L = 0).

(i) The series converges absolutely for |x| < R and diverges for |x| > R;
(ii) (−R,R) ⊂ D ⊂ [−R,R] and thus D is an interval; and

(iii) If R′ ∈ [0,∞] and the series converges absolutely for |x| < R′ and diverges for
|x| > R′, then R = R′.
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Definition 12.16. The number R is the radius of convergence and the set D is the
interval of convergence. /

Problem 12.9 provides examples showing there is no more general statement possible
about the interval of convergence (domain) of a power series. Do Problem 12.8.

Proof. Let the real number x be given. Let cn = anx
n and note that an application of

Lemma 4.32 gives,

lim sup |cn|
1
n = |x| lim sup |an|

1
n = |x|L.

By the root test if |x|L < 1, then the series converges absolutely, and if |x|L > 1, then
the series does not converge. �

Lemma 12.17. If the power series s has radius of convergence R > 0 and 0 < u < R, then
the sequence (sn) converges uniformly on [−u, u]. In particular the limit s is continuous
on |x| < R. †

Remark 12.18. It is natural to ask, as Abel did, if say the interval of convergence is
I = (−R,R], is then the function f : I → R of Remark 12.14 continuous; i.e., continuous
at R. The answer is yes. See Problem 12.11 �

Proof. Since u is within the radius of convergence of the series, the sequence

tn =
n∑
j=0

|ajuj|

converges and thus satisfies the Cauchy condition of Proposition 12.3(v). In particular,
given ε > 0 there is an N so that if n > m ≥ N , then

ε > |tn − tm| =
n∑

j=m+1

|aj|uj.

If |x| ≤ u and n > m ≥ N , then

|sn(x)− sm(x)| =|
n∑

j=m+1

ajx
j |

≤
n∑

j=m+1

|aj||x|j

≤
n∑

j=m+1

|aj|uj

<ε.

Thus (sn) converges uniformly on [−u, u] and thus converges uniformly to its pointwise
limit s on this interval. Since each sn is continuous, so is the limit on the interval [−u, u].
Thus the limit s is continuous on (−R,R). �

Lemma 12.19. If the series (15) has radius of convergence R, then both of the series
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(i)
∑∞

n=0(n+ 1)an+1x
n and;

(ii)
∑∞

n=0
an
n+1

xn

have radius of convergence R too. †

Proof. To prove the lemma, note that, by Lemma 4.32 and by Proposition 12.1(d), that

lim sup |nan|
1
n = lim sup |an|

1
n = lim sup | an

n+ 1
|
1
n .

Hence all three (the original plus those in (i) and (ii)) have the same radius of convergence.
�

Remark 12.20. It can of course happen that the interval of convergence of the these
series is different than that for the original series. See Exercise 12.3. It turns out that,
compared to the interval of convergence for the original series, the interval in (i) could only
possibly lose endpoints; and that in (ii) could only possibly gain endpoints. Summation
by parts can be used to prove this assertion. See Lemma 13.15 and Problem 13.5. �

Proposition 12.21. Suppose the power series (15) has radius of convergence R > 0 and
let s denote the sum of the series. If 0 ≤ u < R, then s is integrable on [−u, u] and∫ u

0

s dx =
∞∑
n=0

an
n+ 1

un+1.

The function s is differentiable on |x| < R and

s′(x) =
∞∑
j=0

(j + 1)aj+1x
j

†

Proof. On the interval [−u, u] the sequence (sn) converges uniformly to s. Thus, by
Problem 11.14, ∫ u

0

s dx = lim
n→∞

∫ u

0

sn dx

= lim
n→∞

n∑
j=0

∫ u

0

ajx
j dx

=
∞∑
j=0

aju
j+1

j + 1
.

Let (tn) denote the partial sums of the series

t(x) =
∞∑
j=0

(j + 1)aj+1x
j.

By Lemma 12.19, this series has radius of convergences R and by Lemma 12.17, the
sequence (tn) converges uniformly to t on each interval (−u, u), for 0 < u < R. Since also
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s′n = tn−1, Theorem 11.32 applies with the conclusion that s is differentiable and s′ = t
on (−u, u) and therefore on (−R,R). �

Remark 12.22. Thus power series can be integrated and differentiated term by term. In
particular, a power series (15) is infinitely differentiable within its radius of convergence.
Moreover,

s(m)(0) = amm!

�

12.6. Functions as Power Series. From the geometric series

(18)
1

1− x
=
∞∑
j=0

xj, |x| < 1,

it is possible to derive a number of other series representations.

Differentiating (18) term by term gives

1

(1− x)2
=
∞∑
j=0

(j + 1)xj, |x| < 1.

Replacing x by −t2 in (18) gives,

1

1 + t2
=
∞∑
j=0

(−1)jt2j, |t| < 1.

Integrating this last series term by term gives

arctan(x) =
∞∑
j=0

(−1)j
x2j+1

2j + 1
, |x| < 1.

Likewise integrating (18) term by term gives

− log(1− x) =
∞∑
j=0

xj+1

j + 1
, |x| < 1.

12.7. Taylor Series. The following consequence of Taylor’s Theorem is suitable for es-
tablishing power series representations for the exponential, sine and cosine functions.

Theorem 12.23. Suppose f : R→ R. If f is infinitely differentiable and for each x there
is a Cx such that

|f (j)(y)| ≤ Cx

for all j ∈ N and |y| ≤ |x|, then the power series

s(x) =
∞∑
j=0

f (j)(0)

j!
xj

has infinite radius of convergence and f(x) = s(x). Moreover, this series for f converges
uniformly on bounded sets (to f).
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Proof. Given n ∈ N and x ∈ R, from Taylor’s Theorem there is a c between 0 and x such
that

f(x) = sn(x) +
f (n+1)(c)xn+1

(n+ 1)!

Thus,

|f(x)− sn(x)| ≤ Cx
|x|n+1

(n+ 1)!
,

where Cx depends only upon x (and not on n). Thus it suffices to show that, for a given
x, the right hand side converges to 0 (see Remark 12.10). Hence, for each x, the sequence
(sn(x)) converges to f(x). Consequently s has infinite radius of convergence and thus,
by Lemma 12.17, (sn) converges to f uniformly on every bounded interval (and hence
uniformly on every bounded set). �

Example 12.24. Let f(x) = exp(x) and note f (n)(x) = exp(x). Since if |y| ≤ |x|, then
exp(y) ≤ exp(|x|) and hence |f (n)(y)| ≤ exp(|x|). Theorem 12.23 implies

exp(x) =
∞∑
j=0

xn

n!
, x ∈ R.

Let g(x) = sin(x). Then |g(n)(x)| ≤ 1 for all n and x. It follows that

sin(x) =
∞∑
j=0

(−1)jx2j+1

(2j + 1)!
.

4

Remark 12.25. If f : R→ R is infinitely differentiable and the series

s(x) =
∞∑
n=0

f (n)(0)

n!
xn

has infinite radius of convergence, it is natural to ask if f = s. The answer is, without
hypotheses such as those in Theorem 12.23, no as can be seen from the following example
(found in nearly every Calculus text). For the function f given by

f(x) =

{
e−

1
x x > 0

0 x ≤ 0

(http://en.wikipedia.org/wiki/Non-analytic_smooth_function) it can be shown
that f (j)(0) = 0 for all j. Thus s has infinite radius of convergence, but s = 0 6= f.

�

http://en.wikipedia.org/wiki/Non-analytic_smooth_function


114

12.8. Exercises.

Exercise 12.1. Show if (sn) is an increasing sequence of real numbers and if (sn) has a
bounded subsequence, then (sn) converges. Interpret this result in terms of series.

Exercise 12.2. Test the following series for convergence.

(i)
∞∑
n=1

(
n

n+ 2
)n

2

.

(ii)
∞∑
n=1

1 · 3 · 5 · · · (2n− 1)

2 · 4 · · · 2n
.

(iii)
∞∑
n=1

1 · 32 · 52 · · · (2n− 1)2

22 · 42 · · · (2n)2
.

Exercise 12.3. For the power series,

f(x) =
∞∑
n=1

xn

n
,

let A,B,C denote the interval of convergence of f and the series (i) and (ii) respectively
in Lemma 12.19. Verify, B ( A ( C.

Exercise 12.4. Find a power series representation for cos(x) and verify that it converges
uniformly to cos(x) on every bounded interval.

Exercise 12.5. Find a power series representation for the error function

erf(x) =
2√
π

∫ x

0

exp(−t2) dt.

http://en.wikipedia.org/wiki/Error_function

Exercise 12.6. Show, if (an) is a sequence of nonnegative numbers and the series
∞∑
j=0

aj

converges, then for every ε > 0 there is an M so that if M ≤ N , then
∞∑
j=N

aj < ε.

Exercise 12.7. Given a sequence (bn)∞n=0, let an = bn+1 − bn. The series,
∞∑
j=0

aj

is a telescoping series. What are its partial sums? When does the series converge.
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Exercise 12.8. Show, if (an) is a bounded sequence, then the radius of convergence of
the series (15) has radius of convergence at least 1.

Exercise 12.9. Explain why the series,

∞∑
n=1

(−1)nn−s

converges for s > 0 and diverges for s ≤ 0. It thus determines a function η(s) with domain
(0,∞). Explain why series converges absolutely for s > 1 and conditionally for 0 < s ≤ 1
and compare with the situation for a power series, where there are at most two points
where the series converges conditionally. The series here is a Dirichlet Series (which are
more naturally thought of as a function of a complex variable s). For more on Dirichlet
Series see Subsection 13.3.

12.9. Problems.

Problem 12.1. Suppose (an) a decreasing sequence of positive numbers. Show, for
positive integers n,

2n−1∑
j=1

aj ≤
n−1∑
k=0

2ka2k

and likewise,
2n∑
j=2

aj ≥
1

2

n∑
k=1

2ka2k .

Verify the inequalities in Equation (12) are special cases.

Problem 12.2. Suppose (an) a decreasing sequence of positive numbers. Use Problem
12.1 to show the series

∑∞
j=0 aj converges if and only if the series

∞∑
j=0

2ja2j

converges. (You might find Exercise 12.1 useful.)

Determine the convergence of the series

(i)
∞∑
n=2

1

n log(n)
;

(ii)
∞∑
n=2

1

n(log(n))2
.
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Problem 12.3. Show, if (an) is a decreasing sequence of positive real numbers and
∞∑
j=0

aj

converges, then limnan = 0. [Suggestion: Observe, limn→∞ an = 0, for each N and each
n > N ,

n∑
j=N

aj ≥ (n−N)an,

and use Exercise 12.6.]

Problem 12.4. Suppose (aj) and (bj) are sequences of real numbers. Show, if both∑
a2j , and

∑
b2j

converge, then so does ∑
ajbj.

[Suggestion: Use the inequality 2|ab| ≤ a2 + b2, or apply the Cauchy-Schwarz inequality
at the level of partial sums.]

Problem 12.5. Show, if (an) is a sequence of non-negative numbers and the series
∑
aj

converges, then so does the series
∑
a2j .

Problem 12.6 (Integral Test). Suppose f : [0,∞)→ [0,∞) is continuous and decreasing.
Show,

∞∑
j=0

f(j)

converges if and only if

F (x) =

∫ x

0

f dt

is bounded above independent of x (meaning there is an M such that F (x) ≤ M for all
x ≥ 0).

Problem 12.7. Suppose (aj) is a sequence from Rk. Show, if∑
‖aj‖

converges, then ∑
aj

converges in Rk.

Problem 12.8. Show, if (an) is a sequence of non-zero real numbers and

lim
n→∞

|an+1

an
|

converges with limit L, then the radius of convergence of the power series
∑
ajx

j is R = 1
L

(properly interpreted).
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Problem 12.9. Find the interval of convergence for the following power series.

