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1 Introduction 

Persistent homology is an important tool in topological data analysis, whose goal is 
to use ideas from topology to understand the “shape of data” [8, 13]. 

An important example of persistent homology starts with a smooth, compact 
manifold M and a Morse function .f : M → R. Classical Morse theory concerns 
itself with the study of M via the critical points of f by analyzing the sublevel sets 
.F(a) = f−1(∞, a] and how their topology changes as a varies. The subspaces 
.{F(a)}a∈R and their inclusion maps may be used to define a functor .F : R → Top, 
where . R is the category given by the linear order on . R and .Top is the category 
of topological spaces and continuous maps. Composing with singular homology in 
some degree j and coefficients in a field k, we obtain a functor . HjF : R → Vectk
with codomain the category of k-vector spaces and k-linear maps. Such a functor is 
called a persistence module. 

Let . βj denote the j th Betti number of M , and let .Mj denote the number of critical 
points of index of j of f . Let .M(t) = ∑

j Mj t
j and .β(t) = ∑

j βj t
j . Morse 

observed that .M(t) − β(t) = (1 + t)D(t) for some polynomial .D(t) with non-
negative coefficients [28]. That is, the excess of critical points of the Morse function 
comes in pairs that differ in index by one. A strengthening of this observation is a 
central result in persistent homology. The persistence module .HjF decomposes into 
a direct sum of indecomposable summands given by one-dimensional vector spaces 
supported on an interval. The end points of these intervals are exactly the critical 
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values of the paired critical points in Morse’s theorem. This pairing of critical 
values, called the persistence diagram, is central to persistent homology. 

While this setting has been very successful, in many applications, the data are 
best described not by a single function .f : M → R but by a one-parameter family 
of functions .ft : M → R, where .t ∈ I = [0, 1]. For example, one may handle noise 
in the data with a procedure dependent on a parameter t . The resulting homological 
data may be encoded in a multiparameter persistence module. However, in general, 
this module does not decompose into one-dimensional summands, and there is no 
complete invariant analogous to the persistence diagram [9]. 

We approach multiparameter persistent homology using two distinct generaliza-
tions of Morse theory. The first is a parametrized approach to Morse theory, known 
as Cerf theory. Cerf theory was initiated by J. Cerf in his celebrated proof of the 
pseudo-isotopy theorem [10]. One outcome of his work was a useful stratification 
on the space of all smooth functions on a smooth compact manifold, stratified 
by singularity type. The existence of this stratification implies that generic, one-
parameter families of smooth functions are almost always Morse, except for finitely 
many parameter values at which the function may have cubic, or “birth-death” 
type, singularities. Cerf developed a convenient framework for understanding how 
singularities merge, split, and pass one another in families. This understanding is 
paramount for our analysis. 

The second variant is Morse theory adapted to the case of manifolds with 
boundary. This was developed around the same time as Cerf theory but by several 
authors independently [3, 15, 20]. Many statements in classical Morse theory can 
be adapted to manifolds with boundary, so long as the gradient or gradient-like flow 
used is tangent to the boundary. Critical points occurring on the interior behave as 
one expects, but on the boundary, they come in two distinct flavors, either stable or 
unstable, depending on the local flow. Altogether, Morse theory for manifolds with 
boundary is a powerful extension of its classical analog. We have only touched the 
surface of using this subject in multiparameter persistence. 

1.1 Our Contributions 

Given a topological space X and a one-parameter family of (not necessarily 
continuous) functions .f̃ : I × X → R, we define a fibered version of . f̃ by letting 
.f : I ×X → I ×R be given by .f (t, x) = (t, f̃ (t, x)). The collection of subspaces 

.F(a, b, c) = f−1([a, b] × (−∞, c]) ⊂ I × X , (1) 

for .0 ≤ a ≤ b ≤ 1 and .c ∈ R are our main objects of study. For . [a, b] ⊂ [a′, b′]
and .c ≤ c′, there is an inclusion of .F(a, b, c) into .F(a′, b′, c′). These topological 
spaces and continuous maps describe a functor .F : IntI×R → Top, where . IntI×R
is the category given by the product of the partial order on the closed intervals in 
I and the linear order on . R. Composing with singular homology in some degree j
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with coefficients in a field k, we obtain a functor .HjF : IntI × R → Vectk. This  
functor is a multiparameter persistence module. 

We prove that this functor is stable with respect to the interleaving distance for 
perturbations of the one-parameter family of smooth functions (Theorem 3.2). 

We consider several examples of such one-parameter families of functions 
and give complete descriptions of their multiparameter persistence modules 
(Sects. 4.1, 4.3, 4.4, and 6). In particular, we give decompositions of these modules 
into their indecomposable summands and provide corresponding visualizations 
(Figs. 5, 7, and 10). We also show that indecomposable persistent modules arising 
from one-parameter families of functions may have arbitrarily large dimension 
(Sect. 4.2). 

Now consider the case where X is a smooth compact manifold and . f̃ is smooth. 
Let .F0(a, b, c) = f−1([a, b] × {c}). We prove (Theorem 5.2) that for generic a, 
b, and c, .(F (a, b, c), F0(a, b, c)) forms a cobordism between the manifolds with 
boundary .(F (a, a, c), F0(a, a, c)) and .(F (b, b, c), F0(b, b, c). Furthermore, it is 
naturally equipped with a Morse function 

. π[a,b] : F(a, b, c) → [a, b] ,

given by projection onto the interval .[a, b]. This Morse function has no critical 
points on .F(a, b, c) \ F0(a, b, c), and the positive and negative critical points on 
.F0(a, b, c) (Definition 5.1) correspond to boundary stable and boundary unstable 
critical points, respectively. 

We remark that if we restrict our collection of subspaces in (1) to those with . a =
0, then we obtain a multiparameter persistence module indexed by .I×R ⊂ R2, with 
the usual product partial order. However, this two-parameter persistence module is 
a weaker invariant than our three-parameter persistence module. For example, if X 
is the one-point space, then our persistence module is a complete invariant of one-
parameter families of functions, but the weaker invariant is not. 

We also remark that in applications computing the full set of critical values 
(the Cerf diagram—Sect. 2.4) should not be considered to be a prerequisite. In the 
classical situation of sublevel set persistent homology of a single smooth function 
(e.g., a sum of a large number of Gaussians), instead of computing the set of critical 
values, one computes the sublevel set persistent homology of a piecewise linear 
approximation. 

1.2 Related Work 

Much of the recent work on multiparameter persistent homology focuses on either 
its algebraic structure, for example, [4, 6, 16, 26], or its computational challenges, 
for example, [11, 22, 24, 29]. Other authors have begun to take a more geometric 
approach similar to our own, such as [14, 25]. There are two recent geometric 
approaches that are related but still distinct. In [7], the authors use handlebody
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theory to understand bi-filtrations arising from preimages of 2-Morse functions 
.f : M → R2. In a similar vein, the authors of [1] use singularities of maps . M → R2

to understand preimages in M . 

