1. Let $F \subseteq C([0, 1])$ be a collection of functions, each of which is differentiable and has $|\text{derivative}|$ bounded by one and the same K. Prove that F is equicontinuous.

2. Let X be a compact metric space and $F \subseteq C(X)$ an equicontinuous family of functions. Prove that if F is pointwise bounded then F is uniformly bounded.

3. Let a be a point of the bounded interval I. Let $(f_n)_{n=0}^\infty$ be a sequence of continuously differentiable functions $I \to \mathbb{R}$ such that (i) the sequence $(f_n(a))_{n=0}^\infty$ is convergent and (ii) the sequence $(f'_n)_{n=0}^\infty$ converges uniformly on I to a function g. Prove that $(f_n)_{n=0}^\infty$ converges uniformly on I to a function f such that $f' = g$.

[Notice that if $t \in I$ then (why?) $f_n(t) = f_n(a) + \int_a^t f'_n$]