(i)
∑
n−nxn;

(ii)
∑

xn

n2 ;

(iii)
∑

xn

n
;

(iv)
∑
nnxn.

Problem 12.10. Suppose (an) is a sequence from a metric space X. Show that the
conclusion of Proposition 5.12 holds if the series

∑
d(an+1, an) converges.

Problem 12.11 (Abel’s Theorem). Suppose the series s of (15) has radius of convergence
1 and suppose

∞∑
j=0

aj

converges. Prove

lim
r→1−

∞∑
j=0

ajr
j =

∞∑
j=0

aj.

Thus, the (function defined by the) series s is continuous at 1.

Here is an outline to follow if you like.

(i) It can be assumed that
∑∞

j=0 aj = 0.

(ii) With tn =
∑n

j=0 aj, show if N is a positive integer and |tj| ≤ C for all j ≥ N , then
for n ≥ N ,

|
n∑

j=N+1

tjx
j| ≤ C

xN

1− x
.

In particular, the series

g(x) =
∞∑
n=0

tnx
n

has radius of convergence at least one.
(iii) Show

s(x) = (1− x)g(x), |x| < 1.

(iv) Given ε > 0, choose N such |tj| < ε for j ≥ N and use, for 0 < x < 1,

(1− x)gn(x) = (1− x)[
N−1∑
j=0

tjx
j +

n∑
j=N

tjx
j] ≤ (1− x)[CN +

ε

1− x
],

where gn are the partial sums of the series g and C is an bound on the {|tj| : j ∈ N},
to complete the proof.

Problem 12.12. Use Abel’s theorem and the power series representation for arctan(x)
to show

π

4
=
∞∑
j=0

(−1)j

2j + 1
.
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Problem 12.13. Let (an) be a sequence of positive reals. Show,

lim sup
an+1

an
≥ lim sup |an|

1
n

and also

lim inf
an+1

an
≤ lim inf |an|

1
n .

[Suggestion: Follow the proof of the ratio test.]

Problem 12.14. Prove, Bernoulli’s inequality,

(1 + x)n ≥ 1 + nx,

for positive integers n and x ≥ −1. [Suggestion: Induct.]

Prove, the sequence (en = (1 + 1
n
)n) is increasing. [Suggestion: Observe(

1 + 1
n+1

1 + 1
n

)n+1

= (1− 1

(n+ 1)2
)n+1

and apply Bernoulli’s inequality.]

Prove the sequence (fn = (1 + 1
n
)n+x) is decreasing. [Suggestion: Simplify(

1 + 1
n

1 + 1
n+1

)n+2

and apply Bernoulli’s inequality.

Show,

en ≤
n∑
j=0

1

n!
≤ fn.

Conclude (en) and (fn) converge to exp(1). Thus,

e = lim
n→∞

(1 +
1

n
)n.

Problem 12.15. Prove, for x real and x ≥ −2 and positive integers n that

(1 + x)n ≥ 1 + nx.

[Suggestion: Note that the result is true for n = 1, 2 by direct verification. Now suppose,
arguing by induction, that x ≥ −2 and that (1 + x)m ≥ 1 +mx for all m ≤ n. Write

(1 + x)n+1 = (1 + x)n−1(1 + x)2

and apply the induction hypothesis the first term in the product on the right hand side.]

Problem 12.16. Let rn =
∑n

j=1
1
j
− log(n). Show that the sequence is bounded below

(by 0) and decreasing. It thus has a limit known as the Euler-Mascheroni constant
(http://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant).

http://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
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Problem 12.17. Suppose X is a metric space and (fj)
∞
j=k is a sequence of functions

fn : X → R. If there exists a sequence (of nonnegative numbers) (Mj) such that, for each
n and x ∈ X,

|fn(x)| ≤Mj

and the series
∞∑
j=k

Mj

converges, then the series of functions,

Fn(x) =
n∑
j=k

fj(x)

converges uniformly. This result is the Weierstrass M test.

Problem 12.18. Suppose f : (−R,R) → R is infinitely differentiable and for each j
there is an Mj such that |f (j)(t)| ≤Mj for each j and t ∈ (−R,R). If

∞∑
j=0

Mj
Rj

j!

converges, then the Taylor series for f converges to f uniformly on (−R,R).

13. Complex Numbers and Series∗

The ∗ here indicates that this section is optional. Subsection 13.1 is needed for a later
section on Fourier Series. Let V = (V, ‖ ·‖) be a complete normed vector space (a Banach
space). Thus, V is a vector space, ‖ · ‖ is a norm on V and the metric space V = (V, d)
with d(x, y) = ‖x− y‖ is complete. An example is of course Rk with the usual Euclidean
norm. To a sequence (an) from V there is the naturally associated series (sn) with

sn =
n∑
j=0

aj.

As before, let

(19)
∞∑
j=0

aj

denote both the sequence of partial sums and its limit, should it exist.

Definition 13.1. The series of Equation (19) converges absolutely if the numerical series
∞∑
j=0

‖aj‖

converges. /

Most of the facts about numerical series carry over to series from V . The following
proposition gives a sampling of such results.



120

Proposition 13.2. For the series S from Equation (19) the results of Proposition 12.3
hold, with the obvious exceptions. In particular, if S converges absolutely, then S con-
verges.

For V = Rk, write aj = (aj(1), . . . , aj(k)), where aj(`) denotes the `-th entry of aj.
In this case the series S converges if and only if for each ` the series

∑
aj(`) converges.

Moreover, in this case, ∑
aj =

(∑
aj(1) . . .

∑
aj(k)

)
.

†

13.1. Complex Numbers. This section contains a review of the basic facts about the
field of complex numbers. Recall that C, the complex plane, is, as a (real) vector space,
R2. A point (a, b) ∈ R2 is identified with the complex number a+ ıb ∈ C and the product
of z = a+ ıb and w = u+ ıv is

zw = (au− bv) + ı(av + bu).

Thus, ı2 = −1.

Given z = a+ıb 6= 0, it is natural to write z = r(a
r
+ı b

r
), where r =

√
a2 + b2. The point

(a
r
, b
r
) lies on the unit circle and thus has the form (cos(t), sin(t)). Hence, the complex

number z can be written as

(20) z = r(cos(t) + ı sin(t)).

The number r =
√
a2 + b2 is the modulus of z and is denoted |z|; the number t is the

argument of z; and the representation (20) is the polar decomposition of z.

If z = a + ıb is a complex number, we sometimes write a = <z and b = =z; these
are called the real part and imaginary part of z, respectively. The complex conjugate of
z = a + ib is defined to be z := a − ıb. Notice that <z and =z can be recovered from z
and z by the formulas

<z =
z + z

2
, =z =

z − z
2ı

.

The useful formula

zz = |z|2

is readily verified.

Given two complex numbers z = |z|(cos(t) + i sin(t)) and w = |w|(cos(s) + i sin(s)) a
routine calculation using angle sum formulas for sine and cosine shows,

zw = |z| |w|(cos(s+ t) + ı sin(s+ t)).

Thus complex multiplication can be interpreted geometrically in terms of the product of
the moduli and sum of the arguments.

A function f : X → C can be expressed in terms of its real and imaginary parts as
f = u + ıv, where u, v : X → R. The pointwise complex conjugate of f , denoted f, is
given by f = u− ıv.
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13.2. Power Series and Complex Numbers. Since, as a real vector space, C it is
nothing more than R2, the discussion at the outset of this section applies.

Let (an) be a sequence of complex numbers. The expression, for complex numbers z,

(21)
∞∑
j=0

ajz
j,

is the complex version of a power series.

Theorem 13.3. Either the series of Equation (21) converges absolutely for every complex
number z or there is a real number R such that if |z| < R then the series converges and
if |z| > R, then the series diverges.

In the case that the series converges for all z, its radius of convergence is ∞ and
otherwise R of the theorem is the radius of convergence.

Example 13.4. The power series
∞∑
j=0

zn

has radius of convergence 1 and for |z| < 1 converges to 1
1−z . For |z| ≥ 1 the series

diverges.

The power series
∞∑
j=0

zn

n

also has radius of convergence 1 and evidently diverges if z = 1. In particular, the series
does not converge absolutely for |z| ≥ 1. On the other hand, a generalization of the
alternating series test (which will not be discussed) can be used to show that if |z| = 1,
but z 6= 1, then the series converges (conditionally).

The power series,

E(z) =
∞∑
j=0

zj

j!

converges for all z and thus has an infinite radius of convergence. It defines a function
E : C→ C. Note that, in view of Example 12.24, E(x) = exp(x) for x ∈ R. Accordingly
E is the complex exponential and will be denoted by exp or ez. Thus,

E(z) = exp(z) = ez.

4

Proposition 13.5. E(z + w) = E(z)E(w) for z, w ∈ C. †

The proof of the proposition uses the following lemma which is of independent interest.
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Lemma 13.6. Suppose
∑
aj and

∑
bj converge to A and B respectively and let

cm =
m∑
j=0

ajbm−j.

(i) If
∑
aj converge absolutely, then

∑
cm converges to AB.

(ii) If both
∑
aj and

∑
bj converge absolutely, then so does

∑
cm.

†

Proof. Let tk denote the partial sums of the series
∑∞

j=0 bj and observe,

n∑
m=0

cm =
n∑
j=0

ajtn−j = B

n∑
j=0

aj +
n∑
j=0

aj(tn−j −B).

To complete the proof, it suffices to show that the last term on the right hand side above
converges to 0. To this end, let ε > 0 be given. There is an N so that |B − tk| < ε for
k ≥ N because (tk) converges to B and at the same time

∞∑
j=N

|aj| ≤ ε,

since the series
∑
aj is assumed to converge absolutely. Since |B − tj| converges, there is

an M such that |B − tj| ≤M for all j. For n ≥ 2N ,

|
n∑
j=0

an−j(B − tj)| ≤|
n−N∑
j=0

an−j(B − tj)|+ |
n∑

j=n−N+1

an−j(B − tj)|

≤
n∑

j=N

M |aj|+ (
∞∑
j=0

|aj|)ε

≤ε(M +
∑
|aj|).

�

Proof of Proposition 13.5. From the Lemma,

E(z)E(w) =
∞∑
m=0

(
m∑
j=0

zjwm−j

j!(m− j)!
)

=
∞∑
m=0

1

m!

m∑
j=0

(
m
j

)
zjwm−j

=
∞∑
m=0

(z + w)m

m!
= E(z + w).

�
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Remark 13.7. The polar decomposition of Equation (20) can be expressed in terms of
the exponential function using the formula,

eit = exp(it) = cos(t) + ı sin(t),

valid for t real. See Problem 13.3. �

13.3. Dirichlet Series. For positive integers n and complex numbers s, let

n−s = exp(−s log(n)).

For n fixed, n−s is thus defined for all s ∈ C. Note that

|n−s| = n−<s.

Given a sequence a = (an)∞n=1 of complex numbers, the expression

(22) f(s) =
∞∑
n=1

ann
−s

is a Dirichlet series. Of course, this series determines a function with domain equal Da,
the set of those s ∈ C for which the series converges. Writing s = σ + ıt in terms of its
real and imaginary parts, the series converges absolutely if and only if,

∞∑
n=1

|an|n−σ

converges.

The following proposition collects some elementary facts about convergence of Dirichlet
series. The proof are left as an Exercise for the gentle reader. See Problem 13.4.

Proposition 13.8. Suppose C > 0 and σ0 is real. If |an|n−σ0 ≤ C for all n, then the
Dirichlet series f(s) of Equation (22) converges absolutely for σ = <s > σ0 + 1.

If the series f(s) converges absolutely at s0 = σ0 + ıt0, then the series converges abso-
lutely for every s with <s ≥ σ0. Further, in this case, the series converges uniformly on
{s ∈ C : <s ≥ σ0}.

