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1. Introduction

In computational settings persistent homology produces a persistence module that is isomorphic to a finite direct sum 
of interval modules. The barcode and persistence diagram summarize this collection of intervals [13,16]. Distances between 
these summaries include the barcode metric based on the dissimilarity distance between intervals [15,16] and the bottleneck 
and Wasserstein distances for persistence diagrams based on the supremum-norm distance in the plane [13,14]. More 
generally, given a poset P and a collection S of indecomposable persistence modules on P , one may consider persistence 
modules on P that are isomorphic to finite direct sums of elements of S . Examples include two-parameter persistence 
modules isomorphic to a finite direct sum of block modules [7,12] and multi-parameter persistence modules isomorphic to 
a finite direct sum of rectangle modules [5].

We study distances in a setting that includes all of these examples. We start with a metric pair (X, d, A) (Definition 3.1). 
For persistence diagrams, the relevant metric pair is (R2

�, d, �) or (R
2
�, d, �), where d is the metric obtained from one 

of the q-norms on R2 (Example 3.2), and for barcodes it is (Int(R), d, ∅), where Int(R) denotes the set of intervals in R
and d is either the length of the symmetric difference or the Hausdorff distance (Example 3.4). Given such a metric pair, 
we construct a free commutative monoid (D(X, A), +, 0) of persistence diagrams on (X, A) (Definition 2.2) together with a 
family of Wasserstein distances W p for all p ∈ [1, ∞] (Definition 4.12). For persistence diagrams and barcodes we recover the 
metrics mentioned above (Example 4.15).

We introduce the notion of p-subadditive commutative metric monoids, an algebraic and metric object for discussing the 
above constructions. These are metric spaces which are also monoids and for which the metric is p-subadditive (Defini-
tion 4.1). We prove the following. For details see Definition 4.23.
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Proposition 1.1 (Functorial construction of persistence diagrams with Wasserstein distance). Given a metric pair (X, d, A), 
(D(X, A), W p, +, 0) is a p-subadditive commutative metric monoid and the canonical inclusion i : (X, d, A) → (D(X, A), W p, 0) is 
1-Lipschitz. Furthermore, this construction is functorial.

Our main result is the following. For details see Theorem 4.25.

Theorem 1.2 (Persistence diagrams with the Wasserstein distance as an adjoint). The forgetful functor from p-subadditive commuta-
tive metric monoids to metric pairs has a left adjoint given by the functor in Proposition 1.1.

An equivalent statement of this result is that persistence diagrams with the Wasserstein distance are universal as follows.

Theorem 1.3 (Universality of persistence diagrams with the Wasserstein distance). Given a metric pair (X, d, A), (D(X, A), W p, +, 0)

is the universal p-subadditive commutative metric monoid obtained from (X, d, A). That is, given any p-subadditive commutative 
metric monoid (N, ρ, +, 0) and 1-Lipschitz map ϕ : (X, d, A) → (N, ρ, 0), there is a unique 1-Lipschitz monoid homomorphism 
ϕ̃ : (D(X, A), W p, +, 0) → (N, ρ, +, 0) such that ϕ̃i = ϕ .

(X,d, A) (D(X, A), W p,0)

(N,ρ,0)

i

ϕ

(D(X, A), W p,+,0)

(N,ρ,+,0)

∃!ϕ̃
(X,d, A) (D(X, A), W p,0)

(N,ρ,0)

i

ϕ
ϕ̃

From this it follows that the p-Wasserstein distance is the largest p-subadditive distance for persistence diagrams. For 
details see Theorem 5.1 and Definition 3.12.

Corollary 1.4 (Wasserstein distance as largest subadditive distance). Given a metric pair (X, d, A), the p-Wasserstein distance W p is 
the largest p-subadditive metric on D(X, A) compatible with d.

The following related result is of independent interest. For details see Theorem 4.11.

Theorem 1.5 (Symmetric monoidal structures for pointed metric spaces). For each p ∈ [1, ∞] there is a symmetric monoidal category 
Metp∗ (Definitions 3.10 and 4.5 and Corollary 4.10) for which the category of commutative monoids internal to Metp∗ is the category of 
p-subadditive commutative metric monoids.

As a corollary to these results we obtain Converse Stability Theorems (Section 5.2). When p = 1, the Wasserstein distance 
satisfies Kantorovich-Rubinstein duality (Section 5.3).

1.1. Related work

Various metrics in applied topology have been shown to be universal in the sense that they are maximal stable dis-
tances. These include the matching distance [17], the interleaving and bottleneck distance [19], the homology interleaving 
distance [6], and the Reeb graph edit distance [8]. In contrast, we show that the Wasserstein distances are universal in the 
sense of category-theory (Theorem 1.3).

A version of our Corollary 1.4 appears in [10]. Their version does not assume that the sum is finite but does restrict to 
the special case that the set X is a set of objects in a Grothendieck category with local endomorphism rings and that the 
set A consists of the zero object. Also, they do not show that their result follows from a functorial construction.

The Wasserstein distances between persistence diagrams has been studied extensively by Divol and Lacombe [18]. There 
they relate the Wasserstein distance between persistence diagrams to the classical Wasserstein distance on probability 
measures. Among other things, this allows for a version of Kantorovich-Rubinstein duality to be recovered for persistence 
diagrams.

Note that all of the persistence diagrams defined in the present paper are finite by definition. Extensions of the ideas 
presented here to countable persistence diagrams, such as those in [14] and [4], and signed persistence diagrams, as well 
as to the setting of Radon measures, can be found in the sequel [3].

Skraba and Turner [22] have shown that the Wasserstein distance for persistence diagrams of weighted cell complexes 
is stable.
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2. Background

2.1. Metric spaces

In order to include various distances arising in persistent homology, we will use a less restrictive notion of metric space 
than is standard. Such relaxed metrics are referred to as extended pseudometrics in the literature, but we will refer to them 
as metrics for brevity.

Definition 2.1. A metric space is a tuple (X, d) where X is a set and d : X × X → [0, ∞] is a function satisfying d(x, x) = 0 for 
all x ∈ X (point triviality), d(x, y) = d(y, x) for all x, y ∈ X (symmetry), and d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X (tri-
angle inequality). Given metric spaces (X, dX ) and (Y , dY ), a metric map is a function f : X → Y such that dY ( f (x), f (y)) �
dX (x, y) for all x, y ∈ X . Given a set X , a metric space (Y , d), and a function g : X → Y , the pullback of d along g , denoted 
g∗d, is the metric on X defined by g∗d(x, x′) := d(g(x), g(x′)).

2.2. Monoids

A commutative monoid M = (M, +, 0) is a set M together with an associative commutative binary operation + : M × M →
M for which there exists an element 0 ∈ M satisfying m + 0 = m for all m ∈ M , called the identity element. A monoid 
homomorphism between commutative monoids M = (M, +M , 0M) and N = (N, +N , 0N ) is a map f : M → N such that 
f (a +M b) = f (a) +N f (b) for all a, b ∈ M and f (0M) = 0N . A subset P ⊂ M is a submonoid if it contains 0 and + re-
stricts to a binary operation on P .

Given a set X , the free commutative monoid on X , denoted D(X), is the set of all (finite) formal sums of elements of X , 
with the monoid operations being given by addition of formal sums. That is, D(X) is the set of all functions f : X →N ∪{0}
with finite support and with the monoid operation given by the pointwise addition of functions. Formal sums are also called 
finite multisets. For x ∈ X , let 1x : X → N ∪ {0} be given by 1x(x) = 1 and 1x(y) = 0 for all other y ∈ X . As is customary, 
we denote 1x by x. With this convention, we may write any formal sum α ∈ D(X) as α = x1 + · · · + xn , where n � 0 and 
x1, . . . , xn ∈ X . We define the canonical inclusion i : X → D(X) by i(x) = x.

An equivalence relation ∼ on a commutative monoid M is called a congruence if a ∼ b and c ∼ d implies a + c ∼ b + d. If 
∼ is a congruence then there is a well-defined commutative monoid structure on the set of equivalence classes M/ ∼ given 
by [a] + [b] := [a + b]. Let M be a commutative monoid and P ⊆ M any submonoid. Define a relation ∼ on M by

a ∼ b ⇐⇒ ∃x, y ∈ P such that a + x = b + y.

Then ∼ is a congruence and we denote the commutative monoid M/ ∼ by M/P and refer to it as the quotient of M by P .
A set pair is a pair (X, A) where X is a set and A is a nonempty subset of X . A map of pairs f : (X, A) → (Y , B) is a 

function f : X → Y such that f (A) ⊂ B . A pointed set is a pair (X, {x0}), which is denoted (X, x0). Given pointed sets (X, x0)

and (Y , y0), a pointed function f : (X, x0) → (Y , y0) is a function f : X → Y such that f (x0) = y0.

Definition 2.2. Given a pair (X, A), let D(X, A) denote the quotient monoid D(X)/D(A). We call D(X, A) the commutative 
monoid of persistence diagrams on (X, A). Note that D(X)/D(A) ∼= D(X \ A). Given a map of pairs f : (X, A) → (Y , B), there 
is an induced monoid homomorphism f∗ : D(X, A) → D(Y , B) given by f∗(x1 + · · · + xn) = f (x1) + · · · + f (xn). Note that 
this also defines a pointed function f∗ : (D(X, A), 0) → (D(Y , B), 0).