1.3 Motivation 

While our framework is theoretical, we are motivated by applications. We highlight 
two examples: kernel density estimation and kernel regression. 

1.3.1 Kernel Density Estimation 

Suppose .{x1, x2, . . . , xn} ⊂ Rd are samples drawn independently from an unknown 
density function f . An empirical estimator of the density is obtained by the average 
of bump functions centered at each . xi . The bump functions are translations of a 
bump function, K , centered at the origin called a kernel. That is, 

. f̂α(x) =
1
nα

n∑

i=1

K

(
x − xi

α

)
,

where the parameter . α is called the bandwidth. A standard choice is the Gaussian 
kernel, .K(x) = 1

(2π)d/2 exp(−∥x∥2/2). Other examples include the Epanechnikov 
and triangular kernels, which appear (up to rescaling) as the functions .g(t) and .g̃(t), 
respectively, of Sect. 4.1. 

Properties of the kernel density estimator . f̂ , such as the number of modes (i.e., 
local maxima), depend on the bandwidth . α. In order to obtain a global understanding 
of these properties for various of . α and how they interact, we consider the one-
parameter family of functions .g̃ = −f̂ : R × I → R, where .g̃(t, x) = −f̂t (x) and 
I is some bounded interval of parameter values. We obtain a collection of spaces, G, 
given by (1) and its associated multiparameter persistence modules, . HjG : IntI ×
R → VectK. We may use .H0G for a functorial analysis of the estimation of the 
modes of f . In particular, the dimension of .H0G(α,α,−c) equals the number of 
connected components of the superlevel set .f−1

α ([c,∞)). Furthermore, the linear 
maps .H0G(a, a,−c) → H0G(a, b,−c) ← H0G(b, b,−c) allow one to study the 
persistence of these connected components. 

1.3.2 Kernel Regression 

Closely related to kernel density estimation is kernel regression. Suppose we are 
given data .{(x1, y1), . . . , (xn, yn)} ⊂ Rd × R sampled from the graph of some 
unknown function .f : Rd → R. Consider the Nadaraya-Watson estimator



Multiparameter Persistent Homology via Generalized Morse Theory 59

. f̂α(x) =
∑n

i=1 Kα(x − xi)yi∑n
i=1 Kα(x − xi)

.

In the same way as for kernel density estimation, we obtain a one-parameter family 
of functions and associated persistence modules. 

1.4 Outline 

The paper is organized as follows. In Sect. 2, we recall definitions from geometric 
topology and Cerf theory. We define our primary objects of study including 
our multiparameter persistence modules in Sect. 3. In Sect. 4, we provide several 
examples of one-parameter families of functions on manifolds and visualizations 
of the relevant cobordisms and analyze the multiparameter persistence modules. 
Finally, in Sect. 5, we prove our main theoretical result that .F(a, b, c) is generically 
equipped with a Morse function and analyze its critical points. 

2 Background 

We start with providing some background from geometric topology. 

2.1 Manifolds with Corners 

There are several different, inequivalent notions of manifolds with corners and 
smooth maps between them in the differential topology literature. The following 
is a brief summary of [21]. Let .Hn

k = {(x1, x2, . . . , xn) | x1, x2, . . . , xk ≥ 0}. In  
particular, .Hn

0 = Rn and .Hn
1 = [0,∞) × Rn−1. 

Definition 2.1 ([21, Definition 2.1]) Let M be a second countable Hausdorff 
space.

• An n-dimensional chart on M without boundary is a pair .(U,ψ), where U is an 
open subset of . Rn and .ψ : U → M is a homeomorphism onto a nonempty open 
set .ψ(U).

• An n-dimensional chart on M with boundary for .n ≥ 1 is a pair .(U,ψ), where 
U is an open subset in . Rn or .Hn

1 and .ψ : U → M is a homeomorphism onto a 
nonempty open set .ψ(U).

• An n-dimensional chart of M with corners for .n ≥ 1 is a pair .(U,ψ), where U 
is an open subset of .Hn

k for .0 ≤ k ≤ n and .ψ : U → M is a homeomorphism 
onto a nonempty open subset .ψ(U).
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Definition 2.2 For .X ⊂ Rn and .Y ⊂ Rm, a map .f : X → Y is smooth if it can be 
extended to a smooth map between open neighborhoods of X and Y . If .m = n and 
.f−1 is also smooth, then f is a diffeomorphism. 

Definition 2.3 An n-dimensional atlas for M without boundary, with boundary, 
or with corners is a collection of n-dimensional charts without boundary, with 
boundary, or with corners .{(Uj ,ψj ) | j ∈ J } on M such that . M = ∪jψj (M)

and are compatible in the following sense: . ψj ◦ ψ−1
k : ψ−1

k (ψj (Uj ) ∩ ψk(Uk)) →
ψ−1
j (ψj (Uj )∩ψk(Uk)) is a diffeomorphism. An atlas is maximal if it is not a proper 

subset of any other atlas. 

Definition 2.4 An n-dimensional manifold without boundary, with boundary, or 
with corners is a second countable Hausdorff space M together with a maximal 
n-dimensional atlas of charts without boundary, with boundary, or with corners. 

Example 2.5 The space . % of Fig. 2 provides an example of a manifold with 
corners. There are six corner points (with neighborhoods homeomorphic to . H 2

2 ) 
at the intersections of . V0, . V1, and Y . The spaces . V0, . V1, and Y are examples of 
manifolds with boundary. Their interiors, as well as the interior of . %, are examples 
of manifolds without boundary. 

2.2 Generalized Morse Functions 

Morse theory provides powerful methods for understanding manifolds through the 
lens of smooth functions. Classical Morse theory concerns the study of smooth, 
compact manifolds without boundary and allows for a transformation from smooth, 
continuous data (manifolds) to discrete data (critical points and values). An 
adaptation to Morse theory for manifolds with boundary extends this to the setting 
of cobordisms. Another generalization we will consider, known as Cerf theory, 
generalizes this to the study of one-parameter families of functions. The remainder 
of this subsection is a summary and restatement of ideas from [12, §1] and [27]. 

Let M and Q be smooth, compact manifolds of dimensions n and q, respectively, 
and let .f : M → Q be a smooth map. A point .p ∈ M is a critical point or singular 
point, if .rank .dpf = 0 or 

. rank dpf < min(n, q) .

