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ABSTRACT

In Part 1 we derived an asymptotic singular value decomposition (SVD) for signal transmission through absorbing
media under rather broad assumptions. We showed that under basic assumptions the singular vectors asymptotically
approach the Legendre polynomials. We also showed that the dominant singular vector behaves very much like a
Brillouin precursor, in that its decay would be at the rate O(z−1/2β) if the absorption behaves like O(ωβ) as ω → 0.
This is in direct contrast to the expected exponential absorption of signals in an absorbing media, O(e−kz). We
were also able to derive the decay rates of the subdominant singular vectors or values, which were once again
not exponential. Thus it followed that no causal signals decay exponentially in this broad class of media. These
asymptotic results do not answer the question of how fast the convergence, or the decay rates agree with the
predictions. These questions are addressed in Part 2.

In Part 2 we used discrete approximations to the continuous operators introduced in Part 1, following in the
spirit of Slepian and Pollack.6 These discrete approximations support the conclusions of Part 1 very closely. We
utilize two different models for the dielectric material and show that in each case the results of previous Theorems
are shown to come true. We show that the singular values decay in a precursor like manner, as predicted in Part 1.
We also show that the singular vectors converge to the Legendre polynomials, as predicted in Part 1.

In Part 3 we will begin to describe the optimal way to use the results of Parts 1 and 2 to construct a viable
radar system. This is the signal processing design of the system. There are a number of factors in this transition.
We want to 1) maximize the signal to noise ratio of the system while 2) minimizing the demands and cost of the
hardware used in the system. We also want to allow the system to 3) self-adapt to the changing dielectric factors of
the medium, whether it be foliage or some other medium.

1. Introduction

Precursors were first explained in 1914 by Sommerfeld and Brillouin1,2 where they examined the transmission of
a square-windowed sinusoid through an absorbing and dispersive media. The most stunning result of this analysis
was that the Brillouin precursor decays at a rate of O(z−1/2), as opposed the to normal exponential attenuation
O(e−kz). Exponential attenuation is expected from the solution of the most basic of differential equation which
models absorption, y′ = −ky.

Brillouin concluded originally, due to incorrect asymptotics, that these pulses would not be useful. In his 1960
book, however, he restated that “The subject was a fascinating one, but it had, at the time, only academic importance.
Experimental verifications were discovered much later, in connection with reflections of radio signals from Heaviside
layers, and also for problems of radar systems.”3 The English translations of both papers1,2 can be found in Brillouin’s
text.3

We examine this transmission operator in Part 1 as a compact operator and from this analysis the generated
structure is very informative. The inputs and outputs to the operator are separated into orthogonal subspaces, with
the power passing through each subspace clearly described by the singular vectors and values. We have shown in Part
1 that Brillouin precursors, or pulses remarkably similar to Brillouin precursors, are the dominant singular vectors
associated with transmission through media such as foliage or water using basic techniques of operator theory and
linear algebra.
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In addition, we showed in Part 1 that there are an infinite number of “precursors”, in the sense that there are
an infinite number of orthogonal functions which are not exponentially attenuated. These “precursors” are the
singular functions of the compact operator associated with the transmission of a short pulse through a dispersive and
absorptive media. These singular functions are shown to asymptotically converge to the Legendre polynomials. The
result of this asymptotic singular value decomposition is that no causal function will decay exponentially through
the standard physical models which we consider.

We will now restate this result as the major theorem of Part 1.

Theorem 1. [The Singular Value Decomposition for Absorbing Media] Let Lz be the compact operator associated
with transmitting a short pulse through a uniform dispersive and absorbing medium of length z. Then for each
distance z the operator Lz will have a singular value decomposition

Lz(f) =

∞
∑

k=0

σz
k〈f, ψz

k〉φz
k.

If the absorption coefficient α(w) = O(wβ) in a neighborhood about the origin, then σz
k = O(z−(2k+1)/2β). Moreover,

‖ψz
k(t) − Pk(t)‖2 → 0, where the Pk(t) are the Legendre polynomials on the interval [0, l].

In this paper we will numerically verify the contents of Theorem 1.

1.1. Overview

In Section 2 we will review the historical origins of the approach which we will take. Section 3 will give our first major
theorem, showing that the operator norm of a function transmitted through an absorbing media is not exponentially
absorbed. Section 4 demonstrates that a wide class of functions will exhibit precursor behavior. Section 5 shows
only one subspace, or singular vector, will decay at the optimal rate in a medium. This dominant singular vector
correspond to the Brillouin precursor. In addition we show that the subdominant singular vectors decay at a rate
which is slower than the expected exponential attenuation, and is much closer to the decay rate of the Brillouin
precursor. Section 6 discusses the differences between Brillouin’s work, which focused on the amplitude of the
precursor, and this work, which focuses on the energy of the precursor.