2.3. p-norms

Let p ∈ [1, ∞] and x = (x1, . . . , xn) ∈Rn . For p < ∞, the p-norm of x is defined by ‖x‖p = (∑n
k=1 |xk|p

)1/p and for p = ∞, 
it is defined by ‖x‖∞ = max1�k�n |xk|. For x = (x1, . . . , xm), y = (xm+1, . . . , xm+n), and z = (x1, . . . , xm+n), ‖(‖x‖p , ‖y‖p)‖p =
‖z‖p . By the �p-distance on Rn we mean the metric induced by the p-norm, i.e., ‖x − y‖p . The fact that each ‖ · ‖p is a 
norm relies on the Minkowski inequality: for all p ∈ [1, ∞] and x, y ∈Rn , ‖x + y‖p � ‖x‖p + ‖y‖p . The p-norms are related 
as follows, which shows in particular that the p-norms are decreasing in p. For x ∈ Rn and 1 � p � q � ∞ we have 
‖x‖q � ‖x‖p � n

1
p − 1

q ‖x‖q , and these inequalities are attained. Here we adopt the convention 1
∞ = 0.

Let R denote the set of extended real numbers [−∞, +∞]. The �p -distance on Rn extends to R
n

, with the understand-
ing that it may take a value of ∞.

2.4. Basic category theory

A category C consists of a class obj(C) of objects, and for each pair of objects X, Y ∈ obj(C), a set C(X, Y ) of morphisms (or 
arrows). The class of all morphisms of C is denoted Hom(C). A morphism f ∈ C(X, Y ) is often denoted f : X → Y . We will 
often simply write X ∈ C to indicate that X is an object of C. A category is small if obj(C) is a set as opposed to a proper 
class.
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The objects and morphisms of a category C are required to satisfy the following axioms. For any objects X, Y , Z ∈ C and 
morphisms f ∈ C(X, Y ), g ∈ C(Y , Z), there exists a morphism g ◦ f ∈ C(X, Z), called the composition of f and g . That is, 
there is a function C(X, Y ) × C(Y , Z) → C(X, Z) given by ( f , g) �→ g ◦ f . We will often omit the ◦, writing g f instead of 
g ◦ f . Composition must be associative, meaning that (hg) f = h(g f ) whenever this composition is defined. Finally, for all 
X ∈ C, there exists a morphism idX : X → X such that, for all W , Y ∈ C and f : W → X , g : X → Y , we have idX f = f and 
g idX = g .

A subcategory D of C consists of a subclass obj(D) of obj(C) and a subclass Hom(D) of Hom(C) such that if f : X →
Y ∈ Hom(D) then X, Y ∈ obj(D), idX ∈ Hom(D) for all X ∈ obj(D), and f g ∈ Hom(D) whenever f , g ∈ Hom(D) and this 
composition is defined in C. This definition guarantees that D is a category in its own right. D is a full subcategory of C if 
D(X, Y ) = C(X, Y ) for all X, Y ∈ D.

Objects X, Y ∈ C are said to be isomorphic if there exist morphisms f : X → Y and g : Y → X such that g f = idX and 
f g = idY .

Example 2.3. Let Set denote the category whose objects are sets and whose morphisms are functions between sets. Com-
position is given by the composition of functions and the identity morphism on a set S is the identity function on S . 
Isomorphisms in Set are bijective functions.

Example 2.4. Let Met denote the category whose objects are metric spaces X = (X, d) and whose morphisms are metric 
maps (see Definition 2.1). Composition of metric maps is given by the composition of functions and the identity morphism 
on X is the identity function on X . It is easily checked that the composition of metric maps is again a metric map, as is the 
identity function. Isomorphisms in Met are isometries.

Example 2.5. Let CMon denote the category whose objects are commutative monoids M = (M, +, 0) and whose morphisms 
are monoid homomorphisms. Composition of monoid homomorphisms is given by the composition of functions and the 
identity morphism on M is the identity function on M . Isomorphisms in CMon are monoid isomorphisms.

A covariant functor F : C → D consists of a map F : obj(C) → obj(D) and, for each X, Y ∈ C, a map F : C(X, Y ) →
D(F (X), F (Y )). For all X, Y , Z ∈ C and f ∈ C(X, Y ), g ∈ C(Y , Z), these maps must satisfy F (g f ) = F (g)F ( f ) and F (idX ) =
idF (X) .

A contravariant functor F : C → D consists of a map F : obj(C) → obj(D) and, for each X, Y ∈ C, a map F : C(X, Y ) →
D(F (Y ), F (X)). For all X, Y , Z ∈ C and f ∈ C(X, Y ), g ∈ C(Y , Z), these maps must satisfy F (g f ) = F ( f )F (g) and F (idX ) =
idF (X) . Note that a contravariant functor reverses the direction of arrows in the sense that if f : X → Y then F ( f ) : F (Y ) →
F (X).

Example 2.6. Any category admits an identity functor 1C : C → C which maps objects and morphisms to themselves.

Example 2.7. If D is a subcategory of C, then the inclusion D ↪→ C is a covariant functor.

Example 2.8. Let G : D → C be a covariant functor. For each C ∈ C, there is a covariant functor C(C, G−) : D → Set which 
sends D ∈ D to C(C, G D) ∈ Set, and which sends a morphism f : D → D ′ in D to the set map C(C, G f ) : C(C, G D) →
C(C, G D ′) given by g : C → G D �→ (G f )g : C → G D ′ .

Similarly, given a covariant functor F : C → D and D ∈ C, there is a contravariant functor D(F−, D) : C → Set which sends 
C ∈ C to D(F C, D) ∈ Set, and which sends a morphism f : C → C ′ in C to the set map D(F f , D) : D(F C ′, D) → D(F C, D)

given by h : F C ′ → D �→ h(F f ) : F C → D .
As a special case, if G = 1C , for any C ∈ C we obtain the covariant hom-functor C(C, −). Similarly, if F = 1C then for any 

C ∈ C we obtain the contravariant hom-functor C(−, C).

Example 2.9. The forgetful functor U : CMon → Set sends a commutative monoid to its underlying set, and sends a monoid 
homomorphism to the function defining it. That is, U sends a commutative monoid to the set obtained by “forgetting” the 
monoid structure.

Similarly, there is a forgetful functor U : Met → Set.

Example 2.10. The free commutative monoid functor D : Set → CMon sends a set X to the free commutative monoid D(X) (see 
Section 2.2) and sends a function f : X → Y to the monoid homomorphisms D( f ) : D(X) → D(Y ) given by x1 + · · · + xn �→
f (x1) + · · · + f (xn).

A natural transformation α : F ⇒ G between functors F , G : C → D (either both covariant or both contravariant), denoted 
α : F ⇒ G , consists of, for each C ∈ C, a morphism αC : F (C) → G(C). If F and G are both covariant then we require that for 
any D, E ∈ C and any morphism f ∈ C(D, E), we have αE F ( f ) = G( f )αD . If F and G are both contravariant then we require 
4
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that αD F ( f ) = G( f )αE . The morphism αC is called the component of α at C . If all of the components of α are isomorphisms, 
then α is called a natural isomorphism. If α is a natural isomorphism from F to G then we say that F and G are naturally 
isomorphic and write F ∼= G .

An adjunction between categories C and D consists of functors F : C → D and G : D → C such that, for each D ∈ D there 
is a natural isomorphism D(F−, D) ∼= C(−, G D) and for each C ∈ C there is a natural isomorphism D(F C, −) ∼= C(C, G−). In 
this case, we say that F is the left adjoint of G and G is the right adjoint of F . We also write F � G .

2.5. Universal properties and adjunctions

Consider a functor U : D → C between categories D and C and let X ∈ C. An object Y ∈ D satisfies a universal property
with universal element i : X → U Y ∈ C if for every object Z ∈ D and morphism f : X → U Z in C there is a unique morphism 
g : Y → Z in D such that U g ◦ i = f .

X U Y

U Z

i

f

Y

Z

∃!g
X U Y

U Z

i

f
U g (2.1)

For example, consider the forgetful functor U : CMon → Set and let X ∈ Set. Then the free commutative monoid D(X) ∈
CMon satisfies a universal property with universal element the canonical inclusion i : X → U D(X) ∈ Set.

Given C ∈ C and a functor U : D → C, the comma category C ↓ U is the category whose objects are pairs (D, f : C → U D), 
where D ∈ D and f : C → U D is a morphism in C, and whose morphisms (D, f : C → U D) → (D ′, f ′ : C → U D ′) are 
morphisms g : D → D ′ in D for which U g ◦ f = f ′ . Then a more succinct way of stating (2.1) is that (Y , i) is the initial 
object of the category X ↓ U .

Remark 2.11. The category of elements of a functor F : C → Set is the category whose objects are pairs (C, x), where C ∈ C
and x ∈ F C , and whose morphisms (C, x) → (C ′, x′) are morphisms f : C → C ′ in C for which F f (x) = x′ . Then X ↓ U is 
precisely the category of elements of the functor C(X, U−) : D → Set. Then yet another way of stating (2.1) is that there is 
a natural isomorphism C(X, U−) ∼= D(Y , −) defined by i ∈ C(X, U Y ). That is, C(X, U−) is represented by Y via i.

The following lemma shows how a family of universal properties can be used to obtain an adjunction. We will use it 
frequently throughout.

Lemma 2.12 ([21, Lemma 4.6.1]). A functor U : D → C admits a left adjoint if and only if for each object X in C the comma category 
X ↓ U has an initial object.

For example, the forgetful functor U : CMon → Set has a left adjoint D : Set → CMon, the free commutative monoid 
functor. This follows from Lemma 2.12 since for any set X , X ↓ U has the initial object (D(X), i X ), where D(X) is the free 
commutative monoid and i X : X → D(X) is the canonical inclusion (see Section 2.2).

A special case of (2.1) has U : D → C being the inclusion of a full subcategory.

Definition 2.13. A reflective subcategory of a category C is a full subcategory D of C such that the inclusion D ↪→ C has a left 
adjoint. The left adjoint of the inclusion is called the reflector.