The set of all critical points of f is denoted .&(f ). 
Assume .n ≥ q. A point .p ∈ &(f ) is a fold singularity of index j (see Fig. 1a) if 

for some choice of local coordinates near p, the map  f is given by 

.φ : Rq−1 × Rn−q+1 → Rq−1 × R
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.(t, x) /→

⎛

⎝t,−
j∑

i=1

x2
i +

n−q+1∑

i=j+1

x2
i

⎞

⎠ , (2) 

where .t ∈ Rq−1 and .x = (x1, x2, . . . , xn−q+1) ∈ Rn−q+1. Let .&10(f ) be the set of 
all fold singularities. 

For .q > 1, a point .p ∈ &(f ) is a cusp singularity of index .j + 1/2 (see Fig. 1b) 
if for some choice of local coordinates near p, the map  f is given by 

. ψ : Rq−1 × R × Rn−q → Rq−1 × R

.(t, z, x) /→

⎛

⎝t, x3 + 3t1z −
j∑

i=1

x2
i +

n−q∑

i=j+1

x2
i

⎞

⎠ , (3) 

where .t = (t1, t2, . . . , tq−1) ∈ Rq−1, .z ∈ R, and .x = (x1, x2, . . . , xn−q) ∈ Rn−q . 
Set .&11(f ) to be the set of all cusp singularities. Finally, let . &1(f ) = &10(f ) ∪
&11(f ). 

Remark 2.6 Consider the case .q = 1 and .Q ⊂ R, so that all terms of Eq. (2) 
involving t vanish. In this case, the fold singularities of .f : M → Q coincide with 
nondegenerate critical points as in usual Morse theory. If such an f has only fold 
singularities, then f is known as a Morse function. 

Remark 2.7 Both fold and cusp singularities are locally fibered over .Rq−1 in the 
sense that the following commute: 

where . π is the projection onto .Rq−1. A single fibered function can be interpreted 
as a family of functions .φt : Rn−q+1 → R or .ψt : R × Rn−q → R, indexed over 
.t ∈ Rq−1. In this language, the folds are constant families (see Fig. 1a). The cusps 
consist of families of functions with two nondegenerate critical points of index j 
and .j + 1 for .t1 < 0, no critical points for .t1 > 0, and a cubic or “birth-death” 
singularity of index .j + 1/2 for .t1 = 0 (see Fig. 1b). 

2.3 Cobordisms 

In this section, we recall some basic notions from Morse theory for manifolds with 
boundary from the well-written summary of [2]. The reader may also consult some
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(a) (b) 

Fig. 1 Local models for (a) a fold singularity and (b) a cusp singularity. The middle slice of the 
cusp singularity has a cubic singularity. This is often referred to as a “birth–death” singularity, 
since the two critical points to the left can be viewed as being “born” (moving right to left) or as 
“dying” (moving left to right) 

V0 
V1 

Y 

Ω 

Fig. 2 A manifold with corners . % provides a cobordism between two manifolds with boundary 
. V0 and . V1. The boundary .∂V0 consists of two points and .∂V1 consists of four points. The manifold 
with boundary Y can be viewed as a cobordism between .∂V0 and .∂V1. Furthermore, . % is a left-
product cobordism 

of the original sources, such as [3, 15, 20]. We will assume that all manifolds (with 
or without boundaries or corners) are smooth. 

Let . V0 and . V1 denote two compact n-manifolds with boundaries .∂V0 and .∂V1, 
respectively. Let . % be a compact .(n+1)-manifold with corners, .∂% = Y ∪V0 ∪V1, 
where .V0 ∩ V1 = ∅, and .Y ∩ V0 = ∂V0, .Y ∩ V1 = ∂V1. In this case, we say . (%, Y )

is a cobordism between .(V0, ∂V0) and .(V1, ∂V1). See Fig. 2. Such a cobordism is 
a left-product cobordism if . % is diffeomorphic to .V0 × [0, 1] or a right-product 
cobordism if . % is diffeomorphic to .V1 × [0, 1].
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Fixing a Riemannian metric on . % allows us to consider the gradient .∇F of a 
smooth function .F : % → [a, b]. A critical point z of F is Morse if the Hessian 
of F at z is nondegenerate. The function F is a Morse function on the cobordism 
.(%, Y ) if .F−1(a) = V0, .F−1(b) = V1, there are no critical points on .V0 ∪ V1, F 
only has Morse critical points, and .∇F is everywhere tangent to Y . 

The unstable manifold .Wu
z of a critical point z is the set of all points, which flow 

out from z under .∇F : 

. Wu
z = {x | lim

t→−∞
Φt (x) = z} ,

where . Φt is the flow generated by .∇F . With the same notation, the stable manifold 
.Ws

z of a critical point z is given by 

. Ws
z = {x | lim

t→∞ Φt (x) = z} .

The stable and unstable manifolds are locally embedded disks [19]. 
Unlike usual Morse theory, the critical points for a Morse function on a manifold 

with boundary come in a variety of types. If z is a critical point and .z ∈ Y , then z 
is called a boundary critical point. Otherwise, z is called an interior critical point. 
We are primarily interested in boundary critical points, of which there are again two 
types, determined by the gradient flow. A boundary critical point is boundary stable 
if .TzWu

z ⊂ TzY ; otherwise, it is  boundary unstable. 
As usual, the index of a boundary critical point z is defined as the dimension of 

the stable manifold . Ws
z . If z is boundary stable, then the index of z is the usual index 

of .F |Y plus one. On the other hand, if z is boundary unstable, then the index of z 
coincides with the usual notion of index of the restriction .F |Y . See Example 2.11. 

Remark 2.8 Note that there are no boundary unstable critical points of index . n+1
or boundary stable critical points of index 0. 

Remark 2.9 We consider the flow generated by .∇F , as is frequently used in most 
mathematics literature. In other areas such as dynamical systems and physics, the 
flow generated by .−∇F is commonly used. The two versions are equivalent, since 
the stable and unstable manifolds swap after replacing the flow generated by . ∇F

with that generated by .−∇F . 

Proposition 2.10 ([2, Lem 2.10, Thm 2.27, Prop 2.38]) Let .(%, Y ) be a cobor-
dism between .(V0, ∂V0) and .(V1, ∂V1).

• If .(%, Y ) admits a Morse function whose critical points are all boundary stable, 
then .(%, Y ) is a left-product cobordism.

• If .(%, Y ) admits a Morse function whose critical points are all boundary 
unstable, then .(%, Y ) is a right-product cobordism.

• If .(%, Y ) admits a Morse function with no critical points, then .(%, Y ) is both a 
left- and right-product cobordism.
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Example 2.11 In Fig. 2, the projection of . % onto the horizontal axis yields a Morse 
function .F : % → [0, 1], in which .F−1(0) = V0, .F−1(1) = V1. This function has 
no interior critical points and a single boundary critical point. The boundary critical 
point is boundary stable and located at the vertex of the parabola of Y in . %. This is  
an index 1 critical point. Proposition 2.10 implies . % is a left-product cobordism, as 
is evident from Fig. 2. 

