Differential Equations
Test 2 sample

Answer FOUR questions; show all work neatly and clearly.

1. Consider a population that is governed by the logistic equation:

\[\frac{dN}{dt} = rN \left(1 - \frac{N}{K} \right). \]

(i) Determine the ranges of \(N \) over which the solutions are increasing/decreasing.
(ii) Determine the ranges of \(N \) over which the solutions are concave up/concave down.

2. A population has size \(N \) at time \(t \) and evolves according to the differential equation

\[\frac{dN}{dt} = r(N - k) \left(1 - \frac{N}{K} \right)^2 \]

where \(r > 0 \) and \(K > k > 0 \) are constants. (i) Find the equilibrium solutions.
(ii) Determine the ranges of \(N \) over which solutions are increasing/decreasing.
(iii) Sketch the graphs of representative solutions.

3. An exponentially growing population is harvested, so that

\[\frac{dN}{dt} = rN - h \]

where \(r > 0 \) and \(h > 0 \) are constants. Solve this DE to obtain \(N \) as a function of \(t \). Show that if the initial population size \(N_0 \) is strictly less than \(h/r \) then the population becomes extinct in a finite time \(T \), which should be found.

4. A bullet of mass \(m \) is fired horizontally with initial speed \(v_0 \) in a channel filled with a medium that offers a resistive force equal to \(k \) times its speed. How far does the bullet travel before coming to rest? How long does this journey take?

5. A spherical raindrop loses mass by evaporation as it falls from rest under gravity alone. The rate at which it loses volume is equal to \(k \) times its area. Its initial radius is \(r_0 \); its initial height above ground is \(h_0 \). Decide whether the raindrop completely evaporates before it can reach the ground.