2.6. Symmetric monoidal categories and internal objects

We will be interested in metric spaces which are also commutative monoids for which the metric and monoid structures 
are in some sense compatible. This idea is formalized categorically by the notion of a commutative monoid internal to a 
category. In order to make this notion precise, the category in question must have additional structure - that of a symmetric 
monoidal category. For example, a commutative topological monoid, analogous to a topological group, is a commutative 
monoid internal to Top, the (symmetric monoidal) category of topological spaces and continuous maps. In this section we 
sketch the formal definition of symmetric monoidal categories and commutative monoid objects internal to them. For a 
complete treatment, see [20, VII.1].

A symmetric monoidal category is a category C equipped with a functor ⊗ : C × C → C called the tensor product, an object 
1 ∈ C called the unit object, a natural isomorphism αX,Y ,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) called the associator, a natural 
isomorphism λX : 1 ⊗ X → X called the left unitor, a natural isomorphism ρX : X ⊗ 1 → X called the right unitor, and a 
natural isomorphism B X,Y : X ⊗ Y → Y ⊗ X called the braiding. These natural isomorphisms must satisfy certain coherence 
conditions expressed by commutative diagrams. For example, the unitors and the associator must obey the triangle equality, 
5
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which specifies that the diagram

(X ⊗ 1) ⊗ Y X ⊗ (1 ⊗ Y )

X × Y

αX,1,Y

ρX ⊗idY idX ⊗λY

commutes. For the other coherence conditions and their diagrams, see [20, VII.1].

Example 2.14. Set is a symmetric monoidal category with tensor product given by the cartesian product and with unit 
object being the one-point set ∗. The associator, left unitor, right unitor, and braiding are defined by the obvious bijections 
(X × Y ) × Z ∼= X × (Y × Z), ∗ × X ∼= X , X × ∗ ∼= X , and X × Y ∼= Y × X , respectively.

Example 2.15. Met is a symmetric monoidal category with tensor product (X, dX ) ⊗ (Y , dY ) := (X × Y , D∞), where 
D∞((x, y), (x′, y′)) := max(dX (x, x′), dY (y, y′)), and with unit object the one-point metric space ∗. The associator, unitors, 
and braiding are the same as those in Set (it only needs to be checked that these maps are isometries, i.e., isomorphisms 
in Met).

For any symmetric monoidal category (C, ⊗, 1), a notion of a commutative monoid defined within C can be made precise. 
A commutative monoid object in (C, ⊗, 1) (or a commutative monoid internal to (C, ⊗, 1)) is a tuple (M, μ, e) consisting of an 
object M ∈ C, a morphism e : 1 → M called the unit, and a morphism μ : M ⊗ M → M called the product. The unit and 
product morphisms are required to satisfy certain coherence conditions with the associator, unitors, and braiding of C, 
expressing associativity and commutativity of the product and the fact that the unit morphism serves as an identity for the 
product. For example, the unit e : 1 → M is required to make the diagram

1 ⊗ M M ⊗ M M ⊗ 1

M

e⊗idM

λM

μ

idM⊗e

ρM

commute. See again [20, VII.1] for the other coherence conditions.
A morphism between commutative monoid objects (M, μ, e), (M ′, μ′, e′) in a symmetric monoidal category (C, ⊗, 1) is 

a morphism f : M → M ′ in C such that f μ = μ′( f ⊗ f ) and f e = e′ . Commutative monoid objects in (C, ⊗, 1), together 
with these morphisms, form a category which is denoted by CMon(C, ⊗, 1) or more simply by CMon(C) when the tensor 
product and unit are fixed.

Example 2.16. Recall that Set is a symmetric monoidal category with tensor product the cartesian product and with unit 
object the one-point set (see Example 2.14). The commutative monoid objects internal to Set are just commutative monoids, 
and the corresponding morphisms are monoid homomorphisms. That is, we have an isomorphism of categories CMon(Set) ∼=
CMon.

Example 2.17. Let Met be given the symmetric monoidal structure of Example 2.15. A commutative monoid internal to Met
is a metric space (M, d) together with a unit e : ∗ → Met and a multiplication operation + : M × M → M . Note that e simply 
picks out an element of M , which we will denote by 0. The fact that + is metric map means that

d(a + b,a′ + b′) � max(d(a,a′),d(b,b′)) for all a,a′,b,b′ ∈ M. (2.2)

Thus a commutative monoid internal to Met is a tuple (M, d, +, 0), where (M, d) is a metric space, (M, +, 0) is a commu-
tative monoid, and such that (2.2) holds.

We will consider variations of the preceding example for pointed metric spaces and for different choices of tensor 
product.

3. Metric pairs and pointed metric spaces

In this section, we introduce the categories of metric spaces of interest to us. In Section 3.1, we introduce the categories 
of metric pairs and pointed metric spaces. We show that every metric pair gives rise to a pointed metric space by taking a 
quotient and that this construction is functorial. Moreover, we show that the category of pointed metric spaces is a reflective 
subcategory of the category of metric pairs, with reflector being the quotient functor. In Section 3.2, we introduce the p-
strengthened triangle inequality (p ∈ [1, ∞]) and the corresponding subcategories of pointed metric spaces which satisfy it. 
These subcategories are required for our statement of universality.
6
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3.1. Metric pairs, pointed metric spaces, and quotients

We now introduce the main categories of interest to us.

Definition 3.1. Let Metpairs denote the category whose objects are of the form (X, d, A), where (X, d) is a metric space with 
A a nonempty subset of X and whose morphisms f : (X, d, A) → (Y , d′, B) are metric maps f : (X, d) → (Y , d′) such that 
f (A) ⊂ B . (X, d, A) is called a metric pair.

Example 3.2. Consider the metric space (R2, d) where d is the metric induced by the q-norm, where 1 � q � ∞. Let 
R2

� = {(x, y) ∈ R2 | x � y} and similarly define subsets R2
� and R2= where the latter is also denoted �. Then we have 

metric pairs (R2, d, R2
�) and (R2

�, d, �). Similarly, we have the metric pair (R
2
�, d, �).

Definition 3.3. Let Met∗ denote the full subcategory of Metpairs whose objects are of the form (X, d, {x0}), which we denote 
(X, d, x0). We call x0 the basepoint and call (X, d, x0) a pointed metric space. A morphism f : (X, d, x0) → (Y , d′, y0) is called 
a pointed metric map.

Example 3.4. Let Int(R) denote the set of intervals in R with d(I, J ) equal to the length (i.e. Lebesgue measure) of the 
symmetric difference (I ∪ J ) \ (I ∩ J ). Then (Int(R), d, ∅) is a pointed metric space. We may also equip Int(R) with the 
Hausdorff distance dH to obtain the pointed metric space (Int(R), dH , ∅).

We now show how to obtain a pointed metric space from a metric pair.

Definition 3.5. Given a metric pair (X, d, A) consider the quotient set X/A = (X \ A) � {A}. Let d : X/A × X/A → [0, ∞]
be the induced metric. That is, d(A, A) = 0, for x ∈ X \ A, d(x, A) = d(A, x) = d(x, A), where d(x, A) = infy∈A d(x, y), and for 
x, y ∈ X \ A, d(x, y) = min (d(x, y),d(x, A) + d(y, A)).

Given a morphism f : (X, dX , A) → (Y , dY , B), let f : X/A → Y /B be the induced map. That is, f (A) = B , and for x ∈
X \ A, f (x) = B if f (x) ∈ B and otherwise f (x) = f (x).

There is a natural quotient map of pairs q : (X, A) → (X/A, {A}) given by q(x) = x if x ∈ X \ A and q(x) = A if x ∈ A. We 
will sometimes denote the image of x by [x], but we will drop the brackets when there is no ambiguity.

We will show that this quotient map may be used to define a functor from Metpairs to Met∗ . First, we show that the 
quotient of a metric pair is indeed a pointed metric space.

Lemma 3.6. If (X, d, A) is a metric pair then (X/A, d, A) is a pointed metric space. Moreover, the quotient map q : (X, d, A) →
(X/A, d, A) is a metric map.

Proof. We need to show that d is a metric. Point triviality and symmetry follow from the definition. It remains to prove 
the triangle inequality. There are three nontrivial cases.

For the first case, let x, z ∈ X \ A. We want to show that d(x, A) � d(x, z) + d(z, A). Since d(x, z) + d(z, A) =
min(d(x, z), d(x, A) + d(z, A)) + d(z, A), it suffices to show that d(x, A) � d(x, z) + d(z, A) and d(x, A) � d(x, A) + 2d(z, A). 
The first inequality holds since d(x, A) = d(x, A) = infy∈A d(x, y) � infy∈A(d(x, z) +d(z, y)) = d(x, z) +d(z, A), and the second 
inequality holds trivially since d(x, A) = d(x, A) � d(x, A) + 2d(z, A). Thus d(x, A) � d(x, z) + d(z, A).

For the second case, let x, y ∈ X \ A. Then d(x, y) = min(d(x, y), d(x, A) + d(A, y)) � d(x, A) + d(A, y) = d(x, A) + d(A, y).
For the third case, let x, y, z ∈ X \ A. We want to show that d(x, y) � d(x, z) + d(z, y) = min(d(x, z), d(x, A) + d(A, z)) +

min(d(z, y), d(z, A) +d(A, y)). The right hand side has four possible values. First, d(x, y) � d(x, y) � d(x, z) +d(z, y). Second, 
d(x, y) � d(x, A) + d(A, y) � d(x, z) + d(z, A) + d(A, y). Third, d(x, y) � d(x, A) + d(A, y) � d(x, A) + d(A, z) + d(z, y). Fourth, 
d(x, y) � d(x, A) + d(A, y) � d(x, A) + d(A, z) + d(z, A) + d(A, y). Therefore d(x, y) � d(x, z) + d(z, y).