If we post-compose F with the involution .t /→ 1− t , then we again have a Morse 
function with no interior critical points. This composition has the same boundary 
critical point as before but now it is boundary unstable. The index of this critical 
point is 1. 

2.4 Cerf Theory 

Let X be a smooth, compact n-manifold and let .I = [0, 1] denote the unit interval. 
A one-parameter family of functions on X is a family of smooth functions . f̃t : X →
R, where .t ∈ I , and the family varies smoothly with respect to t . This is equivalent 
to specifying a single smooth function .f̃ : I × X → R. In either case, this data 
gives rise to a map fibered over the interval 

. f : I × X → I × R , f (t, z) = (t, f̃ (t, z)) ,

in the sense that the following diagram commutes: 

(4) 

where . πI is the projection onto the I factor. 
Our primary tool for understanding such families of functions is the Cerf 

diagram. 

Definition 2.12 The Cerf diagram (or Kirby diagram) of a family of functions . f̃ :
I × X → R is given by 

. 
⋃

t∈I, x∈&(f̃t )

(t, f̃t (x)) ⊂ I × R .

We label each nondegenerate critical value of . f̃t with its corresponding index. 

The Cerf diagram encodes the critical value information of a family of functions 
as the time parameter t varies [10, 17, 23]. A simple Cerf diagram is shown in Fig. 3.
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Fig. 3 A Cerf diagram for a 
certain generic family of 
smooth functions. Each 
nondegenerate critical value 
is labeled by the index of its 
critical point. See also [18, 
Section A.3, Figures E, F, G.] 

2 

2 

2 

1 
0 1 

1 
0 

Each (non-end) point on the curves corresponds to a nondegenerate critical value of 
. f̃t , and the point where two such curves terminate is a cubic singularity of . f̃t . 

We will assume that the family . f̃ is generic, meaning that for all but finitely 
many t , the fiber . f̃t has finitely many nondegenerate critical points, each of which 
has a distinct critical value. Furthermore, we will assume that all remaining fibers 
have either finitely many nondegenerate critical points exactly two of which have a 
common critical value or a single cubic singularity and finitely many nondegenerate 
critical points all of which have distinct critical values. 

2.5 Wrinkled Maps 

We recall the notion of a wrinkle from [12]. Let 

. w : Rq−1 × Rn−1 × R1 → Rq−1 × R1

be given by 

. w(t, x, z) =

⎛

⎝t, z3 + 3
(
|t |2 − 1

)
z −

j∑

i=1

x2
i +

n−q∑

i=j+1

x2
i

⎞

⎠ ,

where .|t |2 = ∑q−1
i=1 t2

i . The set of critical points of w is 

. &(w) = {x = 0 , z2 + |t |2 = 1} ⊂ Rq−1 × Rn−q × R ,

and can be identified with a .(q − 1) sphere .Sq−1 ⊂ Rq−1 × {0} × R. This sphere 
has equator 

. {x = 0 , z = 0 , |t | = 1} ⊂ &1(w) ,

which we identify with .Sq−2. This equator consists of cusp singularities of index 
.j + 1/2, its upper hemisphere .&1(w) ∩ {z > 0} consists of fold singularities of 
index j , and the lower hemisphere .&1(w)∩ {z < 0} consists of fold singularities of 
index .j + 1.
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Definition 2.13 ([12]) For an open subset . U ⊂ M , a map .f : U → Q is called 
a wrinkle of index .s + 1/2 if it is equivalent to the restriction of w to an open 
neighborhood .V ⊃ D, where D is the q-dimensional disk . {z2 + |y|2 ≤ 1, x = 0}
bounded by .&1(w). 

A map .f : M → Q is called wrinkled if there exist disjoint open subsets 
.U1, U2, . . . , Ul ⊂ M such that:

• For each i, .f |Ui is a wrinkle.
• If .U = ∪l

1Ui , then .f |M\U is a submersion. 

Definition 2.14 A map .f : M → Q is called wrinkled with folds if there exist 
disjoint open subsets .U1, U2, . . . , Ul ⊂ M such that:

• For each i, .f |Ui is a wrinkle.
• If .U = ∪l

1Ui , then .f |M\U has only fold singularities. 

The singular locus of a wrinkled map decomposes into a union of wrinkles . Si =
&1(f |Ui ) ⊂ Ui . As before, each . Si has a .(q − 2)-dimensional equator of cusps, 
which divides . Si into two hemispheres of folds of adjacent indices. The singular 
locus of a wrinkled map with folds decomposes into a union of wrinkles and folds. 

3 Persistence Modules for One-Parameter Families 
of Functions 

In this section, we define multiparameter persistence modules for one-parameter 
families of functions. The unit interval .[0, 1] is denoted by I . 

3.1 Indexing Categories 

Let .IntI denote the category whose objects are closed intervals .[a, b] ⊂ I and whose 
morphisms .[a, b] → [c, d] are inclusions .[a, b] ⊂ [c, d]. Let . *2 = {(a, b) | 0 ≤
a ≤ b ≤ 1}. The category .IntI is isomorphic to the category . !2, whose objects 
are points .(a, b) ∈ *2, and has a unique morphism .(a, b) → (c, d) if and only if 
.c ≤ a ≤ b ≤ d. Finally, let . R denote the category corresponding to the poset of 
real numbers .(R,≤). Then we have the isomorphic product categories .IntI ×R and 
.!2 × R. 

Note that there may not exist a map between two objects of .!2 × R, in contrast 
to the (ordinary) sublevel set persistence of Morse functions. There does exist, 
however, a zigzag of maps between any two objects due to the fact that . IntI ∼= !2

is a join-semilattice. In particular, .[a, b] ⊂ [min(a, a′),max(b, b′)] ⊃ [a′, b′]; for  
example, see the two arrows in the third triangular slice in Fig. 5.
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For . n ≥ 1, let .(Rn,≤) be the set . Rn together with the product partial order. That 
is, .(x1, . . . , xn) ≤ (y1, . . . , yn) if and only if .xk ≤ yk for all .1 ≤ k ≤ n. Then 
the poset .*2 includes in the poset .(R2,≤) under the mapping .(a, b) /→ (−a, b). 
It follows that the product poset .*2 × R includes in the poset .(R3,≤) under the 
mapping .(a, b, c) /→ (−a, b, c). Thus, we have an inclusion of categories . !2 ×
R ↪→ R3 where . R3 denotes the category corresponding to the poset . (R3,≤). For  
a poset P and . p ∈ P , let .Up = {q ∈ P | p ≤ q}, called the up-set of p. Then 
our persistence modules may also be considered to be .R3-graded modules over the 
monoid ring .K[U0], where . U0 is the up-set of .0 ∈ R3 (see [4, 26]). 

