1. Let S be a finite set and $M = \mathcal{P}(S)$ its power set. Define $d(A, B) = |A \Delta B|$ when $A, B \in M$. Prove that d is a metric on M. *Suggestion:* First prove that $A \Delta B \subseteq (A \Delta C) \cup (C \Delta B)$.

2. Let d_0 be a metric on the set M. Prove that $d = d_0/(1 + d_0)$ is a metric on M. *Suggestion:* First inspect the function from $[0, \infty)$ to $[0, 1)$ given by the rule $t \mapsto t/(1 + t)$.

3. Let d be derived from d_0 as above. Prove that the metric spaces (M, d) and (M, d_0) have precisely the same open sets. *Suggestion:* First relate their open balls.

4. Let (M, d) be a bounded metric space and S a set. Decide (carefully, of course) whether D defined by the rule

$$D(f, g) = \sup\{d(f(s), g(s)) : s \in S\}$$

is a metric on the set $\text{Map}(S, M)$ comprising all functions from S to M.