2. Background material and notation

2.1. Brillouin and Sommerfeld’s Analysis

Brillouin and Sommerfeld worked together in 1913, concerned about the concepts of group velocity and causality. In
this situation causality means that no transmitted signal exceeds the speed of light. It had been observed that when
group velocity was used to determine the speed of a pulse, some pulses traveled at a speed which exceeded the speed
of light. Sommerfeld was interested in understanding this phenomenon and suggested the problem to Brillouin.

Sommerfeld showed that the first precursor, called the forerunner in these papers, traveled at the vacuum speed
of light but was absolutely causal, in that it did not exceed the speed of light.1 The problem with causality was the
definition of group velocity.

Brillouin observed that there was another function whose group velocity traveled at a speed which was above
that of the expected speed of light in the medium. This Brillouin precursor followed the Sommerfeld precursor, both
in understanding and time. This precursor, or forerunner, came after the Sommerfeld precursor. This precursor was
also not exponentially attenuated.

Recent interest in these pulses has centered around this non-exponential attenuation property. This property
diverges from all of the easy standards of mathematics and physics and therefore needs understanding. Brillouin’s
paper states in its conclusion that the second forerunner or precursor, which is now referred to as the Brillouin
precursor,2 is attenuated at a rate of

1√
z

exp

(

−2

3
ρ
δ′

c
z

)

.

At first examination one wonders why this is surprising, given that this is exponential attenuation. Further examina-
tion of the paper reveals that δ′ is a moving space-time coordinate, which is 0 at exactly the point of the maximum
of the Brillouin precursor. Thus there is one space-time coordinate where there is no exponential attenuation.
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We will now present a numerical approach which follows the results of Part 1. We will show that this is not an
anomaly, but in fact no causal function will be attenuated exponentially in this broad class of models.

2.2. Slepian and Pollack’s approach

We begin in the spirit of Slepian and Pollack.6 They studied the question “How much energy can a finite-time signal
put through a finite-frequency window?” from the viewpoint of communications.

Convolution operators which describe the evolution of a pulse r(t, z) through a homogeneous linear medium have
a very simple form. Given an initial plane wave signal which is incident on a homogeneous medium, s(t), the pulse
at time t, and distance z is appropriately modeled by

r(t, z) =

∫

s(τ )Az(t − τ )dτ = Lz(s(t)). (1)

Unless otherwise noted, all integrals are over the real line.

Convolution operators L of the type (1) have been heavily studied and are well understood. The Fourier transform
diagonalizes the operator and the spectrum of the operator is the continuous Fourier transform of Az , for any fixed
distance z. A monochromatic signal s(t) transmitted at a frequency wk, will be exponentially absorbed according
the real part of the Fourier transform Âz(wk). Dispersion is described by the complex portion of Âz(wk). Appro-
priate physics generally dictates that the absorption and dispersion are heavily tied to each other. If the signal is
monochromatic, or consisting of just one frequency, the real part of Âz(wk) will give its absorption and the complex
part of Âz(wk) will give its space-time-displacement or dispersion from the normal signal velocity. When the signal
is not monochromatic, then the resulting signal r(t, z) ≡ rz(t) has a Fourier transform which is the product of Â,
and ŝ, i.e. r̂z(w) = Âz(w)ŝ(w).

In Brillouin’s words a “physicist is interested in the results ( of standard single frequency analysis ), but he
immediately asks some indiscreet questions about waves in a dispersive medium, where the velocity of propagation
is not a constant, but strongly depends upon the frequency. The well known differential equation ( y’ = -ky ) is
no longer satisfied and must be replaced by a more complicated systems of equations, which include the model, the
physical mechanism,..”3 etc. This distinction between a simple narrow-band formulation where the dispersion and
absorption are constant, and a wide-band understanding is the key to understanding this phenomenon.

Slepian and Pollack utilized the finite length of signals to alter an operator of the type (1). This alteration
creates a compact operator, with a corresponding discrete set of singular values and singular vectors as opposed to
the continuous spectrum of Lz. The setting of the compact operator allows one to shift the concentration of study
from amplitude of signals to the energy of signals. Following this development we will consider pulses of finite length
l, which by assumption will be non-zero only on the interval [0, l]. The corresponding new operators Lz describe a
finite pulse on [0, l] evolving through a distance z of a medium. Formally we have

r(t, z) =

∫

∞

−∞

s(τ )Az(τ − t)dτ ≡
∫

∞

∞

s(τ )Xl(τ )Az(t− τ )dτ = Lz(s(t)), (2)

where Xl(τ ) = 1 for τ ∈ [0, l], and is 0 otherwise. Thus our old kernel was Az(t) and our new kernel is Kz(t, τ ) =
Xl(τ )Az(t− τ ). Note that if Az(t) is square integrable, then Kz(t, τ ) will be square integrable in both variables. A
basic result of functional analysis states that when a kernel of the type Kz(t, τ ) is square integrable in both variables,
the corresponding operator Lz is a compact operator. This is stated clearly in