3.2 Diagrams of Spaces 

Let .Top denote the category of topological spaces and continuous maps. Let X 
be a topological space, and let .f̃ : I × X → R be a (not necessarily continuous in 
either variable) real-valued function on .I×X, which corresponds to a one-parameter 
family of real-valued functions on X, given by .f̃t (x) = f̃ (t, x). Let . f : I × X →
I × R be the function given by .f (t, z) = (t, f̃ (t, z)). Then we have a diagram of 
spaces of X given by .F : IntI×R → Top or equivalently .F : !2 ×R → Top given 
by .F([a, b], c) = f−1([a, b] × (−∞, c]) or . F(a, b, c) = f−1([a, b] × (−∞, c])
and morphisms given by inclusions of the corresponding inverse images. For any 
subcategory . C of .IntI × R, we can restrict a diagram of space F to . C, forming a 
subdiagram of spaces indexed on . C; we omit . C if it is clear from context. If the 
subcategory is finite, we say the diagram of spaces is finite. 

Remark 3.1 The target category of a diagram of spaces of X can be restricted 
to .Sub(I × X), the category whose objects are subspaces of .I × X and whose 
morphisms are given by inclusion. 

3.3 Multiparameter Persistence Modules 

Let .Vectk denote the category of vector spaces over a field k and k-linear maps. 
Given a one-parameter family . f̃ of real-valued functions on a topological space 

X as in Sect. 3.2, we have the corresponding diagram of topological spaces F . For  
. j ≥ 0, let .Hj = Hj(−; k) denote the singular homology functor in degree j with 
coefficients in the field k. The  multiparameter persistence module corresponding to 
. f̃ is given by the functor .HjF : IntI×R → Vectk or equivalently . HjF : !2×R →
Vectk.
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3.4 Betti and Euler Characteristic Functions 

For applied mathematicians, it is sometimes preferable to ignore persistence entirely 
(i.e., the morphisms in the persistence module) and only compute the pointwise 
Betti numbers or, cruder still, the pointwise Euler characteristic. While much of 
the mathematical structure is lost, being able to complete computations on vastly 
larger datasets may be more important. In this section, we show how these coarser 
invariants fit within our framework. 

Whenever they are well defined, we have the following. For . j ≥ 0, the  j th Betti 
function .βj : *2 × R → Z is given by 

. βj (a, b, c) = rank(HjF (a, b, c)).

The Euler characteristic function .χ : *2 × R → Z is given by 

. χ(a, b, c) =
∑

j

(−1)jβj (a, b, c).

In cases where F is given by a cellular complex, the Euler characteristic equals the 
alternating sum of the number of cells in each dimension. 

3.5 Stability 

We prove that our multiparameter persistence modules are stable with respect to 
perturbations of the underlying one-parameter family of functions. 

Let X be a topological space and consider two one-parameter families of (not 
necessarily continuous) functions, .f̃ , g̃ : I × X → R. Let . F,G : !2 × R → Top
be the corresponding diagrams of spaces defined in Sect. 3.2, and for . j ≥ 0, let  
.HjF,HjG : !2 × R → VectK be the corresponding multiparameter persistence 
modules defined in Sect. 3.3. Let .d∞(f̃ , g̃) = sup(t,x)∈I×X|f̃t (x) − g̃t (x)|. 

We define a superlinear family of translations [5, Section 3.5] on .!2×R given by 
.%ε(a, b, c) = (a, b, c + ε) for .ε ≥ 0. The corresponding interleaving distance [5, 
Definition 3.20], . dI , is given by the infimum of all . ε for which two diagrams or 
persistence modules indexed by .!2 × R are .%ε-interleaved [5, Definitions 3.4 and 
3.5]. 

Theorem 3.2 .dI (HjF,HjG) ≤ d∞(f̃ , g̃). 

Proof Let .ε = sup(t,x)∈I×X|f̃t (x) − g̃t (x)|. It follows from the definitions that F 
and G are .%ε-interleaved. By Bubenik et al. [5, Theorem 3.23], .HjF and .HjG are 
also .%ε-interleaved.
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4 Examples I: Basic Examples 

In this section, we illustrate our results with several examples. Recall that a one-
parameter family of functions on X is a function .f̃ : I × X → R consisting of 
functions .f̃t : X → R, indexed by .t ∈ I . This gives rise to a map fibered over the 
interval I 

.f : I × X → I × R , f (t, z) = (t, f̃ (t, z)) . (5) 

We will replace smooth functions by piecewise linear approximations to make the 
associated multiparameter persistence module easier to describe—for an example, 
see Fig. 4. This replacement does not affect the qualitative structure of the module 
but does change the support of its indecomposable summands. 

4.1 Persistence Modules of Graphs of Functions 

We begin by considering a one point space .X = {∗}. A one-parameter family of 
functions .f̃t : X → R is equivalent to a function .g : I → R, where .g(t) = f̃t (∗). 
Hence, the image of the corresponding fibered function .f : I × X → I × R is 
just the graph of g. Furthermore, since . ∗ is a critical point of . f̃t for all t , the Cerf  
diagram of f coincides with the graph of g. 

For example, let .g(t) = 4t (1 − t), plotted in Fig. 4. For convenience, we will 
instead consider the piecewise linear function .g̃(t) = 2 min(t, 1 − t). This function 
is no longer smooth in t , but its simplicity will make it easier to give a complete 
analysis (see the comment following Eq. (5)). 

We have a diagram of topological spaces .F : !2 × R → Top given by 
.F(a, b, c) = f−1([a, b] × (−∞, c]), where .f : I × X → I × R is given by 

Fig. 4 Left: the graph of .g(t) = 4t (1 − t) for .t ∈ [0, 1]. Middle left: the graph of . ̃g(t) =
2 min(t, 1 − t) for .t ∈ [0, 1]. This is also the image of the map .f : I × {∗} → I × R given by 
.f (t, ∗) = (t, g̃(t)). Middle right: a subdiagram of the diagram of spaces .F : !2 ×R → Top given 
by .F(a, b, c) = f−1([a, b] × (−∞, c]). Right: the corresponding subdiagram of the persistence 
module .H0F : !2 × R → Vectk
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.(t, ∗) /→ (t, g̃(t)). The space .F(a, b, c) is empty if .c < 2 min(a, 1 − b). That 
is, . c2 < a ≤ b < 1 − c

2 . The space .F(a, b, c) is contractible if .c ≥ 1 or if 
.2 min(a, 1 − b) ≤ c < 2 max(a, 1 − b). Equivalently, .a ≤ c

2 and .b < 1 − c
2 , 

or . c2 < a and .1 − c
2 ≤ b. In the remaining case, .2 max(a, 1 − b) ≤ c < 1, we  

find .F(a, b, c) ≃ S0, two disjoint points. That is, .0 ≤ c < 1, .0 ≤ a ≤ c
2 , and 

.1 − c
2 ≤ b ≤ 1. 