To prove the second statement, let x, y ∈ X . There are three cases. First, if x, y ∈ X \ A then d(q(x), q(y)) =
min(d(x, y), d(x, A) +d(y, A)) � d(x, y). Second, if x ∈ X \ A and y ∈ A, then d(q(x), q(y)) = d(x, A) � d(x, y). Third, if x, y ∈ A
then d(q(x), q(y)) = d(A, A) = 0 � d(x, y). This completes the proof. �

Next, we show that this map sends morphisms in Metpairs to morphisms in Met∗ .

Lemma 3.7. Given a morphism f : (X, dX , A) → (Y , dY , B) of metric pairs, the induced map f : (X/A, dX , A) → (Y /B, dY , B) is a 
pointed metric map.

Proof. We will prove that f is a metric map. Let x ∈ X \ A. First we show that dY ( f (x), B) � dX (x, A). Indeed, dY ( f (x), B) =
infy∈B dY ( f (x), y) � infx′∈A dY ( f (x), f (x′)) � infx′∈A dX (x, x′) = d(x, A). Then dY ( f (x), f (A)) = dY ( f (x), B) = dY ( f (x), B) �
7
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dX (x, A) = dX (x, A). Next let x, x′ ∈ X \ A. Then dY ( f (x), f (x′)) = dY ( f (x), f (x′)) = min(dY ( f (x), f (x′)), dY ( f (x), B) +
dY (B, f (x′))) � min(dX (x, x′), dX (x, A) + dX (A, x′)) = dX (x, x′). �

With the above lemmas in hand, it is now easy to check that we have a functor.

Definition 3.8. Let Q : Metpairs → Met∗ be the functor that sends a metric pair (X, d, A) to the pointed metric space 
(X/A, d, A) and that sends f : (X, dX , A) → (Y , dY , B) to f : (X/A, dX , A) → (Y /B, dY , B).

Theorem 3.9. Met∗ is a reflective subcategory of Metpairs with left adjoint Q .

Proof. By Lemma 2.12, it suffices to show that, for each X = (X, dX , A) ∈ Metpairs , there is a morphism r : (X, dX , A) →
(X/A, d, A) = I Q (X, dX , A) in Metpairs for which ((X/A, d, A), r) is an initial object in the comma category X ↓ I . Here, 
I : Met∗ → Metpairs denotes the inclusion functor.

(X,dX , A) (X/A,dX , A)

(Y ,dY , y0)

r

f
∃! f (3.1)

To this end, define r : (X, dX , A) → (X/A, dX , A) by r(x) = A if x ∈ A and r(x) = x otherwise. Let us show that r is a metric 
map. Let x, x′ ∈ X . If x, x′ /∈ A then dX (rx, rx′) = dX (x, x′) = min(dX (x, x′), dX (x, A) + dX (A, x)) � dX (x, x′). If x /∈ A and x′ ∈ A
then dX (rx, rx′) = dX (x, A) = dX (x, A) � dX (x, x′).

To see that r is a universal element, let f : (X, dX , A) → (Y , dY , y0) ∈ Metpairs be given. We want to show that 
there is a unique metric map f : (X/A, dX , A) → (Y , dy, y0) such that f ◦ r = f . By the commutativity of (3.1), we are 
forced to define f (A) = y0 and f (x) = f (x) if x /∈ A. This demonstrates uniqueness. To establish existence, it remains 
to show that f is a metric map. If x ∈ X \ A then dY ( f (x), f (A)) = dY ( f (x), y0) = dY ( f (x), f (x′)) � dX (x, x′) for all 
x′ ∈ A. Thus dY ( f (x), f (A)) � dX (x, A) = dX (x, A). If x, x′ ∈ X \ A then dY ( f (x), f (x′)) = dY ( f (x), f (x′)) � dX (x, x′). Fur-
thermore dY ( f (x), f (x′)) = dY ( f (x), f (x′)) � dY ( f (x), y0) + dY (y0, f (x′)) � dX (x, A) + dX (A, x′). Therefore dY ( f (x), f (x′)) �
dX (x, x′). �
3.2. The p-strengthened triangle inequality

In this section, we introduce a convenient class of pointed metric spaces for each p ∈ [1, ∞]. These are pointed metric 
spaces which satisfy a slightly stronger version of the triangle inequality with respect the basepoint.

Definition 3.10. Let (X, d) be a metric space, x0 ∈ X , and p ∈ [1, ∞]. We say that the metric d satisfies the p-strengthened 
triangle inequality with respect to x0 if d(x, y) �

∥∥(d(x, x0), d(x0, y))
∥∥

p for all x, y ∈ X . Let Metp∗ denote the full subcategory of 
Met∗ consisting of those objects (X, d, x0) for which (X, d) satisfies the p-strengthened triangle inequality with respect to 
x0.

Note that the 1-strengthened triangle inequality is just the triangle inequality. So Met1∗ = Met∗ . Also, for 1 � p � q �∞, 
Metq∗ is a full subcategory of Metp∗ .

Example 3.11. Let ∗ denote the singleton set. Also let ∗ denote the pointed metric space (∗, 0, ∗). Then for all p ∈ [1, ∞], 
∗ ∈ Metp∗ . In fact, it is the initial and terminal object in Metp∗ .

From any metric space (X, d) and given basepoint x0 ∈ X , we can obtain a metric that satisfies the p-strengthened 
inequality. The following definition is a more general construction.

Definition 3.12. Let (X, d, A) be a metric pair and let p ∈ [1, ∞]. Define dp : X × X → [0, ∞] by

dp(x, y) := min(d(x, y),
∥∥(d(x, A),d(A, y))

∥∥
p).

In the special case that A = {x0} is a singleton, it is clear from the definition that dp satisfies the p-strengthened triangle 
inequality with respect to x0. We still need to verify that dp is actually a metric.

Lemma 3.13. Let p ∈ [1, ∞]. If (X, d, A) is a metric pair then so is (X, dp, A).
8
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Proof. Point triviality and symmetry follow from the definition. To show the triangle inequality, let x, y, z ∈ X . We want 
to show that min(d(x, y), ‖(d(x, A),d(A, y))‖p) � min(d(x, z), ‖(d(x, A),d(A, z))‖p) + min(d(z, y), ‖(d(z, A),d(A, y))‖p). The 
right hand side has four possible values. First, d(x, y) � d(x, z) + d(z, y). Second,

‖(d(x, A),d(A, y))‖p � ‖(d(x, z) + d(z, A),d(A, y))‖p

= ‖(d(x, z),0) + (d(z, A),d(A, y))‖p � d(x, z) + ‖(d(z, A),d(A, y))‖p .

Third,

‖(d(x, A),d(A, y))‖p � ‖(d(x, A),d(A, z) + d(z, y))‖p

= ‖(d(x, A),d(A, z)) + (0,d(z, y))‖p � ‖(d(x, A),d(A, z))‖p + d(z, y).

Fourth,

‖(d(x, A),d(A, y))‖p � ‖(d(x, A),d(A, z),d(z, A),d(A, y))‖p

= ∥∥(‖(d(x, A),d(A, z))‖p ,‖(d(z, A),d(A, y))‖p)
∥∥

p

� ‖(d(x, A),d(A, z))‖p + ‖(d(z, A),d(A, y))‖p .

The result now follows from these inequalities. �
Lemma 3.14. Let p ∈ [1, ∞]. If f : (X, d, x0) → (Y , d′, y0) is a pointed metric map, then so is f : (X, dp, x0) → (Y , d′

p, y0).

Proof. Let x, x′ ∈ X . Then

d′
p( f (x), f (x′)) = min(d′( f (x), f (x′)),

∥∥(d′( f (x), y0),d′(y0, f (x′)))
∥∥

p)

= min(d′( f (x), f (x′)),
∥∥(d′( f (x), f (x0)),d′( f (x0), f (x′)))

∥∥
p)

� min(d(x, x′),
∥∥(d(x, x0),d(x0, x′))

∥∥
p) = dp(x, x′). �

The operation which sends a pointed metric space (X, d, x0) to (X, dp, x0) is easily seen to be functorial.

Definition 3.15. Let 1 � p � q � ∞. Let S p,q : Metp∗ → Metq∗ be the functor that sends (X, d, x0) to (X, dq, x0) and f :
(X, d, x0) → (Y , d′, y0) to f : (X, dq, x0) → (Y , d′

q, y0). We will also denote S1,p by S p .

Theorem 3.16. Let 1 � p � q � ∞. Metq∗ is a reflective subcategory of Metp∗ with left adjoint S p,q. As a special case, Metp∗ is a 
reflective subcategory of Met∗ with left adjoint S p .

Proof. Let (X, d, x0) ∈ Metp∗ , (Y , d′, y0) ∈ Metq∗ and f : (X, d, x0) → (Y , d′, y0) ∈ Metp∗ .

(X,d, x0) (X,dq, x0)

(Y ,d′, y0)

r

f
∃! f (3.2)

Let r : (X, d, x0) → (X, dq, x0) ∈ Metp∗ be the identity function on X . We will show that ((X, dq, x0), r) is a universal 
element in the comma category X ↓ I , where I denotes the inclusion Metq∗ ↪→ Metp∗ . Note that r is a metric map since for 
all x, x′ ∈ X , dq(x, x′) � d(x, x′). Let f : (X, d, A) → (Y , d′, y0) be a pointed metric map. By the commutativity of (3.2), we are 
forced to define f = f . This establishes uniqueness. To establish existence, it remains to show that f is a metric map. Let 
x, x′ ∈ X . We have d′( f (x), f (x′)) � d(x, x′) and, since (Y , d′, y0) ∈ Metq∗ ,

d′( f (x), f (x′)) �
∥∥(d′( f (x), y0),d′(y0, f (x′)))

∥∥
q

= ∥∥(d′( f (x), f (x0)),d′( f (x0), f (x′)))
∥∥

q �
∥∥(d(x, x0),d(x0, x′))

∥∥
q .