Either the series f(s) converges absolutely for all s; fails to converge for all s; or there
is a real number σa such that the series converges absolutely for <s > σa and does not
converge absolutely for <s < σa. †

Definition 13.9. Interpreting σa as either ±∞ if needed, the number σa is the abscissa
of absolute convergence of the Dirichlet series f(s). /

Example 13.10. For an = 1, the resulting series is known as the Riemann zeta function,

ζ(s) =
∞∑
n=1

n−s.

It converges absolutely for σ = <s > 1. It turns out that it diverges if σ ≤ 1. For
σ < 1 the divergence follows from Theorem 13.12. The case σ = 1 will not be dealt with
here. 4
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Example 13.11. The Dirichlet series

η(s) =
∞∑
n=1

(−1)nn−s

converges absolutely for σ > 1, conditionally for 0 < σ ≤ 1 and diverges otherwise. Here,
as usual, s = σ + ıt. Thus η(s) determines a function, known as the Dirichlet η (or
alternating ζ) function with domain {s ∈ C : <s > 0}. 4

Theorem 13.12. The Dirichlet series of Equation (22) either converges for all s; converges
for no s; or there is a real number σc such that the series converges for <s > σc and diverges
for <s < σc. Moreover, σc + 1 ≥ σa.

Definition 13.13. Again, allowing σc = ±∞ if needed, σc is the abscissa of (simple)
convergence of the Dirichlet series f(s). /

Remark 13.14. Evidently σc ≤ σa The inequality σa ≤ σc + 1 follows immediately from
Proposition 13.8. The examples of the zeta and eta functions show that the inequalities
are the best possible. �

The proof of Theorem 13.12 requires a couple of Lemmas, the first of which is known,
for obvious reasons, as summation by parts.

Lemma 13.15. [Summation by Parts] Given complex numbers a1, . . . , an; b1, . . . , bn, let

Bk =
∑k

j=1 bj. For m ≥ 2,

n∑
j=m

ajbj = anBn − amBm−1 −
n−1∑
j=m

Bj(aj+1 − aj).

†

Proof. Observe,
n∑

j=m

ajbj =ambm +
n∑

j=m+1

aj(Bj −Bj−1)

=ambm +
n∑

j=m+1

ajBj −
n−1∑
j=m

aj+1Bj

=ambm + anBn − am+1Bm −
n−1∑

j=m+1

(aj+1 − aj)Bj

=anBn − amBm−1 − (am+1 − am)Bm −
n−1∑

j=m+1

(aj+1 − aj)Bj

=anBn − amBm−1 −
n−1∑
j=m

(aj+1 − aj)Bj

�
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Lemma 13.16. Suppose s0 = σ0 + ıt0 and there exists a C such that for all N ∈ N+,

|
N∑
n=1

ann
−s0| ≤ C.

If s = σ + ıt and σ > σ0, then for all m and N ,

|
N∑

n=m

ann
−s0| ≤ 4Cmσ0−σ.

†

Proof. Applying Lemma 13.15 (summation by parts) to nσ0−σ and ann
σ0 gives,

N∑
n=m

ann
σnσ0−σ = Nσ0−σBN −mσ0−σBm−1 −

N−1∑
n=m

((n+ 1)σ0−σ − nσ0−σ)Bn,

where

Bn =
n∑
j=1

ann
σ0 .

From the hypothesis, (Bn) is bounded by C. Hence,

|
N∑

n=m

ann
σnσ0−σ| ≤ C[Nσ0−σ +mσ0−σ +

N−1∑
n=m

|(n+ 1)σ0−σ − nσ0−σ|].

Observe by its telescoping nature,

N−1∑
n=m

|(n+ 1)σ0−σ − nσ0−σ| =mσ0−σ −Nσ0−σ

=mσ0−σ|(N
m

)σ0−σ − 1| ≤ 2mσ0−σ.

Since also Nσ0−σ ≤ mσ0−σ, the conclusion of the lemma follows. �

Lemma 13.17. Suppose the series f(s) of (22) converges at s0 = σ0 + ıt0. If s = σ + ıt
and σ > σ0, then the series converges at s. †

Proof. Here is a sketch of the proof. Let Sk(s) denote the partial sums of f(s). If the
series converges at s0 the partials sums (Sk(s0)) are bounded, say by C. The sequence
(mσ0−σ)m converges to 0 as σ0−σ < 0. It follows that the partial sums of f(s) are Cauchy
by Lemma 13.16. Thus the series converges at s. �

Proof of Theorem 13.12. Suppose f(s) converges for some, but not all s. Let

τ = inf{σ ∈ R : there exists a t such that f(s = σ + ıt) converges}.
Given σ > τ , there exists a σ > σ0 > τ, by the definition of τ as an infimum. There exists
a t0 such that f converges at s0 = σ0 + ıt0. By Lemma 13.17, the series converges for
every s with <s > σ0 and for σ + ıt.
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On the other hand, if σ < τ and t ∈ R, then f(σ + ıt) doesn’t converge by the choice
of τ and the proof is complete. �

Returning to complete the Example 13.10 of the zeta function ζ(s), note that the series
diverges for s = σ < 1, but converges absolutely for s = σ + ıt when σ > 1. Hence, its
abscissa of convergence is σc = 1 = σa.

13.4. Problems.

Problem 13.1. Determine the radius of convergence and the set of z ∈ C for which the
power series,

∞∑
j=0

zj

j2 + 1

converges.

Problem 13.2. Fix a positive integer m. Show that the expression, for z ∈ C,
∞∑
j=0

zmj

is a power series. Using the result stated (without proof) in Example 13.4, determine the
set of z for which this series converges.

Problem 13.3. Prove, for x ∈ R,

exp(ıx) + exp(−ıx) = 2 cos(x).

Find a similar formula for sin(x).

Conclude,

exp(it) = cos(t) + ı sin(t)

and thus the representation of Equation (20) can be written as

z = reit.

Problem 13.4. Prove Proposition 13.8.

Problem 13.5. Prove the assertion in Remark 12.20.

14. Linear Algebra Review

This section reviews linear algebra in the Euclidean spaces Rn in preparation for study-
ing the derivative of mappings from one Euclidean space to another. It is assumed that
the reader has had a course in linear algebra and is conversant with matrix computations.
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14.1. Matrices and Linear Maps Between Euclidean Spaces.

Definition 14.1. A mapping T : Rn → Rm is linear if, for all x, y ∈ Rn and c ∈ R,

(i) T (x+ y) = T (x) + T (y); and
(ii) T (cx) = cT (x).

In this case it is customary to write Tx instead of T (x). /

Example 14.2. Verify that the mapping T : R2 → R2 defined by

T (x1, x2) = (2x1, x1 + x2)

is linear.

Verify that the functions f, g : R2 → R2 defined by

f(x1, x2) =(x1x2, x1 + x2) and;

g(x1, x2) =(2x1, x1 + x2 + 1)

are not linear. 4

Definition 14.3. Let a1, . . . , an ∈ Rm denote the columns of the m×n matrix A so that

A =
(
a1 a2 . . . an

)
.

If x ∈ Rn, then the product of A and x is

Ax =
∑

xjaj ∈ Rm.

In particular, aj = Aej, where ej ∈ Rn is the j-th standard basis vector, namely the vector
with a 1 in the j-th position and 0 elsewhere.

Given an m× n matrix A, let TA denote the mapping TA : Rn → Rm defined by

TAx = Ax.

/

Lemma 14.4. If A is an m× n matrix, then the mapping TA : Rn → Rm is linear. †

Definition 14.5. Given a linear map T : Rn → Rm, let AT denote the matrix

AT =
(
Te1 Te2 . . . T en

)
.

Thus AT is the m×n matrix with j-th column Tej and is called the matrix representation
of T . /

Example 14.6. Compute the matrix representation AT for the linear transformation in
Example 14.2. 4

The following proposition justifies identifying m × n matrices with linear maps from
Rn to Rm.

Proposition 14.7. (i) If A is an m× n matrix, then ATA = A.
(ii) If T : Rn → Rm is linear, then TAT = T .

†
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If S, T : Rn → Rm are linear maps and c ∈ R, then cS + T : Rn → Rm is naturally
defined by

(cS + T )x = cSx+ Tx.

If T : Rn → Rm and S : Rm → Rp are both linear, then the composition S ◦T is written
ST , notation justified by the following proposition.

Proposition 14.8. The correspondence between matrices and linear maps enjoys the
following properties.

(i) If A and B are m× n matrices and c ∈ R, then

TcA+B = cTA + TB.

(ii) If S, T : Rn → Rm are linear and c ∈ R, then cS + T is linear and moreover,

AcS+T = cAS + AT .

(iii) If A and B are m× n and p×m matrices respectively, then

TBA = TBTA.

(iv) If T : Rn → Rm and S : Rm → Rp are linear, then so is ST . Moreover,

AST = ASAT .

(v) If m = n and T is invertible, then its inverse, T−1 : Rn → Rn is also linear, the
matrix AT is invertible, and

A−1T = AT−1 .

(vi) Likewise, if A is an invertible n× n matrix, then TA is invertible and

T−1A = TA−1 .

†

Proof. The first two items are left to the gentle reader as Problem 14.1. The arguments
are similar to those of item (iii) and (iv) to follow.

To prove item (iii), let A and B as in the statement of the proposition be given and
note that, for x ∈ Rn,

TBAx = BAx = BTAx = TB(TAx) = TBTAx.

For item (iv), given S, T , observe by item (iii) and Proposition 14.7(ii),

TASAT = TASTAT = ST.

In particular, ST is linear. Moreover, applying Proposition 14.7(i),

ASAT = ATASAT
= AST

The remainder of the proof - items (v) and (vi) - is left to the gentle reader as Problem
14.2. �
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Now that matrices and linear maps from Rn to Rm have been identified, often speak of
a matrix as a linear map and conversely. Let In denote the n × n identity matrix. The
linear map it induces is of course the identity mapping AInx = x. Occasionally, we will
write I in place of In when the size n is apparent from the context.

Proposition 14.9. Suppose A is an m × n matrix. If m > n, then A is not onto. If
m < n, then A is not one-one.

The matrix A is one-one if and only if Ax = 0 implies x = 0.

For an n× n matrix A, the following are equivalent.

(i) A is invertible;
(ii) A is one-one;

(iii) A is onto;
(iv) there exists an n× n matrix B such that BA = In (and in this case B = A−1);
(v) there exists an n× n matrix C such that AC = In (and in this case C = A−1);
(vi) det(A) 6= 0;

†

Example 14.10. Let T denote the linear transformation from Example 14.2. Verify that
T is one-one and hence invertible. Find T−1. 4

14.2. Norms on Rn. Let ‖ · ‖2 denote the usual Euclidean norm on Rn. Thus, for
x = (x1, . . . , xn),

‖x‖22 =
n∑
j=1

x2j .

In the usual way (Rn, d2) is a metric space, where d2(x, y) = ‖x − y‖2. Let {e1, . . . , en}
denote the standard basis for Rn; i.e., ej has a 1 in the j-th entry and zeros elsewhere and

x =
n∑
j=1

xjej.

Let Sn−1 = {x ∈ Rn : ‖x‖2 = 1}, the unit sphere in Rn. Note that it is a compact set
(in (Rn, d2)).

Recall too the `1 norm on Rn defined by

‖x‖1 =
∑
|xj|,

where x =
∑n

j=1 xjej and {e1, . . . , en} is the standard orthonormal basis for Rn. Let d1
denote the resulting metric. In particular we have,

‖x‖1 ≤
√
n‖x‖2.