The persistence module .H0F : !2 × R → Vectk satisfies 

. dimH0F =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if c ≥ 1

2 if 2 max(a, 1 − b) ≤ c < 1

1 if 2 min(a, 1 − b) ≤ c < 2 max(a, 1 − b)

0 if c < 2 min(a, 1 − b) ,

(6) 

while the persistence modules .HjF are the trivial K-vector space for all .j > 0. See 
Fig. 5 for a visualization of . β0. 

The diagram of spaces F has the subdiagram given in Fig. 4, which has a 
corresponding indecomposable persistence module, also in Fig. 4. This submodule 
of .H0F is also visualized in Fig. 5. It follows that .H0F is an indecomposable 
persistence module. 

a 

c 

b 

0 
1 

aaa 
k 

k 

k2 

k 

Fig. 5 The multiparameter persistence module .H∗F : !2 × R → Vectk defined by 
.H∗F(a, b, c) = H∗(f−1([a, b] × (−∞, c])) where .f : I × {∗} → I × R is given by 
.f (t, ∗) = (t, g̃(t)) from Fig. 4. For .j ≤ 0, .Hj (F ) = 0. We have .β0 = 2 in the open square 
pyramid given by .0 ≤ c < 1, .0 ≤ a ≤ c

2 , and .1 − c
2 ≤ b ≤ 1. Furthermore, .β0 = 1 in the 

semi-infinite triangular cylinder given by .0 ≤ a ≤ b ≤ 1 and . c ≥ 1. For .0 ≤ c < 1, we also have  
.β0 = 1 in the region given by .0 ≤ a ≤ c

2 and .a ≤ b < 1 − c
2 and the region . c2 < a ≤ b and 

.1 − c
2 ≤ b ≤ 1. Everywhere else, .β0 = 0. That is, for .c < 0 and .0 ≤ a ≤ b ≤ 1 and for . 0 ≤ c < 1

and . c2 < a ≤ b < 1 − c
2 . The right-hand diagram in Fig. 4 is embedded in .H0F as indicated. It 

follows that .H0F is indecomposable
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4.2 Indecomposable Persistence Modules with Arbitrary 
Maximum Dimension 

The example in the previous section can be generalized to produce an indecom-
posable persistence module arising from a one-parameter family of functions, with 
arbitrarily large maximum dimension. 

For . n > 0, let .g̃n : I → R be the piecewise linear function obtained by linear 
interpolation between the values .g̃n( in ) = 0 for .0 ≤ i ≤ n and . g̃n( 2i−1

2n ) = 1
for .1 ≤ i ≤ n (the example of Sect. 4.1 is the case .n = 1). Then we have 
the corresponding diagram of topological spaces .F : !2 × R → Top given by 
.F(a, b, c) = f−1([a, b] × (−∞, c]), where .f : I × {∗} → I × R is given by 
.(t, ∗) /→ (t, g̃(t)). Now  F has a finite subdiagram . F̂ given by .F( in ,

j
n ,

1
2 ), where 

.0 ≤ i ≤ j ≤ n. 
Applying . H0, we obtain the persistence module .H0F , which contains the 

following persistence module .H0F̂ : 

Each linear map .km → km+1 pointing up and to the right is given by the inclusion 
.km → km ⊕ k ∼= km+1, and each linear map .km → km+1 pointing up and to the 
left is given by the inclusion .km → k ⊕ km ∼= km+1. This persistence module is 
decomposable into .(n+ 1) one-dimensional summands, whose support is given by 
the up-set of one of the .(n+ 1) minimal elements. 

Now append the terminal element .F(0, 1, 1) to the diagram . F̂ to obtain the 
diagram . F̌ , which is also a subdiagram of F . Then we have the persistence module 
.H0F̌
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where the linear map .kn+1 → k is given by summing the coordinates. This 
persistence module is indecomposable since the up-set of every minimal element 
contains the terminal element .H0F(0, 1, 1) ∼= k. 

4.3 A Class of Indecomposable Persistence Modules 

Let .g : I → R be any (not necessarily continuous) bounded real-valued function on 
the unit interval. Let .f : I × {∗} → I × R be given by .f (t, ∗) = (t, g(t)) and let 
.F : !2 × R → Top be given by .F(a, b, c) = f−1([a, b] × (−∞, c]). 
Theorem 4.1 Let .ft (∗) = g(t) be any uniformly bounded one-parameter family 
of functions on a one point space . {∗}. Then the corresponding persistence module 
.HjF is indecomposable for every .j ≥ 0. 

Proof For all .(a, b, c)) ∈ *2 × R, .F(a, b, c) deformation retracts to a subset of I , 
so .Hk(F ) = 0 for .k ≥ 1. Recall (Sect. 3.1) that for .p ∈ *2 × R, .Up denotes the 
up-set of p. 

Assume that .H0F ∼= M⊕N is a nontrivial decomposition of .H0F . Then there are 
nonzero maps .p : H0F → M , .q : H0F → N , .i : M → H0F , and . j : N → H0F

such that .ip + jq = 1H0F . Choose B .∈ R such that .g(t) ≤ B for all . t ∈ I . Let  
.T = (0, 1, B). Then .(H0F)T = k. It follows that either . iT or . jT is the zero map. 
Assume without loss of generality that .iT = 0. 

By definition, we have that for all .t ∈ I , 

. F(t, t, c) =
{
(t, c) if c ≥ g(t)

∅ if c < g(t).

So, in particular, .H0F(t, t, g(t)) = k. Furthermore, we have a surjection of 
persistence modules 

. 
⊕

t∈I
k[U(t,t,g(t))]

ϕ−→ H0F.

Since . ϕ is surjective and p is nonzero, it follows that .p ◦ ϕ is nonzero. Therefore, 
there exists an .a = (t0, t0, g(t0)) such that .k[Ua]

pϕ−→ M is nonzero, which forces 
.(pϕ)a : k[Ua]a → Ma to also be nonzero. Since .k[Ua]a ∼= k and .(H0F)a ∼= k, it  
follows that .pa : (H0F)a → Ma is injective. Therefore, .qa = 0. 