Therefore d′( f (x), f (x′)) � dq(x, x′). It follows by Lemma 2.12 that S p,q is left adjoint to the inclusion. �
By Lemmas 3.6 and 3.13, we have the following.

Lemma 3.17. Given a metric (X, d, A) and p ∈ [1, ∞], we have the pointed metric space (X/A, dp, A) where dp is given by dp(A, A) =
0, for x ∈ X \ A, dp(x, A) = d(x, A) = dp(A, x), and for x, y ∈ X \ A, dp(x, y) = min(d(x, y), ‖d(x, A),d(A, y)‖p).
9
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4. Commutative metric monoids and Wasserstein distance

In this section, we introduce p-subadditive commutative metric monoids. These are metric spaces which are also 
monoids and for which the monoid operation is, in a precise sense, compatible with the metric. The category of p-
subadditive commutative metric monoids is the setting in which we state our universality results for the Wasserstein 
distances.

4.1. Commutative metric monoids

In this section, we introduce p-subadditive commutative metric monoids which are metric spaces that are simultaneously 
commutative monoids and which satisfy a certain compatibility condition between the metric and the monoid operation.

Definition 4.1. Let p ∈ [1, ∞]. A p-subadditive commutative metric monoid is a tuple (M, d, +, 0) where (M, d, 0) is a pointed 
metric space and (M, +, 0) is a commutative monoid such that for all a, b, a′, b′ ∈ M ,

d(a + b,a′ + b′) �
∥∥(d(a,a′),d(b,b′))

∥∥
p .

In this case, we say that the metric d is p-subadditive. A morphism of p-subadditive commutative metric monoids f :
(M, d, +, 0) → (N, ρ, +, 0) is a pointed metric map f : (M, d, 0) → (N, ρ, 0) such that f : (M, +, 0) → (N, +, 0) is a monoid 
homomorphism. Call such a map a metric monoid homomorphism. Let CMetMonp denote the category of p-subadditive com-
mutative metric monoids and metric monoid homomorphisms.

Lemma 4.2. Let p ∈ [1, ∞]. Let (M, d, +, 0) be a p-subadditive commutative metric monoid. Then for n � 0 and a1, . . . , an, b1, . . . , bn

∈ M,

d(a1 + · · · + an,b1 + · · · + bn) �
∥∥(d(ai,bi))

n
i=1

∥∥
p .

Proof. The proof is by induction on n.

d(a1 + · · · + an+1,b1 + · · · + bn+1) � ‖(d(a1 + · · · + an,b1 + · · · + bn),d(an+1,bn+1))‖p

�
∥∥∥(

∥∥(d(ai,bi))
n
i=1

∥∥
p ,d(an+1,bn+1))

∥∥∥
p

=
∥∥∥(d(ai,bi))

n+1
i=1

∥∥∥
p
. �

Corollary 4.3. Let p ∈ [1, ∞]. Let (M, d, +, 0) be a p-subadditive commutative metric monoid. Then for n � 0 and a1, . . . , an, b1, . . . ,
bn ∈ M,

d(a1 + · · · + an,b1 + · · · + bn) � min
σ∈
n

∥∥(d(ai,bσ (i)))
n
i=1

∥∥
p ,

where 
n denotes the symmetric group on n symbols.

The following lemma shows that there is a forgetful functor U p : CMetMonp → Metp∗ .

Lemma 4.4. Let p ∈ [1, ∞]. Let (M, d, +, 0) be a p-subadditive commutative metric monoid. Then (M, d, 0) ∈ Metp∗ . Furthermore if 
f : (M, d, +, 0) → (N, ρ, +, 0) is a morphism of commutative metric monoids then f : (M, d, 0) → (N, ρ, 0) ∈ Metp∗ .

Proof. For the first statement, we show that (M, d, 0) satisfies the p-strengthened triangle inequality at 0. Let a, b ∈ M . 
Then d(a, b) = d(a + 0, 0 + b) � ‖(d(a,0),d(0,b))‖p . The second statement follows directly from the definitions. �
4.2. Monoid objects in Metp∗

In this section, we show that Metp∗ can be equipped with a tensor product making it into a symmetric monoidal category. 
We then show that p-subadditive commutative metric monoids are precisely the commutative monoids internal to this 
symmetric monoidal category.

Definition 4.5. Let p ∈ [1, ∞]. Given pointed metric spaces (X, dX , x0) and (Y , dY , y0), define dX ×p dY : (X × Y ) × (X × Y ) →
[0, ∞] by

(dX ×p dY )
(
(x, y), (x′, y′)

) = ∥∥(dX (x, x′),dY (y, y′))
∥∥

p .

We call dX ×p dY the p-product metric. Let X ×p Y denote the tuple (X × Y , dX ×p dY , (x0, y0)).
10
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The following lemma shows that dX ×p dY defines a metric on the product X × Y .

Lemma 4.6. Let p ∈ [1, ∞]. If X = (X, dX , x0) and Y = (Y , dY , y0) are pointed metric spaces then so is X ×p Y .

Proof. We show that dX ×p dY is a metric for X × Y . Point triviality and symmetry follow from the corresponding properties 
for dX and dY . It remains to prove the triangle inequality. For all (x, y), (x′, y′), (x′′, y′′) ∈ X × Y ,

∥∥(dX (x, x′),dY (y, y′))
∥∥

p �
∥∥(dX (x, x′′) + dX (x′′, x′),dY (y, y′′) + dY (y′′, y′))

∥∥
p

= ∥∥(dX (x, x′′),dY (y, y′′)) + (dX (x′′, x′),dY (y′′, y′))
∥∥

p

�
∥∥(dX (x, x′′),dY (y, y′′))

∥∥
p + ∥∥(dX (x′′, x′),dY (y′′, y′))

∥∥
p . �

The product metric dX ×p dY can be used to give a succinct and convenient description of p-subadditive commutative 
metric monoids.

Lemma 4.7. A p-subadditive commutative metric monoid is a tuple (M, d, +, 0) where (M, d, 0) is a pointed metric space and 
(M, +, 0) is a commutative monoid such that + : M ×p M → M is a metric map.

Proof. Consider (M, d, +, 0) where (M, d, 0) is a pointed metric space and (M, +, 0) is a commutative monoid. + : M ×p
M → M is a metric map if and only if for all (a, b), (a′, b′) ∈ M × M , d(a + b, a′ + b′) �

∥∥d(a,a′),d(b,b′)
∥∥

p . �
The following lemma shows that Metp∗ is closed with respect to forming p-product metrics.

Lemma 4.8. Let p ∈ [1, ∞]. If X = (X, dX , x0), Y = (Y , dY , y0) ∈ Metp∗ then X ×p Y ∈ Metp∗ .

Proof. We show that dX ×p dY satisfies the p-strengthened triangle inequality with respect to (x0, y0). For all (x, y), (x′, y′)
∈ X × Y ,

∥∥(dX (x, x′),dY (y, y′))
∥∥

p �
∥∥∥(

∥∥(dX (x, x0),dX (x0, x′))
∥∥

p ,
∥∥(dY (y, y0),dY (y0, y′))

∥∥
p)

∥∥∥
p

= ∥∥(dX (x, x0),dX (x0, x′),dY (y, y0),dY (y0, y′))
∥∥

p

=
∥∥∥(‖(dX (x, x0),dY (y, y0))‖p ,

∥∥(dX (x0, x′),dY (y0, y′))
∥∥

p)

∥∥∥
p
. �

We want to show that (Metp∗, ×p, ∗) is a symmetric monoidal category. We will first show that (Met∗, ×p, ∗) is a 
symmetric monoidal category.

Proposition 4.9. For each p ∈ [1, ∞], (Met∗, ×p, ∗) is a symmetric monoidal category.

Proof. For the associator, consider X, Y , Z ∈ Met∗ and x, x′ ∈ X , y, y′ ∈ Y and z, z′ ∈ Z . Then

((dX ×p dY ) ×p dZ )(((x, y), z), ((x′, y′), z)) = ∥∥((dX ×p dY )((x, y), (x′, y′)),dZ (z, z′))
∥∥

p

=
∥∥∥(

∥∥(dX (x, x′),dY (y, y′))
∥∥

p ,dZ (z, z′))
∥∥∥

p
= ∥∥(dX (x, x′),dY (y, y′),dZ (z, z′))

∥∥
p .

The left unitor is an isometry since for X ∈ Met∗ and x, x′ ∈ X , 
∥∥(dX (x, x′),0)

∥∥
p = dX (x, x′). Similarly, the right unitor is an 

isometry. The braiding is given by the obvious isometry X ×p Y ∼= Y ×p X . With these computations in hand, the rest of the 
axioms are easy to check. �
Corollary 4.10. For each p ∈ [1, ∞], (Metp∗, ×p, ∗) is a symmetric monoidal category, which we denote by Metp∗ .

Proof. This follows immediately since Metp∗ is a subcategory of Met∗ which, by Lemma 4.8, is closed under the tensor 
product ×p . �

Let CMon(Met∗,×p,∗) and CMon(Metp∗) denote the categories of commutative monoids internal to the symmetric 
monoidal categories (Met∗, ×p, ∗) and Metp∗ , respectively. Recall that CMetMonp denotes the category of p-subadditive 
commutative metric monoids. The following proposition shows that CMetMonp is precisely the category of commutative 
monoids internal to the Metp∗ . Moreover, we show that CMon(Met∗,×p,∗) and CMon(Metp∗) are in fact the same.
11
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Theorem 4.11. A commutative monoid in the symmetric monoidal category Metp∗ is a p-subadditive commutative metric monoid and 
a morphism of commutative monoids in Metp∗ is morphism of p-subadditive commutative metric monoids. That is, CMetMonp =
CMon(Metp∗). Moreover, CMon(Met∗,×p,∗) = CMon(Metp∗).