Definition 14.11. Two norms ‖ · ‖ and ‖ · ‖∗ on Rn are equivalent norms if there exists
0 < c < C such that

c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖
for all x ∈ Rn. /
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Remark 14.12. The metric properties of equivalent norms are the same; i.e., notions
of convergence and continuity are the same. Accordingly, we can freely move between
equivalent norms for many purposes of analysis. �

If ‖ · ‖ is a norm on Rn, let (Rn, ‖ · ‖) denote both this normed vector space and the
associated metric space (with metric d(x, y) = ‖x− y‖).

Theorem 14.13. All norms on Rn are equivalent. In particular, if ‖ · ‖ is a norm on Rn,
then closed bounded sets in the metric space (Rn, ‖ · ‖) are compact.

This theorem depends upon the fact that Rn is a finite dimensional vector space. There
are examples of inequivalent norms on infinite dimensional vector spaces (see Problem
14.6).

Proof. The strategy is to show that every norm ‖ · ‖ on Rn is equivalent to ‖ · ‖2. To this
end, first observe that, writing x =

∑n
j=1 xjej,

‖x‖ ≤
n∑
j=1

|xj| ‖ej‖ ≤M‖x‖1 ≤
√
nM‖x‖2,

where M = max{‖e1‖, . . . , ‖en‖}. It follows that, with d denoting the metric determined
by ‖ · ‖,

d(x, y) ≤
√
nMd2(x, y)

for all x, y ∈ Rn. Hence the function F : Rn 7→ R defined by F (x) = ‖x‖ is (uniformly)
continuous with respect to the Euclidean distance function d2(x, y) = ‖x − y‖2 on Rn.
Since G = F |Sn−1 is a continuous function on a compact set, it achieves its minimum c.
This minimum is not 0 since G does not take the value 0 (norms are positive definite and
0 6∈ Sn−1). Now, for x ∈ Sn−1,

c ≤ ‖x‖ = F (x).

If y 6= 0, then x = y
‖y‖2 ∈ S

n−1 and properties of norms,

c ‖y‖2 ≤ ‖y‖
and the proof is complete. �

Proposition 14.14. Suppose ‖ · ‖ and ‖ · ‖∗ are norms on Rn and Rm respectively. If
T : Rn → Rm is linear, then

(i) there is a C > 0 such that

‖Tx‖∗ ≤ C‖x‖; and

(ii) T is uniformly continuous as a mapping from (Rn, ‖ · ‖)→ (Rm, ‖ · ‖∗);

Finally,

inf{C ′ : ‖Tx‖∗ ≤ C ′‖x‖ for all x ∈ Rn} = sup{‖Tx‖∗ : x ∈ Rn, ‖x‖ = 1}
and both the infimum and supremum are attained. †
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Note that if T : Rn → Rn is linear and invertible, then T−1 is also linear and hence
continuous (with respect to any two norms on Rn).

Proof. Let ‖ · ‖1 denote the `1 norm on Rn. It is equivalent to the norm ‖ · ‖. Hence there
exists a K such that, for all x ∈ Rn,

‖x‖1 ≤ K ‖x‖

Let L = max{‖Te1‖∗, . . . , ‖Ten‖∗ : 1 ≤ j ≤ n}. Writing x =
∑n

j=1 xjej in the usual way,
estimate,

‖Tx‖∗ = ‖
n∑
j=1

xjT (ej)‖∗ ≤
n∑
j=1

|xj| ‖Tej‖ ≤ L‖x‖1 ≤ LK ‖x‖,

proving (i) with C = LK.

Item (ii) follows immediately from item (i).

To prove the final item, let S = {x ∈ Rn : ‖x‖ = 1}. From Theorem 14.13, S is
compact. The mapping G : S → R defined by G(x) = ‖Tx‖∗ is continuous (as a mapping
from (Rn, ‖ · ‖) to R) by what has already been proved. Hence G attains its supremum,
say M ; i.e., there is a point x0 ∈ S such that ‖Tx0‖∗ = M and if x ∈ S, then ‖Tx‖∗ ≤M
and, by properties of norms it readily follows that ‖Tx‖∗ ≤ M ‖x‖ for all x ∈ Rn. Thus
the infimum in the statement of the proposition is at most M which is also the supremum
in the statement. On the other hand, if ‖Tx‖∗ ≤ C‖x‖ for all x, then C ≥ M = ‖Tx0‖∗
and the proof is complete. �

14.3. The vector space of m × n matrices. Let L(Rn,Rm) denote the set of linear
maps from Rn to Rm. Propositions 14.7 and 14.8 describe the canonical identification of
L(Rn,Rm) with the set Mm,n of m × n matrices. Both L(Rn,Rm) and Mm,n are vector
spaces and, as vector spaces, can identified with Rmn. In particular, Mm,n can be given
the Euclidean norm by defining, for X = (xj,k) ∈Mm,n,

‖X‖22 =
∑
j,k

|xj,k|2,

which is often called the Frobenius norm. However, there is another norm on Mm,n (of
course equivalent to the Frobenius norm by Theorem 14.13) which, for many purposes, is
more natural - and easier to work with. Given an m× n matrix T, (equivalently a linear
map from Rn to Rm) by Proposition 14.14, there is a C such that

‖Tx‖2 ≤ C‖x‖2
for all x ∈ Rn.

Proposition 14.15. The mapping ‖ · ‖ : Mm,n → R defined by

‖T‖ = inf{C : ‖Tx‖2 ≤ C‖x‖2 for all x ∈ Rn}

is a norm on Mm,n. †
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Note that by Proposition 14.14, ‖T‖ = sup{‖Tx‖2 : x ∈ Rn, ‖x‖2 = 1}. This norm is
called the operator norm (or sometimes the matrix norm) and is also denoted by ‖T‖op.
That ‖T‖op defines defines a norm is left to the gentle reader as Problem 14.5. The
following Proposition collects some immediate properties of the operator norm.

Proposition 14.16. Let T be an m× n matrix.

(i) The norm of an m× n matrix T is also given by

‖T‖ = max{‖Tx‖2 : ‖x‖2 = 1}.

(ii) If y ∈ Rn, then,

‖Ty‖2 ≤ ‖T‖ ‖y‖2.
(iii) If C > 0 and

‖Ty‖2 ≤ C‖y‖2
for all y ∈ Rn, then ‖T‖ ≤ C.

(iv) If S is an n× p matrix, then ‖TS‖ ≤ ‖T‖ ‖S‖.

†

14.4. The set of invertible matrices. This section closes by reviewing some basic
facts about inverse of matrices (equivalently linear transformations on Euclidean space).
Throughout, unless otherwise indicated, ‖ · ‖ stands for the Euclidean norm ‖ · ‖2 or the
operator norm ‖ · ‖op as context dictates.

Given n ∈ N+, recall I = In denotes the n × n identity matrix and TI is the identity
mapping, TIx = x.

Lemma 14.17. If A is an n×n matrix and ‖A‖ < 1, then I −A is invertible. Moreover,

‖(I − A)−1‖ ≤ 1

1− ‖A‖
.

†

Proof. Observe, for x ∈ Rn, that

‖(I − A)x‖ ≥ ‖x‖ − ‖Ax‖ ≥ ‖x‖ − ‖A‖‖x‖ = ‖x‖(1− ‖A‖).

In particular, if x 6= 0, then (I − A)x 6= 0 and thus, by Proposition 14.9 (the equivalence
of items (i) and (ii)), I − A is invertible.

Given x ∈ Rn, note that

‖x‖ = ‖(I − A)(I − A)−1x‖ ≥ ‖(I − A)−1x‖(1− ‖A‖).

Thus,

‖(I − A)−1x‖ ≤ 1

1− ‖A‖
‖x‖.

Hence ‖(I − A)−1‖ ≤ (1− ‖A‖)−1 by Proposition 14.16(iii). �
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Proposition 14.18. Fix n. The set In of invertible n× n matrices is an open subset of
Mn and the mapping F : In → In

F (A) = A−1

is continuous. †

Proof. Fix A ∈ In. Choose η = 1
2‖A−1‖ and suppose ‖H‖ < η. In this case,

‖ − A−1H‖ ≤ ‖A−1‖ ‖H‖ < 1

2

and hence I + A−1H is invertible by Lemma 14.17. Consequently,

A+H = A(I + A−1H)

is invertible, proving that the η-neighborhood of A lies in In (since if B is in this η
neighborhood, then H = B−A has (operator) norm at most η). Lemma 14.17 also gives

‖(A+H)−1‖ ≤ ‖A−1‖ 1

1− ‖A−1H‖
≤ 2‖A−1‖.

To see that F is continuous, again suppose ‖H‖ < η and note

‖F (A+H)− F (A)‖ =‖(A+H)−1[A− (A+H)]A−1‖
≤‖A+H‖−1 ‖H‖ ‖A−1‖
≤2‖A−1‖2 ‖H‖.

To complete the proof, given ε > 0, choose 0 < δ ≤ η and such that δ < ε
2‖A−1‖ . �

14.5. Exercises.

Exercise 14.1. Show, if T : Rn → Rm is linear, then T0 = 0. (Here the first 0 is the
zero vector in Rn and the second is the zero vector in Rm.)

Exercise 14.2. Define T : R3 → R2 by

T (x1, x2, x3) = (2x1 − x2 + 3x3, x3 − x1).
Find a matrix A such that T = TA and explain how doing so shows that T is linear and
A = AT .

Exercise 14.3. Prove that the relation of equivalence of norms is an equivalence relation
(symmetric, reflexive, and transitive).

Exercise 14.4. Suppose D is an n× n diagonal matrix with diagonal entries λ1, . . . , λn.
Show ‖D‖ = max{|λj| : 1 ≤ j ≤ n} (the operator norm).

Show D is invertible if and only if all the diagonal entries are different from 0.

Exercise 14.5. Given n and y1, . . . , yn, the (row) 1× n matrix

Y =
(
y1 . . . yn

)
is identified with the corresponding linear map Y : Rn → R. Find ‖Y ‖ (the operator
norm).
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Exercise 14.6. Fix c > 0 and let

S = c

0 1 0
0 0 1
0 0 0

 .

Show ‖S‖ = c. Show also that I − S is invertible (even if c ≥ 1) and compare with
Lemma 14.17

14.6. Problems.

Problem 14.1. If T, S : Rn → Rm, then T + S : Rn → Rm is defined by (T + S)x =
Tx+ Sx as one would expect. Show, if S and T are linear, then T + S is linear and

AT+S = AT + AS.

Show further, if c ∈ R, then cT : Rn → Rm defined by cT (x) = c(Tx) (and denoted
simply cTx) is a linear map and further

AcT = cAT .

In the other direction, show, if A and B are m× n matrices, then

TA+B = TA + TB

and also
TcA = cTA.

Problem 14.2. Complete the proof of Proposition 14.8.

Problem 14.3. Show if ‖ · ‖ is a norm on Rm and T : Rn → Rm is linear and one-one,
then the function ‖ · ‖∗ : Rn → R given by

‖x‖∗ = ‖Tx‖
is a norm on Rn.

Problem 14.4. Suppose A and B are n × n and m ×m matrices respectively and that
C is an n×m matrix. Let

X =

(
A C
0 B

)
.

Prove X is invertible if and only if both A and B are.

Problem 14.5. Prove Proposition 14.15.

Problem 14.6. Consider the vector space C([0, 1]) with the norms,

‖f‖22 =

∫ 1

0

|f |2dt

and
‖f‖∞ = max{|f(t)| : 0 ≤ t ≤ 1}.

Let fn(t) = tn (defined on [0, 1]) and show that

lim
n→∞

‖fn‖2 = 0,

whereas ‖fn‖∞ = 1 for all n. Conclude the norms ‖ · ‖2 and ‖ · ‖∞ are not equivalent.
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Problem 14.7. Complete the outline of the following alternate proof of Lemma 14.17.
Suppose A is an n× n matrix and ‖A‖ < 1. Show that the series,

∞∑
j=0

Aj

is Cauchy in Mn,n and hence converges to some T in Mn,n and moreover,

‖T‖ ≤
∞∑
j=0

‖A‖j =
1

1− ‖A‖
.