Since .ip + jq = 1H0F , .(H0F)a≤T = iT Ma≤T pa + jT Na≤T qa = 0, which is a 
contradiction. ⊓⊔
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(a) 

−1 

1 

(b) 

Fig. 6 Left: the cylinder .I × S1. Right: the Cerf diagram of the constant one-parameter family of 
height functions on the circle 

4.4 The Cylinder 

Increasing the dimension of the manifold in our examples, consider . X = S1. Let  
.f̃t : S1 → R be the constant family of height functions on the circle; .f̃t (θ) = sin θ . 
The corresponding function fibered over the interval .f : I×S1 → I×R has domain 
the cylinder and is given by .f (t, θ) = (t, sin θ). See Fig. 6a. The corresponding Cerf 
diagram is shown in Fig. 6b. It consists of two horizontal lines, corresponding to the 
fold singularities of . f̃ given by the global minimum and global maximum of the 
height function. 

By definition, .F(a, b, c) = f−1([a, b] × (−∞, c]) = [a, b] × {θ | sin θ ≤ c}. 
Therefore, .F(a, b, c) is empty if .c < 0, .F(a, b, c) is contractible if .0 ≤ c < 1, and 
.F(a, b, c) is homotopy equivalent to . S1 if .c ≥ 1. Thus, we find 

. dimH0F =
{

1 if c ≥ 0

0 if c < 0 ,
and dimH1F =

{
1 if c ≥ 1

0 if c < 1.

This multiparameter persistence module can also be visualized as shown in 
Fig. 7. The blue region is the support of .H0F , and the red region is the support 
of .H1F . These two regions are unbounded, analogous to sublevel set persistence of 
the standard height function on . S1. Since each of .H0F and .H1F are indecomposable 
and at most one-dimensional, this visualization also shows the structure of the 
multiparameter persistence module .H∗F .
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−1 
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aaa 

Fig. 7 The multiparameter persistence module of the constant one-parameter family of height 
functions on the circle. The Betti functions are constant for .0 ≤ a ≤ b ≤ 1. .β0 = 0 for . c < −1
and .β0 = 1 for .c ≥ −1 (blue). .β1 = 0 for .c < 1 and .β1 = 1 for .c ≥ 1 (red). For .H0F , all linear 
maps within the blue region are the identity map. Similarly, for .H1F , all linear maps with the red 
region are the identity map. That is, both .H0F and .H1F are one-dimensional persistence modules 
supported on semi-infinite triangular prisms in which all nontrivial maps are identity maps 

5 Analyzing Diagrams of Spaces 

Let X be a smooth, compact manifold. For generic one-parameter families of 
smooth functions .f̃ : I × X → R, the nondegenerate critical points of the fibers 
. f̃t occur in families themselves, as can be seen in the arcs of the Cerf diagrams of 
Sect. 4. 

Definition 5.1 We say that such a critical point is positive if the curve in the 
Cerf diagram containing its value has positive slope (is locally strictly increasing). 
Similarly, say that such a critical point is negative if the curve in the Cerf diagram 
containing its value has negative slope (is locally decreasing). There can be points 
that are neither positive nor negative, e.g., the maximum or minimum of the singular 
locus of a wrinkle. 

Recall that .f : I × X → I × R is given by . f (t, x) = (t, f̃ (t, x)) = (t, f̃t (x))

and .F : !2 × R → Top is given by .F(a, b, c) = f−1([a, b] × (−∞, c]). For  
.(a, b, c) ∈ *2 × R, let .F0(a, b, c) = f−1([a, b] × {c}). 
Theorem 5.2 Suppose .f̃ : I × X → R is a generic one-parameter family of 
functions on a smooth, compact manifold X. Let .0 ≤ a < b ≤ 1 and .c ∈ R. 
Then .(F (a, b, c), F0(a, b, c)) is a cobordism between .(F (a, a, c), F0(a, a, c)) and 
.(F (b, b, c), F0(b, b, c)). Assume that there are no critical points in .F0(a, a, c) and 
.F0(b, b, c). Then the projection onto . [a, b]

.π[a,b] : F(a, b, c) → [a, b] (7) 

is a Morse function on the cobordism .(F (a, b, c), F0(a, b, c)). Furthermore, . π[a,b]
has no interior critical points. In addition, positive and negative critical points 
in .F0(a, b, c) are boundary stable and boundary unstable critical points of .π[a,b], 
respectively.
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Proof The projection .π[a,b] : [a, b]×X → [a, b] is a submersion and hence has no 
critical points. Therefore, all critical points of the restriction . π[a,b] : F(a, b, c) →
[a, b] ⊂ I must lie on the boundary .Y = F0(a, b, c). 

Consider a nondegenerate critical point z of . f̃t with .z ∈ Y . Near this point, there 
exists a coordinate system for which it is a fold singularity of . f̃ given by Eq. (2). 
In this coordinate system, .π[a,b](t, x) = t , so .dπ[a,b] = [ 1 0 · · · 0 ]. For simplicity, 
assume that .(z, f (z)) is at the origin. Then the level set . {0} × {x2

1 + · · · + x2
j −

x2
j+1 − · · · − x2

n−1 = 0} has tangent space contained in .{0} × Rn−1 and hence lies 
.ker dπ[a,b]. Therefore, z is a critical point of .π[a,b]. 

Suppose z is a negative critical point of . f̃t and .z ∈ Y . There exists a path 
.α : R → I × X whose image consists of points .(t, x) where x is a critical 
point of . f̃t so that .α(0) = z, .f̃ (α(−t)) > c, and .f̃ (α(t)) < c for .t > 0 (i.e., a 
parametrization of the preimage of an arc in the Cerf diagram containing the image 
of z). Thus, . α restricted to .[0,∞) provides a path in .F(a, b, c) so that . f (α(t)) ̸∈ Y

for .t > 0, and therefore, .TzWu
z ̸⊂ TzY . Hence, z is a boundary unstable critical point 

for .π[a,b]. 
On the other hand, suppose z is a positive critical point of . f̃t and .z ∈ Y . Near z, 

there exists a coordinate system on .I × X of the form prescribed by Eq. (2). In this  
coordinate system, we find .π[a,b](t, x) = t and thus .dπ[a,b] = [ 1 0 · · · 0 ]. Since 
z is a positive critical point, if we take a sufficiently small such neighborhood U , 
then the . f̃ function values will increase along the flow lines of .∇π[a,b]. Precisely, 
if .ξ : R × I × X → I × X denotes the flow generated by .∇π[a,b], then we have 
.f̃ (ξ(ϵ, t, x)) ≥ f̃ (t, x) for .ϵ ≥ 0 and .(t, x) ∈ U . This inequality holds in the 
restriction to .U ∩ F(a, b, c). Hence, points on .Y ∩ U = F0(a, b, c) ∩ U must flow 
to other points on Y under . ξ . In particular, .U ∩Ws

z ⊂ Y and hence .TzW
s
z ⊂ TzY . . !

Remark 5.3 Theorem 5.2 does not address the case when .F0(a, b, c) contains 
nondegenerate critical points that are neither positive nor negative or the case that 
.F0(a, b, c) contains cusp singularities. 