Theorem 2 (The Hilbert-Schmidt Theorem:9). Let an operator L be defined by

L(f)(t) =

∫

f(τ )G(t, τ )dτ (3)

and let ‖G(t, τ )‖2 < ∞. Then L is a compact operator, and it follows that there exist singular vectors and singular
values {uk}, {vk}, and {σk} such that

L(f)(t) =

∫

f(τ )G(t, τ )dτ =

∞
∑

k=0

σk〈f, uk〉vk. (4)
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The values σk are called the singular values and the vectors {uk} and {vk} are correspondingly called the left and right
singular vectors. In addition, we have σkvk = L(uk), or that vk is the image of uk, with magnitude σk. Moreover,
the energy of the singular values is exactly that of the kernel, or

∫ ∫

|G(t, τ )|2dtdτ =
∞
∑

k=0

σ2
k. (5)

At this time, let us adopt some notation. We are dealing with a class of compact operators which deal with
signals on [0, l], and are indexed by the propagation distance z, so we refer to the kernels of these operators as Kz.
Similarly we will refer to the corresponding singular values σz

k, where k is the index, and likewise the left singular
vectors uz

k(t) ∈ L2[0, l], and right singular vectors vz
k(t) ∈ L2(R). Thus k runs from 0 to ∞, and the necessarily

positive singular values decrease by convention. Thus the dominant left and right singular vectors are always uz
0,

and vz
0 . We will also refer to the transmission operator, without regard to the finite pulse length as Lz.

3. Signal or Pulse Processing

We will now explain how one can utilize these individual signals to create a joint resolution which is far from that
expected of the individual signals. This allows one to equalize the signal to noise ratio along the spectrum. This will
allow one to increase the resolution of the system beyond that which is expected from the dielectrics of the medium.

We begin with a basic theorem of Fourier Analysis.

Theorem 3. Let {ok(t)}k be any orthonormal basis for L2[a, b], and let {ôk(w)}k be the respective Fourier transforms
in L2(R). The quantity

∑

k

|ôk(w)|2 (6)

will be independent of w. Moreover we have a partition of unity, in the sense that

2π

b− a

∑

k

|ôk(w)|2 = 1.

Thus the Legendre polynomials which we have shown to be the singular values of the medium saturate the
bandwidth completely. We are thus utilizing the entire bandwidth, and can separate it and manipulate it as we
please.

We will also be utilizing the expansion above (4). We will be transmitting but not all of the singular functions
{uk} with our system. Thus let us look at a truncated expansion of the singular operator. This is represented by

LN (f)(t) =
N

∑

k=0

σk〈f, uk〉vk. (7)

Equation (7) recognizes that we will not be able to transmit an infinite number of the singular functions, but rather
the select few, i.e. the ones which carry the most energy.

The question now is ”What are we trying to accomplish?” That is simple. We want a well defined pulse response
function through the medium in from of us. Thus we would like to have

LN (f(t)) = pr(t).

That is not generally possible since we can only use a finite number of functions. Rather we will have to find the best
possible approximation to the point response function, which is given by transmitting the pseudo inverse of pr(t),
which is given by

L∗

N (pr(t)) = UNΣ−1V t
N (pr(t)).
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Figure 1: We illustrate the use of multiple precursors to sharpen the pulse response function of the system above.
The blue curve is the point response function of a point target through an absorbing media ( water in this case ).
The two other curves are the idealized point response function, and the point response function which is achieved by
the use of an appropriate pseudoinverse.

We can rewrite this in operator notation as

L∗

N (pr(t)) =
N

∑

k=0

σ−1
k 〈vk(t), pr(t)〉uk(t). (8)

The obvious problem with (8) is that σ−1
k might be very large, since by necessity limk→∞ σk = 0. We will avoid this

problem by taking multiple samples of the image of uk(t) or σkvk(t). This will allow us to equalize the signal to
noise ratio and get a stable inverse.

One example of a pseudo inverse is demonstrated above. There are many possible versions of pseudo inverses,
which will allow the sharpening of the point spread function. The final choice of which one should be used depends
on the specific application.

In Figure 1 we illustrate how one can increase the resolution of the system substantially. The blue curve is
the impulse response function of the system, which is equivalent to the first Brillouin precursor. The other curves
represent the idolized inverse, or sharpened point spread function, and an approximate point spread function. The
ability to exceed the temporal resolution of the simple Brillouin precursor is the basis and result of this research.
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