Show,

(I − A)
n∑
j=0

Aj = I − An+1

and the right hand side converges to 0 with n. Conclude AT = I.

15. Derivatives of Mappings Between Euclidean Spaces

The calculus of functions f : U → Rm, where U is an open set in Rn, is the topic of
this section. Here Rn denotes n-dimensional Euclidean space. Thus Rn is the space of
(column) n-vectors, x = (x1, . . . , xn)T , (here T denotes transpose) with real entries, the
usual pointwise operations and the standard Euclidean norm,

‖x‖2 =
n∑
j=1

x2j .

(Note this notation differs slightly from that in some earlier sections where ‖ · ‖2 was used
for the Euclidean norm.) Of course, by Theorem 14.13 we could work with any pair of
norms on Rn and Rm.

The derivative is a linear map from Rn to Rm and Subsection 14.1 reviewed the con-
nection between matrices and linear maps between Euclidean spaces. The definition and
basic examples of derivatives are given in Subsection 15.1. Properties of the derivative
appear in Subsection 15.2. Directional derivatives and the connections between partial
derivatives and the derivative are detailed in Subsections 15.3 and 15.4 respectively.

15.1. The Derivative: definition and examples. A linear map T : R → R can be
identified with the real number t = T1 and conversely. Indeed, Th = hT1 = th; i.e., T
corresponds to the 1× 1 matrix [T1].

By definition, f : (a, b)→ R is differentiable at a < c < b if there is a number t so that

lim
x→c

f(x)− f(c)

x− c
= t.

Rewriting, f is differentiable at c if and only if there is a t such that

lim
h→0

|f(c+ h)− f(c)− th|
|h|

= 0.
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Note that U ⊂ Rn is open if and only if for each c ∈ U there is an η > 0 such that if
h ∈ Rn and ‖h‖ < η, then c+ h ∈ U . In particular,

Nη(c) = Nη(0) + c := {h+ c : ‖h‖ < η}.
Definition 15.1. Suppose U is an open subset of Rn, c ∈ U and f : U → Rm. The
function f is differentiable at c if there is a linear map T : Rn → Rm such that

(23) lim
h→0

‖f(c+ h)− f(c)− Th‖
‖h‖

= 0.

If f is differentiable at each c ∈ U , then f is differentiable /

Proposition 15.2. Suppose U is an open subset of Rn, c ∈ U , and f : U → Rm. If
S, T : Rn → Rm are linear maps and both

lim
h→0

‖f(c+ h)− f(c)− Th‖
‖h‖

= 0 = lim
h→0

‖f(c+ h)− f(c)− Sh‖
‖h‖

,

then S = T . †

Proof. Given ε > 0 there is a δ such that if 0 < ‖h‖ < δ, then c+ h ∈ U and both

‖f(c+ h)− f(c)− Th‖ <ε‖h‖
‖f(c+ h)− f(c)− Sh‖ <ε‖h‖.

Hence,

‖Th− Sh‖ ≤ ‖f(c+ h)− f(c)− Sh‖+ ‖f(c+ h)− f(c)− Th‖ < 2ε‖h‖.
Now suppose k ∈ Rn is given. For t real and |t| < δ

‖k‖+1
, the vector h = tk satisfies

‖h‖ < δ and thus,

‖T (tk)− S(tk)‖ = |t| ‖Tk − Sk‖ < 2ε|t|‖k‖.
Since ε > 0 is arbitrary, it follows that Tk = Sk. �

Definition 15.3. If f is differentiable at c, then the unique linear map T satisfying (23)
is the derivative of f at c , written

f ′(c) = Df(c) = T.

/

Example 15.4. Consider the function f : R2 → R2 defined by f(x1, x2) = (x21, x1x2).
With c = (x1, x2) fixed, let X denote the matrix,

X =

(
2x1 0
x2 x1

)
.

Given a point c = (c1, c2) ∈ R2 (the domain of f) and a vector h = (h1, h2) ∈ R2,

‖f(c1 + h1, c2 + h2)− f(c1, c2)−Xh‖ = ‖(h21, h1h2)‖ ≤ |h1|‖h‖.
It follows that f is differentiable at (c1, c2) and X (really the linear map TX it determines)
is Df(c1, c2). 4

Do Exercise 15.1.
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15.2. Properties of the Derivative.

Proposition 15.5. Suppose U ⊂ Rn is open and f : U → Rm. If f is differentiable at c,
then f is continuous at c. †

The proof of this proposition is left to the reader as Problem 15.1.

Proposition 15.6. [Chain Rule] Suppose U ⊂ Rn and V ⊂ Rm are open and that
f : U → V and g : V → Rk. If f is differentiable at c ∈ U and g is differentiable at
d = f(c), then ψ = g ◦ f is differentiable at c and

Dψ(c) = Dg(f(c))Df(c).

†

Proof. For notational ease, let S = Df(c) and T = Dg(f(c)). Also, for h ∈ Rn and
k ∈ Rm such that c+ h ∈ U and d+ k ∈ V , let

γ(k) =g(d+ k)− g(d)− Tk
η(h) =f(c+ h)− f(c)− Sh
Γ(h) =η(h) + Sh = f(c+ h)− f(c).

With these notations,

ψ(c+ h)− ψ(c)− TSh =g(f(c+ h))− g(f(c))− TSh
=g(f(c) + Γ(h))− g(f(c))− T (Γ(h)− η(h))

=γ(Γ(h)) + Tη(h).

Now let 1 ≥ ε > 0 be given. Since g is differentiable at d, there exists a δ > 0 such that
if ‖k‖ < δ, then ‖γ(k)‖ < ε‖k‖. Since f is differentiable at c, there exists a µ > 0 such
that if ‖h‖ < µ, then ‖η(h)‖ < ε‖h‖ ≤ ‖h‖ and at the same time

‖Γ(h)‖ ≤‖η(h)‖+ ‖S‖‖h‖
≤(1 + ‖S‖)‖h‖ < δ.

Thus for ‖h‖ < µ,

‖γ(Γ(h)) + Tη(h)‖ ≤ε‖Γ(h)‖+ ‖T‖ ‖η(h)‖
≤ε(1 + ‖S‖)‖h‖+ ‖T‖ε‖h‖
≤ε(1 + ‖S‖+ ‖T‖)‖h‖.

Thus,

lim
h→0

‖ψ(c+ h)− ψ(c)− TSh‖
‖h‖

= 0

and the proof is complete. �

As is easy to prove, the derivative is also linear in the sense that if U is an open set in
Rn, the point c lies in U , the functions f, g : U → Rm are differentiable at c and r ∈ R,
then rf + g is differentiable at c and

D(rf + g)(c) = rDf(c) +Dg(c).
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15.3. Directional Derivatives. A subset C of Rn is convex if a, b ∈ C and 0 ≤ t ≤ 1
implies (1 − t)a + tb ∈ C. For c ∈ Rn and r > 0, the neighborhood Nr(c) is evidently
convex. In fact, because neighborhoods are open sets, given a, b ∈ Nr(c), there exists a
δ > 0 such that (1− t)a + tb ∈ Nr(c) for −δ < t < 1 + δ. Thus, given an open subset U
of Rn a function f : U → Rm and a point c ∈ U and an r > 0 such that Nr(c) ⊂ U , if
a, b ∈ Nr(c) then, for some δ > 0, we can consider the function h : (−δ, 1+δ)→ U defined
by h(t) = (1− t)a+ tb = a+ t(b− a) and thus the composition g : (−δ, 1 + δ)→ Rm,

g(t) = f(h(t)) = f(a+ t(b− a)).

Definition 15.7. Suppose

(i) U is an open subset of Rn;
(ii) c is in U ;

(iii) u ∈ Rn is a unit vector;
(iv) f : U → Rm.

In this case there is a δ > 0 such that c + tu ∈ U whenever t ∈ R and |t| < δ. The
directional derivative of f in the direction u is the derivative of g : (−δ, δ)→ Rm defined
by g(t) = f(c+ tu) at 0, if it exists. It is denoted Duf(c). Thus,

Duf(c) = lim
t→0

f(c+ tu)− f(c)

t
,

if this limit exists. /

Remark 15.8. If it exists, Duf(c) ∈ Rm. (It is a vector.) �

The following simple corollary of the chain rule relates the derivative to directional
derivatives.

Corollary 15.9. Suppose U ⊂ Rn is open, c ∈ U, f : U → Rm. For each h ∈ Rn, there
is a δ > 0 such that c + th ∈ U for |t| < δ. If f is differentiable at c, then the function
g : (−δ, δ)→ Rm defined by g(t) = f(c+ th) is differentiable at 0 and

g′(0) = Df(c)h.

Further, if f is differentiable, then so is g and

g′(t) = Df(c+ th)h.

In particular, if f is differentiable at c and u ∈ Rn is a unit vector, then

Duf(c) = Df(c)u ∈ Rm.

†

Proof. Since U is open and c ∈ U , there is a δ > 0 such that c+ tu ∈ U for |t| < δ. Define
h : (−δ, δ)→ Rn by h(t) = c + tu. Then h is differentiable at 0 and h′(0) = u. Thus, by
the chain rule, g = f ◦ h is differentiable at 0 and g′(0) = f ′(h(0))h′(0). �

It can happen that all directional derivatives exist, even though f is not differentiable
at c as the following example shows.
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Example 15.10. Define f : R2 → R by f(0, 0) = 0 and otherwise

f(x, y) =
x3

x2 + y2
.

Then all the directional derivatives of f exist; however, f is not differentiable at 0. To
prove this last assertion, suppose T : R2 → R is a linear and both

lim
t→0

|f(te1)− f(0)− T (te1)|
|t|

= 0 = lim
s→0

|f(se2)− f(0)− T (se2)|
|s|

.

In this case Te1 = 1 and Te2 = 0. In particular, as a matrix,

T =
(
1 0

)
= eT1 .

But then, with h = (e1 + e2),

lim
t→0

|f(th)− f(0)− T (th)|
‖th‖

=
1

2
√

2
.

It follows that

lim
h→0

|f(h)− f(0)− Th|
‖h‖

6= 0.

Hence f is not differentiable at 0. �

In Problem 15.4 you will show that in fact the composition of f with any differentiable
curve, not just curves of the form g(t) = th (for a fixed vector h), is differentiable at
0. 4

15.4. Partial derivatives and the derivative. This subsection begins with the familiar
definition of the partial derivative.

Definition 15.11. Suppose U is an open subset of Rn, c ∈ U and f : U → Rm. The
partial derivative of f with respect to xj at c is the directional derivative of f in the
direction ej at c (where {e1, . . . , en} is the standard basis for Rn) and is denoted by
Djf(c).

In the case that f : Rn → R (m = 1), it is customary to write

∂f

∂xj

instead of Djf . /

Proposition 15.12. If f , as in the definition, is differentiable at c, then the matrix
representation of Df(c), in terms of its columns, is(

D1f(c) · · · Dnf(c)
)

and moreover,
Df(c)i,j = 〈Df(c)ej, ei〉 = 〈Djf(c), ei〉.

Thus, the matrix representation for Df(c) is

Df(c) =
(
∂fi
∂xj

(c)
)m,n
i,j=1

.

†
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Proof. Given U ⊂ Rn open and f : U → Rm, for 1 ≤ i ≤ m, let fi : U → R denote the
function fi(x) = 〈f(x), ei〉; i.e.,

f(x) =


f1
f2
...
fm

 .