The remainder of this section and the next section are dedicated to showing how 
the theory developed thus far and, in particular, Theorem 5.2, can be applied to 
examples. 

Example 5.4 Consider the function .g̃(t) = 2 min(t, 1−t) in Sect. 4.1. Let . X = {∗}
and define .f̃ : I × X → R to be given by .f̃ (t, ∗) = g̃(t) and define . f : I × X →
I × R to be given by .f (t, ∗) = (t, g̃(t)). For  f , we have the associated diagram of 
topological spaces .F : !2 × R → Top. 

By definition, . ∗ is a critical point of . g̃t for all . t ∈ I . Let . 0 ≤ a < b ≤ 1
and let .c ∈ R. In the case .a < 1

2 and .2a < c < g̃(b), then .F0(a, b, c) has a 
positive critical point, and Proposition 5.2 implies this intersection coincides with 
a boundary stable critical point of .π[a,b]. Proposition 2.10 implies .F(a, b, c) is 
a left-product cobordism. Note that .F(b, b, c) is empty. Similarly, if .b > 1

2 and 
.2(1 − b) < c < g̃(a), then we have a single boundary unstable critical point for 
.π[a,b], and .F(a, b, c) is a right-product cobordism. In the case that . a < 1

2 < b

and .2a, 2(1 − b) < c < 1, we have that .F(a, b, c) is a cobordism between the
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singletons .F(a, a, c) and .F(b, b, c). This is not a product cobordism, however, since 
the projection .π[a,b] has both a boundary stable and a boundary unstable critical 
point. Note that .F( 1

2 ,
1
2 , c) is empty. 

6 Examples II: The Wrinkled Cylinder 

We modify the constant height function on the cylinder of Sect. 4.4 by introducing 
a wrinkle (Sect. 2.5), as shown in Fig. 8. The wrinkle creates two additional critical 
points for all times strictly between .t = p and .t = q. As before, the two horizontal 
lines of the Cerf diagram correspond to fold singularities of . f̃ , which are the global 
minimum and global maximum. The functions . f̃p and . f̃q have cubic singularities, 
corresponding to birth and death singularities, respectively, of . f̃ at .t = p and . t = q

(see Remark 2.7). The birth singularity at .t = p gives rise to a pair of critical points 
of index 0 and 1, and these two critical points merge together at .t = q. For all times 
t distinct from c and d , the function . f̃t is a Morse function, with either two or four 
critical points. 

The associated diagram of spaces .F : !2×R → Top takes some care to analyze. 
The input parameters a, b, and c define a semi-infinite strip .[a, b]× (−∞, c], which 
can be overlaid on the Cerf diagram (Fig. 9). Call the component of the singular 
locus containing cubic singularities the wrinkle envelope. If the top edge (. [a, b] ×
{c}) of the semi-infinite strip (.[a, b] × (−∞, c]) lies in the interior of the wrinkle 

0 

1 

0 

1 

u 

v 

ℓ 

m 

n 

p q 

Fig. 8 Left and middle: the wrinkled cylinder from two different angles. The left graphic contains 
the image of . f̃t for some .t ∈ (p, q), a wrinkled circle, which has four critical points. Right: the 
Cerf diagram for the wrinkled cylinder 

Fig. 9 Left, middle, right: three cases of the semi-infinite strip .[a, b]× (−∞, c] are shown in blue 
overlaid on the Cerf diagram from Fig. 8. The corresponding spaces .F(a, b, c) are shown to the 
right of each
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envelope, then .F(a, b, c) is homotopy equivalent to . S0 (Fig. 9 left). If the top edge 
of the semi-infinite strip intersects the wrinkle envelope once and .c < m, then 
.F(a, b, c) is homotopy equivalent to . S0 (Fig. 9 middle). If the top edge of the semi-
infinite strip intersects the wrinkle envelope twice and .c ≥ m, then .F(a, b, c) is 
homotopy equivalent to . S1 (Fig. 9 right). In all other cases, .F(a, b, c) is homotopy 
equivalent to the corresponding space for the cylinder (Sect. 4.4). 

This topological analysis can be made precise using the language of Theorem 5.2. 
Consider the three examples shown in Fig. 9. In the leftmost display of Fig. 9, the  
Cerf diagram does not intersect .[a, b] × {c}, and according to Theorem 5.2, the  
projection .π[a,b] : F(a, b, c) → [a, b] has no critical points. By Proposition 2.10, 
.F(a, b, c) is a product cobordism diffeomorphic to both .F(a, a, c) × [a, b] and 
.F(b, b, c)× [a, b]. In the middle display of Fig. 9, there is a single negative critical 
point in .F0(a, b, c). Theorem 5.2 implies .π[a,b] has a single boundary unstable 
critical point. By Proposition 2.10, .F(a, b, c) is a right-product cobordism, as is 
evident from the displayed space. Finally, in the rightmost display of Fig. 9 contains 
both a positive and a negative critical point. Thus, .π[a,b] has a boundary stable and 
boundary unstable critical point, so we cannot conclude that .F(a, b, c) is either a 
left- or right-product cobordism. 

To aid in visualization of the persistence module, we again linearize the wrinkle 
(see the comment at the beginning of Sect. 4). In Fig. 10, the blue regions correspond 
to .H0F , and the red regions correspond to . H1F . Both .H0F and .H1F contain an 
unbounded region, arising from the global maxima and minima (fold) singularities, 
and a finite region, due to the wrinkle. Note that both .H0F and .H1F decompose 
into one-dimensional persistence modules, in contrast to the persistence modules of 
Theorem 4.1. 

a 

c 

b 

u 

v 

aa 

ℓ 

m 

n 

Fig. 10 The persistence module for the wrinkled cylinder. Both .H0F (blue) and .H1F (red) 
decompose into two one-dimensional persistence modules, one bounded and one unbounded, in 
which all nontrivial maps are the identity map. The unbounded components, . 0 ≤ a ≤ b ≤ 1
together with .c ≥ u and .c ≥ v, respectively, are exactly the persistence modules of the cylinder 
(Fig. 6). The bounded components are due to the wrinkle
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For precise formulas, assume .p = 1
4 , .q = 3

4 . Then the bounded component of 
.H1F has support .m ≤ c < n, .0 ≤ a ≤ 1

2 − 1
4
n−c
n−m , and . 12 + 1

4
n−c
n−m ≤ b ≤ 1. 

The bounded component of .H0F has support given by the union of (i) .ℓ ≤ c < m, 
.0 ≤ a ≤ 1

2 + 1
4
c−ℓ
m−ℓ , and . 12 − 1

4
c−ℓ
m−ℓ ≤ b ≤ 1 and (ii) .m ≤ c < n and . 12 − 1

4
n−c
n−m <

a ≤ b < 1
2 + 1

4
n−c
n−m . 
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