Proof. A commutative monoid in Metp∗ is a pointed metric space (M, d, m0) ∈ Metp∗ together with a binary operation + :
M × M → M that is associative, commutative, and for which m0 is a unit, such that + : M ×p M → M ∈ Metp∗ . That is, + is 
p-subadditive. Thus a commutative monoid in Metp∗ is a p-subadditive commutative metric monoid.

A morphism f : (M, d, +M , m0) → (N, ρ, +N , n0) of commutative monoids in Metp∗ is a morphism f : (M, d, m0) →
(N, ρ, n0) ∈ Metp∗ such that for all a, b ∈ M , f (a +M b) = f (a) +N f (b) and f (m0) = n0. That is, f : (M, d, m0) → (N, ρ, n0) ∈
Met∗ such that f : (M, +M , m0) → (N, +N , n0) is a monoid homomorphism.

To see that CMon(Met∗,×p,∗) = CMon(Metp∗), note that it suffices to require that (M, d, m0) ∈ Met∗ , since the unit 
condition and p-subadditivity implies that for a, b ∈ M , d(a, b) = d(a + m0, m0 + b) � ‖(d(a,m0),d(m0,b))‖p . �
4.3. Wasserstein distance

In this section, we introduce the p-Wasserstein distance W p on the space of diagrams D(X, A) on a metric pair, and 
show that (D(X, A), W p), taken together with the monoid structure on D(X, A), forms a p-subadditive commutative metric 
monoid.

Given a set pair (X, A), recall that D(X, A) = D(X)/D(A). As a special case, for a pointed set (X, x0), D(X, x0) =
D(X)/D(x0).

Definition 4.12. Let p ∈ [1, ∞]. Given a metric pair (X, d, A) define W p[d, A] : D(X, A) × D(X, A) → [0, ∞] by

W p[d, A](x1 + · · · + xm, x′
1 + · · · + x′

n) = inf
∥∥∥(d(xk, x′

σ (k)))
m+n
k=1

∥∥∥
p
,

where the infimum is taken over xm+1, . . . , xm+n, x′
n+1, . . . x′

n+m ∈ A and σ ∈ 
m+n , where 
m+n denotes the symmetric 
group on m + n symbols.

One may check that Definition 4.12 may be restated as follows.

Lemma 4.13.

W p[d, A](x1 + · · · + xm, x′
1 + · · · + x′

n) = min
σ∈
m+n

∥∥∥(d(xk, x′
σ (k)))

m+n
k=1

∥∥∥
p
,

where xm+1 = · · · = xm+n = A = x′
n+1 = · · · x′

n+m and d(x, A) = infa∈A d(x, a).

For brevity, we will sometimes denote W p[d, A] by W p when this can lead to no confusion.

Remark 4.14. Recall that for a metric pair (X, d, A), (X/A, d, A) denotes the pointed metric space obtained by collapsing A to 
a point (see Definition 3.5). Then D(X, A) ∼= D(X \ A) ∼= D(X/A, A). Explicitly, we have monoid isomorphisms ϕ : D(X \ A) →
D(X, A) and ψ : D(X \ A) → D(X/A, A) given by x1 + · · · + xn �→ x1 + · · · + xn + D(A) and x1 + · · · + xn �→ [x1] + · · · + [xn] +
D(A), respectively. By Lemma 4.24 below, we have that (D(X, A), W p[d, A], +, 0) and (D(X/A, A), W p[dp, A], +, 0) are 
isometrically isomorphic, and so we may pass between the settings of metric pairs and pointed metric spaces whenever 
convenient.

Example 4.15. For the metric pair (R2
�, d, �) or (R

2
�, d, �) (Example 3.2) and p ∈ [1, ∞], W p[d, �] is the p-Wasserstein 

distance on (finite) persistence diagrams. For the metric pair (Int(R), d, ∅) and d the length of the symmetric difference 
(Example 3.4), W1[d, ∅] is the barcode metric.

The following lemma verifies that W p is indeed a metric on D(X, x0).

Lemma 4.16. Let p ∈ [1, ∞]. If (X, d, x0) is a pointed metric space then (D(X, x0), W p, 0) is a pointed metric space.

Proof. Point triviality and symmetry follow from the definition. To prove the triangle inequality, let α = x1 + · · · + xn, β =
x′

1 +· · ·+ x′
m, γ = x′′

1 +· · ·+ x′′
p , be elements of D(X, x0). Let r = n +m + p and let xn+1 = · · · = xr = x′

m+1 = · · · = x′
r = x′′

p+1 =
· · · = x′′

r = x0. Let σ , τ ∈ Sr be permutations realizing W p(α, γ ), W p(γ , β), respectively. Let π = τ ◦ σ ∈ Sr . Then
12
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W p(α,β) �
∥∥(

d(xk, x′
π(k))

)r
k=1

∥∥
p

�
∥∥(

d(xk, x′′
σ (k))

)r
k=1 + (

d(x′′
σ (k), x′

π(k))
)r

k=1

∥∥
p

�
∥∥(

d(xk, x′′
σ (k))

)r
k=1

∥∥
p + ∥∥(

d(x′′
σ (k), x′

π(k))
)r

k=1

∥∥
p

= ∥∥(
d(xk, x′′

σ (k))
)r

k=1

∥∥
p + ∥∥(

d(x′′
σ (σ−1(�))

, x′
π(σ−1(�))

)
)r
�=1

∥∥
p

= ∥∥(
d(xk, x′′

σ (k))
)r

k=1

∥∥
p + ∥∥(

d(x′′
� , x′

τ (�))
)r
�=1

∥∥
p = W p(α,γ ) + W p(γ ,β). �

By Remark 4.14, the preceding lemma shows that W p[d, A] is a metric on D(X, A) for any metric pair (X, d, A) and any 
p ∈ [1, ∞].

Next, we show that W p is p-subadditive.

Lemma 4.17. Let p ∈ [1, ∞]. If (X, d, x0) is a pointed metric space then (D(X, x0), W p, +, 0) is a p-subadditive commutative metric 
monoid and hence is an object in CMon(Metp∗).

Proof. Let α, β, γ , δ ∈ D(X, x0), where α = x1 + · · · + xm , β = xm+n+1 + · · · + xm+n+p , γ = x′
1 + · · · + x′

n , δ = x′
m+n+1 +

· · · + xm+n+q . We want to show that W p(α + β, γ + δ) �
∥∥(W p(α,γ ), W p(β, δ))

∥∥
p . Let xm+1 = · · · = xm+n = xm+n+p+1 =

xm+n+p+q = x′
n+1 = · · · = x′

m+n = x′
m+n+q+1 = x′

m+n+p+q = x0. Given σ ∈ 
m+n and τ ∈ 
p+q , let σ ∗ τ ∈ 
m+n+p+q be 
defined by σ ∗ τ (i) := σ(i) if i � m + n and σ ∗ τ (i) := τ (i) otherwise. Then

∥∥(W p(α,γ ), W p(β, δ))
∥∥

p =
∥∥∥∥
(

min
σ∈
m+n

∥∥∥(d(xi, x′
σ (i)))

m+n
i=1

∥∥∥
p
, min
τ∈
p+q

∥∥∥(d(xm+n+i, x′
m+n+τ (i)))

∥∥∥
p

)∥∥∥∥
p

= min
σ∈
m+n

min
τ∈
p+q

∥∥∥(d(xi, x′
σ∗τ (i)))

m+n+p+q
i=1

∥∥∥
p

� min
π∈
m+n+p+q

∥∥∥(d(xi, x′
π(i)))

m+n+p+q
i=1

∥∥∥
p

= W p(α + β,γ + δ). �

Lemma 4.18. Let p ∈ [1, ∞]. Let (X, d, x0) ∈ Metp∗ . Then the inclusion map i : (X, d, x0) ↪→ (D(X, x0), W p[d, x0], 0) is an isometry 
(and hence a metric map).

Proof. Let x, y ∈ X . W p[d, x0](x, y) = min
(
d(x, y),‖(d(x, x0),d(x0, y))‖p

) = d(x, y). �
The preceding lemma shows that if (X, d, x0) ∈ Metp∗ , then i∗W p = d. On the other hand, if (X, d, x0) ∈ Met∗ but d does 

not satisfy the p-strengthened inequality with respect to x0, then the inclusion i : (X, d, x0) ↪→ (D(X, x0), W p, x0) is only 
guaranteed to be 1-Lipschitz, but is not in general an isometry. This is one reason for working with Metp∗ as opposed to just 
Met∗ .

The following lemma shows that for a pointed metric map f : (X, dX , x0) → (Y , dY , y0), the induced map f∗ : D(X, x0) →
D(Y , y0) is a metric map with respect to the Wasserstein distances.

Lemma 4.19. Let p ∈ [1, ∞]. Given a pointed metric map f : (X, d, x0) → (Y , d′, y0), the induced map f∗ : D(X, x0) → D(Y , y0) is 
a morphism of p-subadditive commutative metric monoids f∗ : (D(X, x0), W p[d, x0], +, 0) → (D(Y , y0), W p[d′, y0], +, 0).

