1. Let (X, d) be a metric space. Prove that the function $d : X \times X \to \mathbb{R}$ is continuous when $X \times X$ is given the ‘max’ metric. [Argue from the ‘ε, δ’ definition of continuity.]

2. Let the metric space X be compact and $f : X \to X$ continuous. Assume that f ‘almost’ has a fixed point, in the sense

$$(\forall \varepsilon > 0)(\exists x \in X) d(x, f(x)) < \varepsilon.$$

Prove that f actually has a fixed point. Do this in two ways:
(i) argue sequentially, taking ε to be $1/n$ for each positive integer n in turn;
(ii) compose $F : X \to X \times X : x \mapsto (x, f(x))$ and $d : X \times X \to \mathbb{R}$.

1