Project 2: The Discrete Fourier transform and convolution

1. Symmetric Difference: The symmetric difference approximation for a derivative is given by

,f(xn) ~ f(xn+1)2;xf(xn*1) )

As in Problem 2, construct the toeplitz matrix for this approximate derivative, and compute
it in three ways: a) By matrix multiplication, b) By the discrete convolution theorem, and
¢) by the discrete correlation theorem. All three of these computations should be identical to
machine accuracy, or approximately 10715,

2. Formal or Exact Derivatives: Write a self-contained program which computes the formal
or exact derivative of a function, as defined in (3.4.2). Be careful to make sure that your
multipliers ¢k match up correctly with the proper frequency coefficients. Test this on a few
functions such as sin(kt) to assure accuracy. Once again, this should be exact to machine
precision.

3. Use matlab to add noise to sin(kt) for some k > 1. ( the command is >> fnoisy = sin(k*t)+
c*randn(size(t)); for some level of ¢ which you can adjust, perhaps starting with ¢ = .05). 1)
Try take the derivative of this noisy function, using both of the above derivative algorithms
above. Which works best? 2) Try to use Averaging, Narrowband Filtering, or Nonlinear
Filtering to reduce the noise before taking the derivative. Which works best?

4. Take the derivative of the function
f = [zeros(1,256), ones(1, 256), zeros(1, 128), 2x ones(1, 256), zeros(1, 128)],
with both the approximate and exact derivatives. Are these what you expected?

5. Noise Reduction Create a test function which has zeros on 1024 points, except for a simple
sinusoid with 3 cycles which is 32 data points long in the middle, (i.e. sin([0: 63]/64%2xpi*3).
1) Add noise at different levels to this test function, and use the matched filter to detect the
sinusoid. At what noise levels does this seem possible? 2) Increase the length of the sinusoid
to 64 data points with 6 cycles. Now use the matched filter with various noise levels as before.
Is this function easier to find? Can you guess why?

6. Cosine Transform Write a self-contained program which will take a signal and compute its
Cosine transform, utilizing the methods described above. Write a program decide how many
significant coefficients are necessary for a given input tolerance ( .01, or .001 for instance ).
Use (3.4.3) to determine the error. Make sure that the fft is only returning real coefficients,
with the exception of small machine level errors.

7. Sine Transform Write a self-contained program which will take a signal and compute its
Sine transform, utilizing the methods above. Once again, write another program to decide
how many coefficients are necessary for a given input tolerance using (3.4.3) as the measure of
€error.

8. Compare the Sine and Cosine transforms above on a number of examples, such as ¢, and ¢.2.
First see if they give the same results as in the example above. Then test them on various
other examples. Examine the final transformations to see how many coeflicients are significant
at different error levels.



9. Develop a fast algorithm for evaluating the FFT on 6 points, or decomposing Fg. Utilize
some of the techniques used in the examples of F; and Fg in the book. The straight forward
calculation takes 36 operations. How many can you reduce this to?

10. [Bonus Project:] Using the iterative methods of Chapter 3, write an FFT code for 64 points.