Assuming f is differentiable at c ∈ U , each fi is differentiable at c since fi is the compo-
sition of the differentiable mapping Ei : Rm → R defined by

Ei(y) = 〈y, ei〉 = eTi y

with the mapping f which is differentiable at c. Using fi = Ei ◦ f and the fact that
DEi(c)h = Ei(h) (see Exercise 15.8), the chain rule (Proposition 15.6) and Corollary 15.9
imply, for 1 ≤ j ≤ n,

∂fi
∂xj

(c) = Djfi(c) = Dfi(c)ej = Ei(f(c))Df(c)ej = 〈Df(c)ej, ei〉.

�

Example 15.13. Returning to Example 15.4, f1(x1, x2) = x21 and f2(x1, x2) = x1x2.
Thus, (

∂f1
∂x1

(a, b) ∂f1
∂x2

(a, b)
∂f2
∂x1

(a, b) ∂f2
∂x2

(a, b)

)
=

(
2a 0
b a

)
.

4

Remark 15.14. If U is an open subset of Rn and f : U → R has partial derivatives at
at c ∈ U , then the gradient of f is the 1× n matrix

∇f(c) =
(
∂f
∂x1

. . . ∂f
∂xn

)
.

In particular, if f is differentiable at c, then the matrix representation of f at c is∇f(c). �

Proposition 15.15. Suppose U ⊂ Rn is open, c ∈ U and f : U → R. If η > 0, if the
neighborhood Nη(c) = {x ∈ Rn : ‖x − c‖ < η} lies in U and if each ∂f

∂xj
exists on Nη(c)

and is continuous at c, then f is differentiable at c. †

Proof. The case n = 2 is proved. The details for the general case can easily be filled in
by the gentle reader. Since the partials of f exist at c, ∇f(c) =

(
D1f(c) D2f(c)

)
exists

as a vector. From Proposition 15.12, what needs to be proved is that

lim
h→0

‖f(c+ h)− f(c)−∇f(c)h‖
‖h‖

= 0.

Let ε > 0 be given. By continuity of the partial derivatives of f at c, there is a δ such
that η > δ > 0 and if ‖k‖ < δ, then

|Djf(c+ k)−Djf(c)| < ε.
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Write c = c1e1 + c2e2. Let h = h1e1 + h2e2 with ‖h‖ < η be given. Observe, that
c+ h1e1 ∈ U and

(24) f(c+ h)− f(c) = f(c+ h)− f(c+ h1e1) + f(c+ h1e1)− f(c).

Next, note that for 0 ≤ s ≤ 1 that c + sh1e1 ∈ Nδ(c) and c + h1e1 + sh2e2 ∈ Nδ(c).
Accordingly define gj : [0, 1]→ R by g1(s) = f(c+ sh1e1) and g2(s) = f(c+h1e1 + sh2e2).
The assumption that the partial derivatives of f exist on Nη(c) imply that both g1 and
g2 are continuous on [0, 1] and differentiable on (0, 1). Hence, by the mean value theorem
there exists points tj ∈ (0, 1) such that,

f(c+ h)− f(c+ h1e1) =h2D2f(c+ h1e1 + t2h2e2)

f(c+ h1e1)− f(c) =h1D1f(c+ t1h1e1).
(25)

Thus, if ‖h‖ < δ, then, combining Equations (24) and (25),

|f(c+ h)− f(c)−∇f(c)h|
≤|f(c+ h)− f(c+ h1e1)− h2D2f(c+ h1e1 + t2e2)|
+|h2D2f(c+ h1e1 + t2e2)− h2D2f(c)|
+|f(c+ h1e1)− f(c)− h1D1f(c+ t1e1)|
+|h1D1f(c+ t1e1)− h1D1f(c)|
≤ε(|h2|+ |h1|)
≤2ε‖h‖.

This proves that f is differentiable at c (and of course Df(c) = ∇f(c)). �

Proposition 15.16. Suppose U is an open subset of Rn and f : U → Rm. If all the
partials Djfi exist on U and are continuous at c, then f is differentiable at c. †

Proof. From the preceding proposition, each fi, defined by fi(x) = 〈f(x), ei〉 is differen-
tiable and Dfi = ∇fi.

Fix c ∈ U and let T denote the matrix with (i, j) entry Djfi(c). For ‖h‖ small enough
that c+ h ∈ U , sufficiently small,

‖f(c+ h)− f(c)− Th‖
‖h‖

=
‖
∑
〈f(c+ h)− f(c)− Th, ei〉ei‖

‖h‖

≤
∑ |〈f(c+ h)− f(c)− Th, ei〉|

‖h‖

≤
∑ |fi(c+ h)− fi(c)−Dfih|

‖h‖
.

Each term on the right hand side converges to 0 with h by Proposition 15.15. �

Remark 15.17. Given U ⊂ Rn an open set and f : U → R, if f is differentiable and
Df : U → L(Rn,Rm) is continuous, then f is said to be continuously differentiable. Note
that f is continuously differentiable if and only if all its partials are.
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Summarizing, if all the partials of f exists in a neighborhood of a point c and are
continuous at c, then f is differentiable and its derivative is identified with its matrix
of partial derivatives. If further, all the partials are continuous, then f is continuously
differentiable. �

15.5. Exercises.

Exercise 15.1. Show, directly from the definition, that f : R2 → R2 defined by

f(x1, x2) = (x21 − x22, 2x1x2)

is differentiable and compute its derivative (at each point).

At which points c does the derivative Df(c) fail to be invertible?

Exercise 15.2. Show that f : R2 → R2 defined by

f(r, t) = (r cos(t), r sin(t))

is differentiable and compute its derivative using Propositions 15.12 and 15.16 (and the
well known rules of calculus for sin and cos).

At which points c does Df(c) fail to be invertible?

Exercise 15.3. Suppose f : Rn → R is differentiable. For c ∈ Rn, find u which maximizes
Duf(c) (over unit vectors u). This direction is the direction of maximum increase of f at
c. Compare with Exercise 14.5.

Exercise 15.4. Suppose f : R → Rn and g : Rn → R have continuous (partial) deriva-
tives. Write out the chain rule for h = g◦f explicitly in terms of these (partial) derivatives.

Exercise 15.5. Same as Exercise 15.4, but with f, g : R2 → R2.

Exercise 15.6. Define F : R4 → R2 by

F (x, y, u, v) = (x2 − y2 + u2 − v2 − 1, xy + uv).

Compute the derivative of F .

Determine the rank of DF (c) at a point c where F (c) = 0. (There are numerous
equivalent definitions of the rank of a matrix. Feel free to use any that you are comfortable
with. If you don’t know a definition, you might choose to use the rank is the largest k
such a (principal) k × k submatrix has non-zero determinant. In particular, the rank of
DF (c) is at most two.)

Exercise 15.7. Verify the chain rule for f ◦ F , where F is defined in Exercise 15.6 and
f is given in example 15.4.

Exercise 15.8. Suppose A is an m × n matrix and a is a vector in Rm. Show that
f : Rn → Rm defined by

f(x) = Ax+ a

is differentiable and Df(c) = A (for all c).
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Exercise 15.9. Suppose f : R3 → R2 is differentiable at 0 and

Df(0) =

(
1 0 2
3 2 1

)
.

Find the directional derivative in the direction

v =
(
3 1 5

)T
.

15.6. Problems.

Problem 15.1. Prove Proposition 15.5.

Problem 15.2. Suppose U ⊂ Rn is open and f : U → R. Define f has a local minimum
at c local minimum and prove, if f has a local minimum at c and f is differentiable at c,
then Df(c) = 0.

Problem 15.3. Suppose U ⊂ Rn is open and connected. Show, if f : U → R is
differentiable and Df = 0 (Df(x) = 0 for all x ∈ U), then f is constant. You may
wish to use the following outline.

(i) Suppose a ∈ U the vector h ∈ Rn and there is a δ > 0 such that a + th ∈ U for
−δ < t < 1 + δ. Show f(a) = f(a+ h).

(ii) Show, if r > 0 and Nr(a) ⊂ U, then f(x) = f(a) for all x ∈ Nr(a).
(iii) Apply Problem 8.3.

Show the same result holds with the codomain of f replaced by Rm.

Problem 15.4. Show, in Example 15.10, if γ : (−δ, δ) → R2 is differentiable, γ(0) = 0,
and γ′(0) 6= 0, then f ◦ γ is differentiable at 0.

Problem 15.5. Define f(x, y) = xy
x2+y2

for (x, y) 6= (0, 0) and f(0, 0) = 0. Show the

partial derivatives Djf(0, 0) exist, even though f is not continuous at 0.

Problem 15.6. Suppose U ⊂ R2 is open and f : U → R. Prove if the partial derivatives
of f exist and are bounded, then f is continuous.

16. The Inverse and Implicit Function Theorems

In this section the Inverse and Implicit Function Theorems are established. The ap-
proach here is to prove the Inverse Function Theorem first and then use it to prove the
Implicit Function Theorem. It is possible to do things the other way around.

16.1. Lipschitz Continuity. This subsection collects a couple of facts used in the proof
of the inverse function theorem.

Suppose U is an open set in Rn. A function f : U → Rm is Lipschitz continuous if there
is an M such that

‖f(x)− f(y)‖ ≤M‖x− y‖
for all x, y ∈ U .
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Recall, a subset C of a vector space V is convex if x, y ∈ C and s, t ≥ 0, s + t = 1
implies

sx+ ty ∈ C.

Note that, given c ∈ Rn and ε > 0,

Nε(c) = {x ∈ V : ‖c− x‖ < ε},

is an open convex set.

Proposition 16.1. Suppose U ⊂ Rn is open and convex. If f : U → Rm is continuously
differentiable and if Df : U → L(Rn,Rm) is bounded, say ‖Df(x)‖ ≤ M for all x ∈ U ,
then f is Lipschitz continuous with constant M .

In particular, if O ⊂ O ⊂ U and O is open, convex and bounded, then f is Lipschitz
continuous on O. †

Proof. Given x, y ∈ U , since U is open and convex there is a δ > 0 such that ty+(1−t)x ∈
U for −δ < t < 1 + δ. Define ψ : (−δ, 1 + δ)→ U by

ψ(t) = ty + (1− t)x

and let g(t) = f ◦ ψ(t). Since both f and ψ are differentiable, by the chain rule g is
differentiable and

g′(t) = Df(ψ(t))ψ′(t) = Df(ty + (1− t)x)(y − x).

Hence,

‖g′(t)‖ ≤ ‖Df(ty + (1− t)x)‖ ‖y − x‖ ≤M‖y − x‖.

From the First Fundamental Theorem of Calculus, Theorem 11.30,

f(y)− f(x) = g(1)− g(0) =

∫ 1

0

g′(t) dt.

By Proposition 11.31,

‖f(y)− f(x)‖ ≤
∫ 1

0

‖g′(t)‖ dt ≤M‖y − x‖.

�

Lemma 16.2. The function g : Rn → R defined by g(x) = ‖x‖2 = 〈x, x〉 is differentiable
and ∇g(z) = 2zT . †

Proof. Writing g(x) = xTx, note that

g(x+ h)− g(x)− 2xTh = hTh

from which it easily follows that Dg(x)h = 2xTh. �



145

16.2. The Inverse Function Theorem.

Theorem 16.3. [Inverse Function] Suppose U is an open subset of Rn, c ∈ U , and
f : U → Rn. If f is continuously differentiable on U and Df(c) is invertible, then there
is an open subset O ⊂ U containing c such that

(i) f(O) is open;

(ii) f̃ = f |O : O → f(O) is a bijection;

(iii) the inverse of f̃ is continuously differentiable; and

(iv) Df̃−1(f(c)) = Df(c)−1.

Proof. The statement is proved first under the additional assumption that c = 0 and
Df(0) = I.

Consider the function g : U → Rn defined by g(x) = x − f(x). Since Dg(0) = 0, and
Dg is continuous, there is a δ > 0 such that Nδ(0) ⊂ U and ‖Dg(x)‖ ≤ 1

2
for ‖x‖ < δ.