Proof. By Definition 4.1, we need to show that f∗ : (D(X, x0), W p[d, x0]) → (D(Y , y0), W p[d′, y0]) is a metric map and that 
f∗ : (D(X, x0), +, 0) → (D(Y , y0), +, 0) is a monoid homomorphism. The latter is true by the definition of f∗ (Definition 2.2). 
Let x1 +· · ·+xm, x′

1 +· · ·+x′
n ∈ D(X, x0). Let xm+1 = · · · = xm+n = x0 = x′

n+1 = · · · = x′
n+m and thus f (xm+1) = · · · = f (xm+n) =

y0 = f (x′
n+1) = · · · = f (x′

n+m). Then

W p[d′, y0]( f (x1) + · · · + f (xm), f (x′
1) + · · · + f (x′

n)) = min
σ∈
m+n

∥∥∥(d′( f (xi), f (x′
σ (i))))

m+n
i=1

∥∥∥
p

� min
σ∈
m+n

∥∥∥(d(xi, x′
σ (i)))

m+n
i=1

∥∥∥
p

= W p[d, x0](x1 + · · · + xm, x′
1 + · · · + xn). �

From the preceding lemmas, it is easy to see that the assignment that sends (X, d, x0) ∈ Metp∗ to (D(X, x0), W p, +, 0)

and that sends a pointed metric map f : (X, dX , x0) → (Y , dY , y0) to the induced map f∗ : D(X, x0) → D(Y , y0) is functorial.

Definition 4.20. Let p ∈ [1, ∞]. Let D p : Metp∗ → CMon(Metp∗) be the functor given by sending (X, d, x0) to (D(X, x0), W p,

+,0) and f : (X, d, x0) → (Y , d′, y0) to f∗ : (D(X, x0), W p[d, x0], +, 0) → (D(Y , y0), W p[d′, y0], +, 0).
13
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Recall that there is a forgetful functor U p : CMon(Metp∗) → Metp∗ given by sending (M, d, +, 0) ∈ CMon(Metp∗) to 
(M, d, 0) ∈ Metp∗ (see Lemma 4.4 and Theorem 4.11).

Theorem 4.21. Let p ∈ [1, ∞]. The forgetful functor U p : CMon(Metp∗) → Metp∗ has left adjoint D p.

Proof. Let (X, d, x0) ∈ Metp∗ , (N, ρ, +, 0) ∈ CMon(Metp∗) and ϕ : (X, d, x0) → (N, ρ, 0) ∈ Metp∗ .

(X,d, x0) (D(X, x0), W p[d, x0],0)

(N,ρ,0)

i

ϕ
ϕ̃

(D(X, x0), W p[d, x0],+,0)

(N,ρ,+,0)

∃!ϕ̃ (4.1)

By the commutativity of the left hand side of (4.1), we have that for all x ∈ X , ϕ̃(x) = ϕ̃(i(x)) = ϕ(x). For ϕ̃ to be a monoid 
homomorphism, we have ϕ̃(x1 + · · · + xn) = ϕ(x1) + · · · + ϕ(xn). Thus, if ϕ̃ exists it is unique. It remains to show that ϕ̃ is 
a metric map.

Let α = x1 + · · · + xm ∈ D(X, x0), β = x′
1 + · · · + x′

n ∈ D(X, x0) and let xm+1 = · · · = xm+n = x0 = x′
n+1 = · · · = x′

n+m . Then

ρ(ϕ̃(α), ϕ̃(β)) = ρ(ϕ(x1) + · · · + ϕ(xm+n),ϕ(x′
1) + · · · + ϕ(x′

m+n))

� min
σ∈
m+n

∥∥(ρ(ϕ(xi),ϕ(x′
i)))

m+n
i=1

∥∥
p � min

σ∈
m+n

∥∥(d(xi, x′
i))

m+n
i=1

∥∥
p = W p[d, x0](α,β).

Thus ((D(X, x0), W p[d, x0], 0), i) is a universal element, and the fact that D p is left adjoint to U p now follows from 
Lemma 2.12. �

The above constructions can also be formalized using metric pairs instead of pointed metric spaces, as we will now 
demonstrate.

Definition 4.22. Let U p : CMon(Metp∗) → Metpairs be the functor given by sending (M, d, +, 0) to (M, d, {0}) and f :
(M, d, +, 0) → (N, ρ, +, 0) to f : (M, d, {0}) → (N, ρ, {0}).

Note that U p is just the composition CMon(Metp∗)
U p−→ Metp∗ ↪→ Met∗ ↪→ Metpairs .

Definition 4.23. Let D p : Metpairs → CMon(Metp∗) be the functor given by sending (X, d, A) to (D(X, A), W p[d, A], +, 0) and 
f : (X, d, A) → (Y , d′, B) to f∗ : (D(X, A), W p[d, A],+, 0) → (D(Y , B), W p[d′, B], +, 0).

Recall the functors Q : Metpairs → Met∗ of Definition 3.8 and S p : Met∗ → Metp∗ of Definition 3.15. We will show that D p

is the left adjoint of U p (Theorem 4.25). This will follow from the following lemma, which shows that D p is naturally iso-
morphic to the composition D p S p Q , together with the fact that each of D p, S p, Q has a right adjoint, and the composition 
of these right adjoints is precisely U p .

Lemma 4.24. The functors D p : Metpairs → CMon(Metp∗) and D p S p Q : Metpairs → CMon(Metp∗) are naturally isomorphic.

Proof. Let (X, d, A) ∈ Metpairs . Then D p(X, d, A) = (D(X, A), W p[d, A], +, 0) and D p S p Q (X, d, A) = (D(X/A, A), W p[dp, A],
+, 0). Recall (see Remark 4.14) that we have monoid isomorphisms ϕ = ϕX : D(X \ A) → D(X, A) and ψ = ψX : D(X \ A) →
D(X/A, A). Let η = ηX : D(X, A) → D(X/A, A) be the composite monoid isomorphism ψXϕ−1

X . Explicitly, ηX is given by 
x1 +· · ·+ xn + D(A) �→ [x1] +· · ·+ [xn] + D(A). We will show that ηX is a isometry. Let x1 +· · ·+ xm, x′

1 +· · ·+ x′
n ∈ D(X \ A). 

Denote these elements by α and α′ , respectively. Let xm+1 = · · · = xm+n = x′
n+1 = x′

n+m = A. By Lemma 4.13,

W p[d, A](ϕα,ϕα′) = min
σ∈
m+n

∥∥∥(d(xi, x′
σ (i)))

m+n
i=1

∥∥∥
p
.

On the other hand, by Lemma 3.17,

W p[dp, A](ψα,ψα′) = min
σ∈
m+n

∥∥∥(dp(xi, x′
σ (i)))

m+n
i=1

∥∥∥
p

= min
σ∈
m+n

∥∥∥(min(d(xi, x′
σ (i)),

∥∥d(xi, A),d(A, xσ (i))
∥∥

p))m+n
i=1

∥∥∥
p
.

Therefore W p[dp, A](ψα, ψα′) � W p[d, A](ϕα, ϕα′). On the other hand, let σ0 ∈ 
n+m be a permutation such that 
W p[dp, A](ψα, ψα′) =

∥∥∥(min(d(xi, x′
σ0(i)),

∥∥d(xi, A),d(A, xσ0(i))
∥∥

p))m+n
i=1

∥∥∥ . If there is an index i with 
∥∥∥(d(xi, A),d(A, x′

σ0(i)))

∥∥∥

p p

14
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Fig. 1. For 1 � p � q � ∞, the relationships between the categories Metp∗ , Metq∗ , CMon(Metp∗), CMon(Metq∗), and Metpairs via the functors Ur , Dr , U r , Dr , 
Sr (r ∈ {p, q}), and Q , S p,q . The solid triangles commute and the dashed triangles commute.

< d(xi, x′
σ0(i)) then we may choose a new permutation σ1 with x′

σ1(i) = A and xσ−1
1 σ0(i) = A and which is otherwise the same 

as σ0. By induction we remove all such indices to obtain a new permutation σ ′
0 ∈ 
n+m with

‖(d(xi, x′
σ ′

0(i)))
m+n
i=1 ‖p =

∥∥∥(dp(xi, x′
σ0(i)))

m+n
i=1

∥∥∥
p
.

Therefore W p[dp, A](ψα, ψα′) = W p[d, A](ϕα, ϕα′). Then

W p[dp, A](ηα,ηα′) = W p[dp, A](ψϕ−1α,ψϕ−1α′)
= W p[d, A](ϕϕ−1α,ϕϕ−1α′) = W p[d, A](α,α′).

Thus we have an isomorphism ηX : D p(X, d, A) → D p S p Q (X, d, A).
To see that these isomorphisms are natural, let f : (X, d, A) → (Y , d′, B) be a morphism in Metpairs . The map D p f = f∗ :

D(X, A) → D(Y , B) is given by x1 + · · · + xn + D(A) �→ f (x1) + · · · + f (xn) + D(B), while the map D p S p Q f : D(X/A, A) →
D(Y /B, B) is given by [x1] + · · ·+ [xn] + D(A) �→ [ f (x1)] + · · ·+ [ f (xn)] + D(B). Thus (D p S p Q f )ηX = ηY D p f and hence the 
maps ηX assemble into a natural isomorphism η : D p ⇒ D p S p Q . �
Theorem 4.25. The forgetful functor U p : CMon(Metp∗) → Metpairs has left adjoint D p.

Proof. Since U p is given by the composition CMon(Metp∗)
U p−→ Metp∗ ↪→ Met∗ ↪→ Metpairs , by Theorems 3.9, 3.16, and 4.21, 

it has left adjoint the composite D p S p Q . By Lemma 4.24, D p ∼= D p S p Q and hence D p is, up to natural isomorphism, the 
left adjoint of U p . �

The relationship between the forgetful functors U p, U p , the free functors D p, D p , the quotient functors Q , and the 
functors S p, S p,q is summarized in Fig. 1.

5. Applications

In this section, we give several applications of universality. The first application shows that for a pointed metric space 
(X, d, x0), W p is the largest p-subadditive metric on D(X, x0) which in some sense extends the metric d. This result im-
plies an abstract form of converse stability from which we derive converse stability-type results in various settings. As a 
second application, we show how universality can be used to derive the correct form of Kantorovich-Rubinstein duality for 
persistence diagrams.

