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Background

Networks of filaments assembled from the protein actin contribute
significantly to cells’ ability to move and change shape. Actin also
makes crucial contributions to a variety of cellular processes, from
wound healing to precise wiring of the neuronal circuitry. Actin net-
works typically exhibit distinct local geometric structure, see Figure
1. The networks contain regions of straight and tightly packed
fibers, for instance, as well as loops of varying sizes.

Figure 1: High resolution live-cell microscopy images of cells’ actin fil-
aments. The cells are of two distinct types. The cell on the left is a
mutant and the cell on the right is a control type. Source: Eric Vitriol

Image Localization

Figure 2: Segmenting an image into patches. The patches have a user
chosen radius, while the image is 2048 pixels × 2048 pixels in size.
The pipeline generates a number patches of this size per image.

Topological Data Analysis

Topological data analysis (TDA) leverages ideas from mathematics to quantify the geom-
etry of data. Persistent homology is one of the most popular TDA methods. Intuitively,
homology in degree n counts the number of n-dimensional holes a space has. Persistent
homology captures information about the size and scale of the holes.

Figure 3: Filtered simplicial complex built on points sampled from patches as in Figure 2 and
its corresponding persistence diagram and landscape.

Pipeline

Our methodology detects localized features using image segmentation, relative persistent
homology, and persistence landscapes. Persistence landscapes are transformations of per-
sistent homology shape summaries to feature vectors.
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Figure 4: Using our classifier we obtain scores for patches
and consequently pixels which we use to mask the original
image with our scores.

Unsupervised segmentation

Figure 5: Using t-SNE clustering, we can also segment the
cells in an unsupervised way.

Classification accuracy

I CK666 vs CK689 - 88%

I Control KO vs PFN1KO - 100%

I Control KD vs Cofinilin KD - 91%

I Control KD vs TB4 KD - 84%

I AP4 vs FP4 - 79%
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