By Proposition 16.1, if ‖x‖, ‖y‖ < δ, then

‖g(y)− g(x)‖ ≤ 1

2
‖y − x‖.

Hence,

‖y − x‖ ≤‖(y − x)− (f(y)− f(x))‖+ ‖f(y)− f(x)‖
=‖g(y)− g(x)‖+ ‖f(y)− f(x)‖

≤1

2
‖y − x‖+ ‖f(y)− f(x)‖.

Rearranging gives

(26) ‖y − x‖ ≤ 2‖f(y)− f(x)‖.
This proves that f is one-one on Nδ(0). It also shows that the inverse of the mapping
f : Nδ(0)→ f(Nδ(0)) is (Lipschitz) continuous.

Note that Dg(x) = I−Df(x) and since ‖Dg(x)‖ ≤ 1
2

on Nδ(0), it follows from Lemma
14.17 that Df(x) is invertible on Nδ(0).

Choose 0 < η < δ. The set Sη = {x : ‖x‖ = η} is closed in Rn and hence compact.
The function Sη 3 x 7→ ‖f(x) − f(0)‖2 is continuous and, since f is one-one on Nδ(0),
never 0. It follows, from the extreme value theorem, that there is a d > 0 such that
‖f(x)− f(0)‖ ≥ 2d for all x ∈ Sη.

Let K = Bη(0), the η ball centered at 0. In particular, K is the closure of Nη(0) and
is compact since it is a closed bounded subset of Rn. Moreover, Sη is the boundary of K.
Given y ∈ Nd(f(0)), let

ϕ(x) = 〈f(x)− y, f(x)− y〉 = ‖f(x)− y‖2.
The function ϕ is continuous on K and hence attains its minimum at some z ∈ K. This
minimum is not on the boundary Sη since ‖y − f(0)‖ < d and at the same time, for
x ∈ Sη,

‖f(x)− y‖ ≥ ‖f(x)− f(0)‖ − ‖f(0)− y‖ ≥ 2d− d = d.
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Now, by Problem 15.2, ∇ϕ(z) = 0 and on the other hand, by the chain rule, Proposition
15.6, and Lemma 16.2

0 = ∇ϕ(z) = 2(f(z)− y)TDf(z).

Since Df(z) is invertible, it follows that f(z)− y = 0 and we conclude that y = f(z) for
some z ∈ Nη(0). Hence, for each y ∈ Nd(f(0)), there is z ∈ Nη(0) such that f(z) = y.

Let O = Nη(0) ∩ f−1(Nd(f(0))). Then O is open, 0 ∈ O, and f : O → Nd(f(0)) is
one-one and onto. The first two items are now proved (under some additional hypotheses).

Let ψ denote the inverse to f̃ = f |O : O → Nd(f(0)). The inequality (26) says that ψ
is continuous (in fact Lipschitz).

To prove (iii), let y ∈ Nd(f(0)) be given. By (ii) there is an (unique) x ∈ O such
that f(x) = y. There is a σ > 0 such that if ‖k‖ < σ, then y + k ∈ Nd(f(0)). By
(i) there there is an h such that x + h ∈ O and f(x + h) = y + k. In particular,
ψ(y + k)− ψ(y) = x+ h− x = h. Let T = Df(x) which, by the choice of η, is invertible.
We have,

ψ(y + k)− ψ(y)− T−1k =h− T−1k
=− T−1(k − Th)

=− T−1(f(x+ h)− y − Th)

=− T−1(f(x+ h)− f(x)− Th).

Thus,

‖ψ(y + k)− ψ(y)− T−1k‖ ≤ ‖T−1‖ ‖f(x+ h)− f(x)− Th‖.
Since also

‖h‖ = ‖x+ h− x‖ ≤ 2‖f(x+ h)− f(x)‖ = 2‖y + k − y‖ = 2‖k‖,
it follows that

‖ψ(y + k)− ψ(y)− T−1k‖
‖k‖

≤ 2‖T−1‖‖f(x+ h)− f(x)− Th‖
‖h‖

.

This last estimate shows that ψ is differentiable at y and Dψ(y) = T−1 = Df(ψ(y))−1.
Finally, the mapping Nd(f(0)) 3 y 7→ Df(ψ(y)) is continuous (as Df is assumed contin-
uous on U and ψ has been shown to be continuous) as is the mapping taking a matrix to
its inverse (see Proposition 14.18). Thus Dψ is the composition of continuous maps and
hence continuous. The proof of (iii) is complete (under some additional hypotheses).

Now suppose still that c = 0, but assume only that Df(0) is invertible. Let A = Df(0)
and let G denote the mapping G(x) = Ax. Since A is invertible, G is invertible and
continuous and moreover both G and G−1 are continuously differentiable (see Exercise
15.8). Indeed, G−1(x) = A−1x and, for instance DG(x) is constantly equal to A. Let F =
A−1f = G−1 ◦ f . Then F is continuously differentiable on U and DF (0) = A−1Df(0) =
I. Hence, by what has already been proved, there is an open set O such that F (O)
is open and F restricted to O is a continuous bijection between O and F (O) whose
inverse is continuously differentiable. It now follows that f = G ◦ F maps O bijectively
onto the open set f(0) = G(F (0)) = (G−1)−1(F (O)) and the inverse of f restricted to
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f(O) is the composition of continuously differentiable functions and is thus continuously
differentiable.

The passage from c = 0 to a general c is left to the gentle reader. �

Corollary 16.4. Suppose U is an open subset of Rn, f : U → Rn is continuously
differentiable, and Df(x) is invertible for each x ∈ U . If V ⊂ U is open, then f(V ) is
open. †

Example 16.5. Consider the the mapping given by

(r, t) 7→ er(cos(t), sin(t)).

In particular, it maps the line (r0, t) to the circle of radius r0 (many times over). Sim-
ilarly, it maps the line (r, t0) to the ray (emanating at, but not containing, the origin)
er(cos(t0), sin(t0)).

The derivative of F is the 2× 2 matrix,

DF (r, t) =

(
er cos(t) −er sin(t)
er sin(t) er cos(t)

)
which is easily seen to be invertible (its determinant is e2r). Thus, for each point (r0, t0)
there is open set U of (r0, t0) on which F is one-one and F (U) is open.

From the corollary, if V is any open subset of R2, then F (V ) is open. In particular, the
range of F is an open set. Of course, the range of F is R2 \ {(0, 0)} which is evidently
open.

As an exercise, find an open set U containing (0, 0) on which F is one-one and compute
the inverse of F : U → F (U); likewise find an open set V containing (0, π

2
) on which F is

one-one and determine the inverse of F : V → F (V ). Ditto for (0, π).

By comparison, consider the function f of Example 16.5. Determine the image of the
lines {(r0, t) : t} and {(r, t0) : r} under f . Note that Df is invertible at (r0, t0) precisely
when r0 6= 0. See Exercise 15.2. 4

16.3. The Implicit Function Theorem. It will be convenient to think of the Euclidean
space Rn+m as the direct sum Rn ⊕ Rm which is the set

Rn ⊕ Rm = {(x, y) : x ∈ Rn, y ∈ Rm}
with coordinate-wise addition

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),

scalar multiplication
c(x, y) = (cx, cy)

and (Euclidean) norm,
‖(x, y)‖2 = ‖x‖2 + ‖y‖2.

If L ∈ L(Rn+m,Rm) and J : Rm 7→ Rn+m is the inclusion

(27) Jy = 0⊕ y =

(
0
y

)
,



148

then LJ ∈ L(Rm). Suppose U ⊂ Rn ⊕ Rm is open, c = (a, b) ∈ U (so that a ∈ Rn and
b ∈ Rm), and f : U → Rm. Writing z ∈ U as z = x ⊕ y, if f is differentiable at c, then
the matrix representation of Df(c) is

∂f1
∂x1

. . . ∂f1
∂xn

...
...

...
∂fm
∂x1

. . . ∂fm
∂xn

|

∂f1
∂y1

. . . ∂f1
∂ym

...
...

...
∂fm
∂y1

. . . ∂fm
∂ym

 .

As short hand, write (
∂f
∂x
| ∂f

∂y

)
.

With a similar short hand, the matrix representation for J has the form,

J =

0n,m
−
Im


and thus,

Df(c)J =
∂f

∂y
:=


∂f1
∂y1

. . . ∂f1
∂ym

...
...

...
∂fm
∂y1

. . . ∂fm
∂ym

 .

Theorem 16.6. [Implicit Function] Suppose U ⊂ Rn+m = Rn ⊕ Rm is open, (a, b) ∈ U ,
and f : U → Rm. If

(a) f is continuously differentiable;
(b) f(a, b) = 0; and
(c) Df(a, b)J is invertible,

then there is

(i) an open set (a, b) ∈ O ⊂ Rn+m;
(ii) an open set a ∈ W ⊂ Rn; and
(iii) a unique function g : W → Rm such that

(a) G(x) = (x, g(x)) maps W into O;
(b)

{(x, y) : f(x, y) = 0} ∩O = {G(x) : x ∈ W}; and;

(c)

f(x, g(x)) = 0 = f(G(x)).

Moreover, W and O can be chosen so that g is continuously differentiable.

When the conclusion of the implicit function theorem holds we say that f(x, y) = 0
defines y as a function of x near the point (a, b).
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Proof. Define F : U → Rn+m by

F (x, y) = (x, f(x, y)).

It is readily checked that F is continuously differentiable and further

DF (x, y) =

(
I 0
∗ Df(x, y)J

)
.

By Problem 14.4 and the hypothesis that Df(a, b)J is invertible, the matrix DF (a, b)
is invertible.

By the Inverse Function Theorem, there is an open set O containing (a, b) such that F is
one-one on O, the set F (O) is open, and F : O → F (O) has a continuously differentiable
inverse H : F (O)→ O.

Let W = {u ∈ Rn : (u, 0) ∈ F (O)}. Thus W is the set of those u ∈ Rn such that there
exists a v ∈ Rm such that (u, v) ∈ O and f(u, v) = 0. Note that W is open and a ∈ W
since (a, b) ∈ O and f(a, b) = 0.

Write H(x, y) = (h1(x, y), h2(x, y)) ∈ Rn ⊕ Rm. Thus,

(x, y) = H(F (x, y)) = H(x, f(x, y)) = (h1(x, f(x, y)), h2(x, f(x, y))).

If x ∈ W , then (x, 0) ∈ F (0). Thus, there is a y such that (x, y) ∈ O and f(x, y) = 0.
It follows that h1(x, 0) = x and we may define g : W → Rm by g(x) = h2(x, 0). In this
case, for such x,

G(x) = (x, g(x)) = (h1(x, 0), h2(x, 0)) = H(x, 0) ∈ O
and thus G : W → O and condition (a) of item (iii) holds. Since g is the composition
of continuously differentiable mappings (inclusion, then H, then projection onto the last
m-coordinates), g is continuously differentiable. Moreover, if x ∈ W , then

(x, 0) = F ◦H(x, 0) = F (x, g(x)) = (x, f(x, g(x))).

Thus f(G(x)) = 0 for all x ∈ W and condition (c) in item (iii) holds as does the reverse
inclusion in (b). On the other hand, if (x, y) ∈ O and f(x, y) = 0, then x ∈ W and
thus F (x, g(x)) = (x, 0) = F (x, y). Since F is one-one, it follows that y = g(x). Hence,
condition (b) in item (iii) holds and moreover, g is uniquely determined.

�

Example 16.7. Define f : R2 → R by f(x, y) = x2 + y2− 1. The derivative (gradient) of
f is then,

∇f(x, y) = 2(x y).

In particular, ∇f 6= 0 on the set f(x, y) = 0. If f(a, b) = 0 and b 6= 0, then there is
an open set W containing a (in R), an open set O containing (a, b) and a continuously
differentiable function g : W → R such that g(a) = b and f(x, g(x)) = 0. In fact,
(x, y) ∈ O and f(x, y) = 0 if and only if y = g(x).

