Intermediate Differential Equations
Test 3 sample

Answer FOUR questions and show all work.

1. (i) Write down the Bessel equation of order \(\nu \).
(ii) State a version of the Sturm comparison theorem.

2. Let \(y \) be a solution of the Airy equation \(y'' + xy = 0 \) and let \(\omega > 0 \). Show that each interval of length \(\pi / \omega \) in the interval \((\omega^2, \infty) \) contains a zero of \(y \).

3. Let \(y \) satisfy the Bessel equation of order \(\nu \). Show that the function \(z \) defined by \(z(x) = x^{-\nu} y(x) \) satisfies the (simpler) differential equation
\[
xyz'' + (2\nu + 1)z' + xz = 0.
\]

4. The modified Bessel functions are defined by
\[
I_\nu(x) = \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2} x\right)^{2n+\nu}}{n! (n+\nu)!}
\]
for each integer \(\nu \geq 0 \). Establish one of the following two identities
(i) \(\frac{d}{dx}\{x^\nu I_\nu(x)\} = x^\nu I_{\nu-1}(x) \)
(ii) \(\frac{d}{dx}\{x^{-\nu} I_\nu(x)\} = x^{-\nu} I_{\nu+1}(x) \)
and use both to deduce the identity
(iii) \(I_{\nu-1}(x) - I_{\nu+1}(x) = \frac{2\nu}{x} I_\nu(x) \).

5. Seek a solution of the (cylindrical polar) Laplace equation
\[
\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2} = 0
\]
in the form \(u(r, \theta, z) = R(r)\Theta(\theta)Z(z) \) as follows. (i) Show that \(Z \) satisfies \(Z'' = \lambda Z \) for some constant \(\lambda \). Take this constant to be negative: say \(\lambda = -\omega^2 \).
(ii) Derive corresponding differential equations satisfied by \(\Theta \) and \(R \); also, express the \(R \) equation in terms of the new variable \(u = rw \).