Population models

Throughout, \(r \) is a positive constant and only \(N \geq 0 \) need be entertained.

\#1-\#4: find equilibrium solutions, determine the ranges over which solutions are increasing/decreasing, and sketch the graphs of representative solutions.

\#5-\#6: In these simple ‘harvesting’ models, can the population be driven to extinction?

1. \(\frac{dN}{dt} = -rN(1 - \frac{N}{K}) \) with \(K > 0 \).
2. \(\frac{dN}{dt} = rN(1 - \frac{N}{K})^2 \) with \(K > 0 \).
3. \(\frac{dN}{dt} = -rN(1 - \frac{N}{K})^2 \) with \(K > 0 \).
4. \(\frac{dN}{dt} = r(N - k)(1 - \frac{N}{K}) \) with \(K > k > 0 \).
5. \(\frac{dN}{dt} = rN - hN \) with \(h > 0 \).
6. \(\frac{dN}{dt} = rN - h \) with \(h > 0 \).