1. Let $U = \mathbb{C} \setminus [-i, i]$ be the complex plane less the closed interval joining $-i$ to i. When γ is a closed contour in U prove that
$$\int_{\gamma} \frac{d\zeta}{\zeta^2 + 1} = 0.$$

2. Let $V = \mathbb{C} \setminus ((-i\infty, -i] \cup [i, i\infty))$ be the complex plane less the closed rays from $-i$ to $-i\infty$ and from i to $i\infty$ along the imaginary axis. When γ is a closed contour in V prove that
$$\int_{\gamma} \frac{d\zeta}{\zeta^2 + 1} = 0.$$

3. Let f be holomorphic in \mathbb{D} and there satisfy the inequality $|f(z)| \leq 1 - |z|$. Use the Cauchy integral formula to prove that f is identically zero.

4. Let γ be a closed contour in \mathbb{C} that avoids the point a. Prove that
$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{\zeta - a} d\zeta \in \mathbb{Z}.$$

Suggestion: Let γ be parametrized over $[0, 1]$ and consider the integral from 0 to t as a function of t.

1