Numerical Analysis
 Project 2:

Fall 2017

[Numerical Integration] Find $\int_{0}^{6} f(x) d x$ with the function $f(x)=2 x /\left(1+x^{2}\right)$ using the following methods. Please analyze the convergence as $h \rightarrow 0$ for $h=.1, .01, .001$ until you have a viable answer. Write matlab codes which will allow you to change the stepsize. Show graphs of your numerical outputs for comparison.

1. [Riemann Sums] The old standard.
2. [Trapezoid Rule] The next best thing.
3. [Simpson's Rule] Does this rule do a better job on either of the functions....? We hope so.. report the actual results.
4. [Comparison] Plot the results on one common graph and compare them.
[Numerical Differentiation] Use the function $\ln \left(1+x^{2}\right)$ as a test case to explore the following three possible differentiation techniques on $[0,6]$. Use the values of $h=.1, .01$. Remember that the methods require special exceptions on the endpoints.
5. [Backwards, Forwards, and Symmetric] Compute the first two, and use them to get the third. Plot them on common graphs for comparison. Analyze the results.
[Numerical ODE Solving Routines] Consider the following initial value ODE problems: 1) $y^{\prime}=3 y, y(0)=1$, on $[0,3]$, and 2) $y^{\prime}=1 /\left(1+x^{2}\right)-2 y^{2}$, with $y(0)=0$, which has the solution $y(x)=x /\left(1+x^{2}\right)$, on $[0,10]$. Utilize the following methods, for various step sizes $h=.1, .01, .001$. Use the maximum error as the test of accuracy.
6. [Euler's Method] As simple as it gets.
7. [Midpoint Method] A little bit more adventurous.
8. [Trapezoid Method] Depending on the problem, either solve to get an implicit method, or use iteration to approximate.
9. [Comparison] Compare the methods. Which seems best?
[Bonus] (a) Convert the second order differential equation, $y^{\prime \prime}+25 y=0, y(0)=0, y^{\prime}(0)=1$, into a first order system, (b) Solve the system with the three methods in 6-9 above, and (c) Compare the results for $h=.1, .01$, and.001.
