Numerical Analysis
 Project 1:

[Root Finding Methods] The goal is to find the points at which $e^{-x / 5}=\sin (x)$ on the interval $[0,10]$.

1. [Visual Inspection] Use matlab to plot the functions $e^{-x / 5}$ and $\sin (x)$. From this make your first approximations to the points where they are equal.
2. [Bisection Method] Write a short matlab program which will implement the bisection method, given initial intervals $\left[a_{k}, b_{k}\right]$. Use the results from Problem 1 to implement the program, and find the approximations to the points where $f(x)=e^{-x / 5}-\sin (x)=0$. Let the midpoint method run until $f(x)<10^{-7}$. Count the number of steps that the midpoint method takes for each point.
3. [Newton's Method] Write a short matlab program which will implement Newton's method, given an initial starting point, such as $b_{k}-a_{k}$ from above. Let the midpoint method run until $f(x)<10^{-7}$. Count the number of steps that the Newton's method takes for each point. Compare the speed to Newton's method to that of the midpoint method.
4. [Newton's Method Part 2] a) Use Newton's method to compute the solution to $(x-3)^{4} \sin (x)$ using $x_{0}=2$. Note its convergence rate. b) Use the altered Newton's method to compute this and note it's convergence rate.
[Interpolation and Approximation Methods] Compare and Contrast the following Interpolation/Approximation Methods.
5. [Lagrange Interpolation] Interpolate

$$
f(x)=\frac{1}{1+x^{2}}
$$

at evenly spaced points on the interval $[-5,5]$, with Lagrange polynomials of order $n=5,10,20$. Does the approximation get better?
5. [Piecewise Linear Interpolation] Interpolate

$$
f(x)=\frac{1}{1+x^{2}}
$$

at evenly spaced points on the interval $[-5,5]$ using piecewise linear interpolation with the same points as in Problem 4. Does the approximation get better with more points?
6. [Raised Cosine Interpolation] Interpolate

$$
f(x)=\frac{1}{1+x^{2}}
$$

at evenly spaced points on the interval $[-5,5]$ using a raised cosine basis function and the same points as in Problem 4. Does the approximation get better with more points? Does this seem better than the result from Problem 4 and 5 ?
7. [Least Squares Approximation] Approximate

$$
f(x)=\frac{1}{1+x^{2}}
$$

using least squares approximation with polynomials of order $n=5,10,20$ on $[-5,5]$. Does the approximation get better higher order polynomials? Does this seem better than the result from Problem 4,5 , and 6 ?

Numerical Analysis
 Project 1: Bonus 5 pts

1. Square Root Calculator: Write a program which will eventually converge at a quadratic rate and calculate the square root of any number, using only addition, multiplication, and division. Test this program on numbers from 10-10000. Explore options for picking a starting point... perhaps for Newton's method to finish. Give a succinct and detailed report of your explorations. Demonstrate that it converges at a quadratic rate.
2. Altered Newton's Method: Write a program which will alter Newton's method when a multiple zero is involved. Use the examples of $(x-4)^{2} \sin (x)$ and $(x-4)^{3} \sin (x)$ as test cases. The algorithm should be able to identify the level of the zero ($\mathrm{p}=2$ or 3 in the previous examples), and alter its approach for a quadratic convergence rate. Demonstrate that it converges quadratically in both cases.