5.1. Maximality of the Wasserstein distances

The following theorem shows that W p is the largest p-subadditive metric extending the underlying metric.

Theorem 5.1. Let p ∈ [1, ∞] and let (X, d, A) be a metric pair. Then W p[d, A] is the largest p-subadditive metric ρ on D(X, A)

satisfying i∗ρ = dp .

Proof. Suppose that ρ is a p-subadditive metric on D(X, A) with i∗ρ = dp . Then (D(X, A), ρ, +, 0) ∈ CMon(Metp∗) and i :
(X, d, A) ↪→ (D(X, A), ρ, +, 0) is 1-Lipschitz. By Theorem 4.25, there is a unique 1-Lipschitz map ĩ : (D(X, A), W p[d, A], 0) →
(D(X, A), ρ, 0), and hence ρ � W p . �
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If d satisfies the p-strengthened triangle inequality then d = dp , and so we immediately obtain the following.

Corollary 5.2. Let p ∈ [1, ∞] and let (X, d, x0) ∈ Metp∗ . Then W p[d, x0] is the largest p-subadditive metric ρ on D(X, x0) satisfying 
i∗ρ = d.

As another application of universality, we show that for a pointed metric space (X, d, x0), W p[d, x0] = W p[dp, x0].

Corollary 5.3. Let (X, d, x0) ∈ Met∗ . Then W p[d, x0] = W p[dp, x0].

Proof. Note that i∗W p[d, x0] = i∗W p[dp, x0] = dp . Since W p[d, x0] and W p[dp, x0] are both p-subadditive, we have 
W p[d, x0] = W p[dp, x0] by Theorem 5.1. �

The preceding corollary justifies our use of the categories Metp∗ . By Lemma 4.18, if (X, d, x0) ∈ Metp∗ , then (X, d) embeds 
into (D(X, x0), W p[d, x0], 0). This corollary shows that we can always pass to dp without changing the Wasserstein distance, 
and so it suffices to work in Metp∗ .

5.2. Converse stability

We show that certain converse stability theorems follow from our results. The following is a completely formal (or 
“soft” [1]) converse stability result, from which specific converse stability theorems follow.

Theorem 5.4 (Abstract Converse Stability). Fix p ∈ [1, ∞]. Let (X, x0) be a pointed set and let ρ be a p-subadditive metric on D(X, x0). 
Then ρ � W p[i∗ρ, x0].

Proof. Let d = i∗ρ and consider the pointed metric space (X, d, x0). Since ρ is p-subadditive by assumption and i∗ρ = d by 
definition, the result immediately follows from Corollary 5.2. �
Example 5.5 (Converse Algebraic Stability). (See [19] for a version of this result that applies to all pointwise finite dimensional 
persistence modules.) Let Vect(K )RFin denote the monoid of isomorphism classes of persistence modules which decompose 
as a finite direct sum of interval modules. We can identify Vect(K )RFin with D(Int(R), ∅) via the map that sends a direct 
sum of interval modules to the corresponding formal sum of intervals. Equip Vect(K )RFin with the interleaving distance 
dI [9,11,19]. Note that dI is ∞-subadditive. Indeed, if (ϕ, ψ) is an ε-interleaving between M and N and (ϕ′, ψ ′) is an η-
interleaving between M ′ and N ′ , then (ϕ ⊕ ϕ′, ψ ⊕ ψ ′) is a max(ε, η)-interleaving between M ⊕ M ′ and N ⊕ N ′ . Note that 
the interleaving distance for interval modules is (dH )∞ , the ∞-strengthening of the Hausdorff distance with respect to ∅. 
That is, i∗dI = (dH )∞ , and hence by Theorem 5.4 and Corollary 5.3, dI � W∞[(dH )∞, ∅] = W∞[dH , ∅].

For a second version of this result, introduce an equivalence relation on Vect(K )RFin given by M ∼ N if dI (M, N) = 0. Then 

we can identify Vect(K )RFin/ ∼ with D(R
2
�, �) via the map that sends a direct sum of interval modules to the corresponding 

persistence diagram. By Theorem 5.4, dI � W∞[d, �], where d is the �∞-distance. The distance W∞[d, �] is the bottleneck 
distance. Note that this distance restricted to the images of interval modules is d∞ , the ∞-strengthening of the �∞-distance.

Example 5.6 (Converse Algebraic Stability Theorem for generalized persistence modules). Consider generalized persistence modules 
M : P → A. If P is equipped with certain additional structure, such as a subadditive projection on translations or a superadditive 
family of translations, then AP can be equipped with an interleaving distance dI [1]. As in Example 5.5, the interleaving 
distance dI is ∞-subadditive. Let Ind be a set of indecomposable generalized persistence modules in AP with basepoint the 
zero module 0. Then we have the set of generalized barcodes D(Ind, 0). There is a bijection from the set of isomorphism 
classes of generalized persistence modules in AP that are isomorphic to a finite direct sum of elements of Ind to D(Ind, 0), 
which sends direct sums to formal sums. By Theorem 5.4, dI � W∞[dI , 0], where the latter is also called the bottleneck 
distance [5].

5.3. Kantorovich-Rubinstein duality

The classical Kantorovich-Rubinstein duality theorem says that the classical 1-Wasserstein distance w1(μ, ν) between 
probability measures μ and ν on a complete and separable metric space (X, d) is equal to sup

∫
X f d(μ − ν), where the 

supremum is taken over all 1-Lipschitz functions. A version of Kantorovich-Rubinstein duality holds for persistence diagrams 
as well. We will show that

W1(
∑n

i=1 ai,
∑m

j=1 b j) = sup{∑n
i=1 k(ai) − ∑m

j=1 k(b j)},
where now the supremum is taken over all 1-Lipschitz functions k : X →R with k(x0) = 0.
16
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To motivate the form that Kantorovich-Rubinstein duality takes for persistence diagrams, we first show how Theorem 1.3
can be used to derive the inequality

W1(
∑n

i=1 ai,
∑m

j=1 b j) � sup{∑n
i=1 k(ai) − ∑m

j=1 k(b j)}.
We will then use the classical Kantorovich-Rubinstein duality theorem to show that this is in fact an equality.

Let (X, d, x0) ∈ Met∗ and consider the commutative metric monoid (R, | · |, +, 0), where | · | denotes the metric induced 
by absolute value. The inequality |(a + b) − (c + d)| � |a − c| + |b − d| implies that (R, | · |, +, 0) ∈ CMon(Met∗). Let h :
X → R be a 1-Lipschitz map. Define k : X → R by k(x) = h(x) − h(x0) for all x ∈ X . Then k(x0) = 0 and |k(x) − k(y)| =
|h(x) − h(x0) − (h(y) − h(x0))| = |h(x) − h(y)| � d(x, y) so that k is a pointed metric map. By Theorem 1.3, there is a 
unique morphism of 1-subadditive commutative metric monoids k̃ : (D(X, x0), W1, +, 0) → (R, | · |, +, 0) such that k̃ ◦ i = k. 
Explicitly, k̃ is given by 

∑
i ci �→ ∑

i k(ci) for ci ∈ X . Then for α = ∑n
i=1 ai , β = ∑m

j=1 b j ∈ D(X, x0) with m � n, we have 

|k̃(α) − k̃(β)| =
∣∣∣k̃ (∑n

i=1 ai
) − k̃

(∑m
j=1 b j

)∣∣∣ =
∣∣∣∑n

i=1 k(ai) − ∑m
j=1 k(b j)

∣∣∣ =
∣∣∣∑n

i=1 h(ai) − ∑m
j=1 h(b j) + (m − n)h(x0)

∣∣∣. Since k̃

is 1-Lipschitz, we obtain the inequality 
∣∣∣∑n

i=1 h(ai) − ∑m
j=1 h(b j) + (m − n)h(x0)

∣∣∣� W1
(∑n

i=1 ai, 
∑m

j=1 b j
)
. Therefore

sup
{ n∑

i=1

h(ai) −
m∑

j=1

h(b j) + (m − n)h(x0)

∣∣∣∣ h : X → R, 1-Lipschitz

}
� W1

( n∑
i=1

ai,

m∑
j=1

b j

)
, (5.1)

or equivalently,

sup
{ n∑

i=1

k(ai) −
m∑

j=1

k(b j)

∣∣∣∣ k : X → R, k(x0) = 0, 1-Lipschitz

}
� W1

( n∑
i=1

ai,

m∑
j=1

b j

)
.

To see that this inequality is in fact an equality, consider α = a1 + · · · + an, β = b1 + · · · + bm ∈ D(X, x0) and consider 
the classical 1-Wasserstein distance w1(

∑n
i=1 δai + (r −n)δx0 , 

∑m
i=1 δb j + (r −m)δx0 ), where δx is the Dirac measure at x and 

r = m +n. It is known that for sums of Dirac measures the computation of w1 is equivalent to the linear assignment problem. 
In other words, letting α̃ = ∑n

i=1 δai + (r − n)δx0 and β̃ = ∑m
i=1 δb j + (r − m)δx0 , we have

w1

(
α̃, β̃

)
= min

σ∈Sn+m

∥∥(d(ai,bσ (i))
n+m
i=1 )

∥∥
1 = W1[d, x0](α,β),

where an+1 = · · · = an+m = bm+1 = · · · = bn+m = x0. It follows from Kantorovich-Rubinstein duality for measures [23] that

sup

⎧⎨
⎩

∫
X

hd(α̃ − β̃) | h : X → R, 1-Lipschitz

⎫⎬
⎭ = w1(α̃, β̃) = W1[d, x0](α,β). (5.2)

Since the left-hand side of (5.2) is precisely the left-hand side of (5.1), we obtain the desired equality.
For a direct proof of Kantorovich-Rubinstein duality in this setting using linear programming see [2, Appendix C].
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