Likewise, if a 6= 0, then there is an open set V containing b (in R) and a continuously
differentiable function h : V → R such that h(b) = a and f(h(y), y) = 0.

Of course in this example it is a simple matter to actually solve g and h. 4
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Example 16.8. Consider the lemniscate

f(x, y) = (x2 + y2)2 − 2(x2 − y2) = 0.

(See en.wikipedia.org/wiki/Lemniscate of Bernoulli for a picture.) In polar coordi-
nates it takes the form r2 = 2 cos(2θ), from which it can be seen to look like a (horizontal)
figure eight. The gradient of f is

∇f(x, y) = (4x3 + 4xy2 − 4x, 4y3 + 4x2y + 4y)

which can vanish only for y = 0 in which case x = 0 or x = ±1. Since the points (±1, 0)
are not on the lemniscate, except for the point (0, 0), the Implicit Function Theorem says
that the lemniscate is (locally) the graph of a function (either y = g(x) of x = h(y)).
The theorem is silent on whether this is possible near (0, 0); however from the picture it
is evident that the lemniscate is not the graph of a function in any open set containing
(0, 0). 4

Example 16.9. Let f(x, y) = y − x3. The set f(x, y) = 0 is just the graph of a continu-

ously differentiable function, namely y = x3. It is also the graph of x = y
1
3 which is not

continuously differentiable at 0. Note that ∇f(0, 0) = (0, 1) so that the implicit function
theorem is silent on writing x as a function of y near (0, 0) 4

Example 16.10. The solution set of x2 = y3 is the Neile parabola (see
en.wikipedia.org/wiki/Neile parabola). Let f(x, y) = x2−y3. Then the gradient of f

vanishes at (0, 0). In this case the set f(x, y) = 0 is the graph of a function y = x
2
3 = g(x),

but g(x) is not differentiable at 0. On the other hand, this set is not the graph of a function
x = h(y) near (0, 0). 4

Example 16.11. Define F : R4 → R2 by

F (x, y, u, v) = ((x2 − y2)− (u3 − 3uv2), 2xy − (3u2v − v3)).

Verify that near any point, except for 0, on the set F (x, y, u, v) = 0 it is possible to solve
for either (u, v) = g(x, y) or (x, y) = h(u, v). (Note: using complex numbers, this example
can be written as z2 = w3 and so is the complex version of the Neile parabola). 4

The discussion of the Implicit Function Theorem continues in the following subsection.

16.4. Immersions, Embeddings, and Surfaces∗. As indicated by the ∗ this section
is optional. It contains an informal introduction to surfaces. The main technical tool is
the Implicit Function Theorem.

Suppose T is an m × k matrix. Viewed as a linear mapping, T is one-one if and only
if the columns of T form a linearly independent set (and of course necessarily m ≥ k).
Likewise, T is onto if and only if the columns of T span Rm (and of course necessarily
k ≥ m). In particular, T is onto if and only if T has an m×m invertible submatrix.

Definition 16.12. Let W ⊂ Rn be an open set. An immersion f : W → Rk is a
continuously differentiable function such that Df(x) is one-one at each point x ∈ W .
Note that necessarily k ≥ n. /
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Example 16.13. The map f : R → R2 given by f(t) = (cos(t), sin(t)) is an immersion.
4

Definition 16.14. The immersion f : W → Rk is an embedding if it is one-one and the
inverse of f : W → f(W ) is continuous. /

Example 16.15. Define ψ : (−1, 2π) → R2 as follows. Let ψ(t) = (1, t) for −1 < t ≤ 0;
and ψ(t) = (cos(t), sin(t)) for 0 ≤ t < 2π. Then ψ is a one-one immersion. However, it is
not an embedding, since the inverse is not continuous at (1, 0). 4

Example 16.16. The function g1 : (−π, π)→ R2 defined by g1(t) = (cos(t), sin(t)) is an
embedding; as is g2 : (0, 2π) defined by g2(t) = (cos(t), sin(t)). Thus, the circle x2+y2 = 1
is locally the image of an embedding. 4

If W ⊂ Rn is open and f : W → Rm is continuously differentiable, then the mapping
G : W → Rn+m defined by

G(x) = (x, f(x))

is a embedding. Indeed, in block matrix form,

DG(x) =

 In
−

Df(x)


and hence DG(x) is one-one. Further, the projection mapping π : Rn+m = Rn⊕Rm → Rn

defined by π(x, y) = x is continuous and its restriction to the range of G is the inverse of
G. Hence G has a continuous inverse.

Definition 16.17. An n dimensional surface in Rk is a (non-empty) set S ⊂ Rk such that
for each point s ∈ S there is an open set O containing s in Rk, an open subset W ⊂ Rn,
and an embedding G : W → Rk such that G(W ) = O ∩ S. /

Example 16.18. The discussion preceding the definition shows that the graph of a con-
tinuously differentiable function is a surface.

Example 16.15 shows that the circle x2 + y2 = 1 in R2 is a 1-dimensional surface in
R2. 4

Theorem 16.19. Suppose U ⊂ Rk is an open set, f : U → Rm is continuously differen-
tiable, and S = {z ∈ U : f(z) = 0} is non-empty.

If Df(z) is onto for each z ∈ S, then S is a k −m dimensional surface.

Note that the onto hypotheses implies k ≥ m. Let n = k −m so that k = n+m.

Proof. Let s ∈ S be given. Since Df(s) is onto, by relabeling the variables if needed, it
can be assumed that Df(s)J : Rm → Rm is invertible, where J is define in Equation (27).
By the Implicit Function Theorem (Theorem 16.6), there exists open sets a ∈ W ⊂ Rn

and (a, b) ∈ O ⊂ Rn+m and a (unique) continuously differentiable function g : W → Rm

such that
{z = (x, y) : f(x, y) = 0} ∩O = {(x, g(x)) : x ∈ W}.
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To see that G : W → O given by G(x) = (x, g(x)) is the desired embedding, note that
its inverse (on its range) is given by (x, g(x)) 7→ x and is thus continuous (as it is the
restriction of a coordinate projection to the range of G). �

Example 16.20. The following example shows that the converse of the preceding theorem
is false. Define f : R2 → R by f(x, y) = x2 + y2 − 1, let h = f 2. The curve f(x, y) = 0
is of course the unit circle as is the curve h(x, y) = 0. Thus h(x, y) = 0 defines a surface.
On the other hand,

∇(h) = 4f(x, y)∇(f)

which vanishes at every point on f(x, y) = 0.

For a more subtle example, consider 0 = p(x, y) = y3 + 2x2y − x4. The gradient of
p at (0, 0) is (0, 0). On the other hand, near (0, 0) this curve can also be expressed as
0 = g(x, y) = x2 − y(1 +

√
1 + y) and ∇(g)(0, 0) = (0 1) 6= 0. 4

Example 16.21. Define F : R4 → R2 by

F (x, y, u, v) = (x2 − y2 + u2 − v2 − 1, 2xy + 2uv).

Verify that F (x, y, u, v) = 0 is a 2 dimensional surface (in R4). (Note, this is the complex
sphere z2 + w2 = 1.) 4

16.5. Exercises.

Exercise 16.1. Consider the function f : R2 → R2 defined by

f(x, y) = (xy, x− y).

Compute Df(x, y). Verify that the inverse function theorem applies at the point (1, 1).
What is the conclusion? Find an open set U containing (1, 1) on which f is one-one and
find the inverse of f restricted to U (viewed as a map onto its range). [Hint: Note if
xy = ab and x − y = a − b, then x2 + y2 = a2 + b2 and hence both (x, y) and (a, b) are
points of intersection of the same line and circle.]

Find the image of the set {(x, y) : 1
2
< x < 2, 1

2
< y < 2} under f .

Exercise 16.2. What does the inverse function theorem say about the mapping F : R3 →
R3 defined by

F (ρ, θ, φ) = ρ(sin(θ) sin(φ), sin(θ) sin(φ), cos(φ)).

Fixing ρ = 1 gives a mapping G : R2 → R3 defined by

G(θ, φ) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(φ)).

What is the image of G?

Exercise 16.3. Consider the mapping f : R3 → R defined by

f(x, y, z) = 1− (x2 + y2 + z2).

Show that the set S = {(x, y, z) ∈ R3 : f(x, y, z) = 0} is a surface. Find, for each point
s ∈ S, an open set U ⊂ R2 and an embedding g : U → S onto an open set in S containing
s. The collection (g, U) is a set of local parameterizations.



153

16.6. Problems.

Problem 16.1. In real coordinates, the complex function z 7→ z2 takes the form F :
R2 → R2, F (x, y) = (x2 − y2, 2xy). Prove that if (a, b) 6= (0, 0), then there is an open set
U containing (a, b) such that F (U) is open and F |U : U → F (U) is one-one.

In the case that (a, b) = (1, 0) find such a U and compute the inverse of F : U → F (U).

As above, with (a, b) = (−1, 0).

Problem 16.2. Suppose f = f(x, y, z) : R3 → R is continuously differentiable. Show, if
f(a, b, c) = 0 and ∂f

∂z
(a, b, c) 6= 0, then the relation f(x, y, z) = 0 defines z = g(x, y) near

the point (a, b, c). Show further that, at the point (a, b, c),

∂g

∂x
= −

∂f
∂x
∂f
∂z

.

This is implicit differentiation. Note that the necessary assumption that the denominator
above is not 0 (at (a, b, c)) is sufficient to establish that, at least locally, z is indeed a
function of (x, y) (an issue which is not directly addressed in most calculus texts).

Show yz = log(x+ z)− log(3) defines z as a function of (x, y) near (2, 0, 1) and find ∂z
∂x

at this point.

Problem 16.3. Fix R > r > 0 and define F : R3 → R by

F (x, y, z) = (R2 − r2 + x2 + y2 + z2)2 − 4R2(x2 + y2).

Show the set F (x, y, z) = 0 is a surface - called a torus.

Use
x(u, v) =(R + r cos v) cosu

y(u, v) =(R + r cos v) sinu

z(u, v) =r sin v,

to informally identify a set of local parametrizations (see Exercise 16.3).

Problem 16.4. Note that the point (x, y, u, v, w) = (1, 1, 1, 1,−1) satisfies the system of
equations

u5 − xv2 + y + w =0

v5 − yu2 + x+ w =0

w4 + y5 − x4 − 1 =0

Explain why there exists an open set containing (x, y) = (1, 1) and continuously dif-
ferentiable functions u(x, y), v(x, y) and w(x, y) such that u(1, 1) = 1 = v(1, 1) and
w(1, 1) = −1 and such that (x, y, u, v, w) satisfy the system of equations.

Problem 16.5. Consider the folium of Descartes, described implicitly as

f(x, y) = x3 + y3 − 3axy = 0,

(for a fixed a > 0). Show that the implicit function theorem says that f is locally the
graph of a function for any point (x0, y0) 6= (0, 0) with f(x0, y0) = 0. Hence it is in
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principle possible to solve for x as a function of y or y as a function of x near any point,
except possibly (0, 0), on the curve. A couple of parametric representations can be found
at http://en.wikipedia.org/wiki/Folium_of_Descartes from which it is evident that
near (0, 0) the curve f(x, y) = 0 is not the graph of function.

Problem 16.6. The parabolic folium is described implicitly as

x3 = a(x2 − y2) + bxy

(for a, b > 0). What does the implicit function theorem say?

Problem 16.7. What can be said about solving the system

x2 − y2 + 2u3 + v2 =3

2xy + y2 − u2 + 3v4 =5

for (u, v) in terms of (x, y) near the point (x, y, u, v) = (1, 1, 1, 1)?

http://en.wikipedia.org/wiki/Folium_of_Descartes
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