1. Let the non-negative integrable function \(f : [a, b] \to \mathbb{R} \) satisfy \(\int_a^b f = 0 \). Prove that if \(\varepsilon > 0 \) then there exists a positive-length closed interval \(I \subseteq [a, b] \) on which the supremum of \(f \) is strictly less than \(\varepsilon \).

2. Let the non-negative integrable function \(f : [a, b] \to \mathbb{R} \) satisfy \(\int_a^b f = 0 \). Prove that the zero-set \(\{ x : f(x) = 0 \} \) of \(f \) is dense in \([a, b] \) by a ‘nested-intervals’ argument using a sequence \(\varepsilon_n \downarrow 0 \).