1. Let \(X \) and \(Y \) be metric spaces; make \(X \times Y \) into a metric space ‘as usual’. Prove that \(X \times Y \) is sequentially compact precisely when \(X \) and \(Y \) are sequentially compact.

2. (i) Prove that if \((a_n)_{n=0}^{\infty} \) is a Cauchy sequence with a convergent subsequence, then \((a_n)_{n=0}^{\infty} \) converges.

 (ii) Prove that each compact metric space is complete.

3. Prove that:

 (i) each complete subspace of any metric space is closed;

 (ii) each closed subset of any complete metric space is complete.