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Administrative

See the course syllabus and webpage.

Prereg : Mathematical experience : should have

4102/3 Intro to real analysis or 4211/2 Real Anal & Adv
. Cal

.

Overview of course topics .

What is topology ?
What is point-set topology ?
What is algebraic topology ?

Who are the students in our class ?
What are your reasons for enrolling ?
Which graduate students may take

the first year exam ?

Book : "Topology" by James Muntres
,
24 Edition

.

I will be reading it ; please do the same.

Thanks to Peter Bubenik
,
whose notes were

extremely helpful when preparing my notes :

Thanks to Henry Adams for making his notes available

and allowing me to add to them !



Chapter 1 : Set Theory and Logia .

Section 1 : Sets
We'll do a "naive" but accurate treatment of sets.

↑

For the axioms : see the Wikipedia page on

Zermelo-Fraenkel Set theory (EFC)

Set A
Element acA

Subset BCA Sequivalently BEA)
Proper subset BEA

A set can be an element of another set
A e= collection

Power set PLA) is the set of all subsets of A
.

( Can't consider the set of all sets ,instead the class of all sets
.

mu

(Binary) Cartesian product
↑
Need more than EFC

A = B = &(a ,
b)(azA

,
b = B3

Formally
,

(a
,
b) = ESa3

,
Ea, b33



Section 2 : Functions

A function fix-X is a subset of XY with

each neX appearing exactly once as the first

coordinate of an ordered pair in this subset.

Ex f: /R -> R yX + x2+ 1

5(x ,
xi+ 1)@RxR3

Formally , g
:R-R+ is a different function,

where
x +x2+ / R+

= ExcR(x03 .

f : x -+ Y

↑ T

domain codomain



Section 3 : Relations

Def A relation on a set A is a subset CcAxA.

If (g) C ,
we write why and say

"I is related to y" or

"I is in the relation C to y"

An equivalence relation ~ cAxA is a relation satisfying
D) -x Creflexive)
(2) =my => yex (symmetric)
(3) - -y , yez = x2z (transitive) ⑰-Equivalence classes form a partition of A

↑
disjoint nonempty sets whose union is A

An order relation= Art is a relation satisfying
(1) Either wey or yea
(2) Ey and yeN => N =

y Lcalledaer)(3) =y and yz = v= z

Munkres uses<as the primary symbol,
where way when Ney and + Y.

(R, )
(a

,
b) with thelexographorder



Section 4 : Integers and real numbers

Def A binary operation on a set A is a

function f : AxA -> A .

There is a set of real numbers R with binary
operations +, o

,
and a linear order 1

satisfying a list of axioms .

(Munkres assumes IR exists)

Integers I = 3 ....

- 2
, 1

,
0

,
1
,

2, . . . 3
Positive integers It
Nonnegative integers 110

Def A set ACI is inductive if IEA
,

and ifAHEA
.

Induction principle If A22+ is inductive
,
then A=E+.

Muntres uses the Inductive Principle to prove
:

Well-ordering property Every nonempty subset of

It has a smallest element.

123 456

· >

I J >



For next
,

let Sn be the section

Sn = 3 1 ,

2, ..., n -13 ·

So Sn+= 31 ,
2, ...,

n3
,
and S :

= 0 = 33 ·

Strong induction principle Let ACE+, and

suppose SnaA implies neA for all next
Then A = 2+

Pf (using well-ordering) If AEX +, then let n be
the smallest integer in I + -A + 0 (by well-ordering).
So SnCA

,
which implies nEA

, a contradiction
.

*

Al
+

123456789 10 11 12

·· ⑧ >

um ↑

q
h is the smallest

element not in A
.

So SnCA .

By assumption on A
,
this

implies nEA,
a contradiction .



Section 5 : Cartesian products

Main point : Define the notation &A-Boes
,
which is

not a collection of sets since we allow repeats

Let An indexed family of sets [Ac3005 consists of
- a nonempty collection of sets A
-

an indexing set J
- a surjective function f : J -> A

.

(for de5
,

let flo) =Ar

We may have Ar = Ap for +B .

Ret & An = Ex/xeAd for some de53

Note thisenselective.
A = G2/xet for some Act

Det des Ao = Ex/zeA0 for all oJS ,

which equals next sincef is surjective·



The two most important examples are when the

index set is J = [1,
2, ..., m3 or J= 2+

J = El , 2, ...,
m3 or 20

,
1

, ...,
m

- 13

An metuple on a set X is a function [1...., m3-> X,
denoted (2 , ..., km) withRe EX.

Let EA , , ..., Am3 be a family of sets indexed by 41 ,...,m3
Let X = VEAi = A ,

v ... Am
.

TheCartesian product TAi = A
,

X ...Am is

& m-taples (2, ...,m) of X 1 * An Vi 3 .

Ex Rm Ex SIT, E
equir class of well-ordered sets

first infinite Ordinal" (+, 2) = (400
,5)

5 = [ + or 40 ↓

An infinite sequence or co-tuple is a function 1++ X,
denoted (v , %2.... ) With NeX.

Let EA
,

Az, ...
3 be a family of sets indexed by 1+

Let X = Viek + Ai
.

The Cartesian product Theat An is

& -taples (N
,
2

,
... ) of X 1 * An Vi 3 .

Ex Ru



Section 6 : Finite Sets

Def A set A is finite if there is a bijection
- : A =- E , ..., n3 for nel

+,
"A has cardinalityn"

or if
I

is empty "A has cardinality O"

Goal : Show the cardinality of a finite set is unique.

Lemma Let A be finite and do EA.
Then 5f : A =El , . . .

,
n + 13 Ex Eg : A - 2003= ( , ...,

43
·

See book for proof of this lemma.

Theorem Suppose f : A -El , . . . , n3 and BEA.
Then # g : B => El, . . .

, n 3 ·

(Book also proves n : BE ,..., m for some ma
# Let CcX+ be the set of all n for which
the theorem is true .

We will show C is inductive.
If n = 1

,
then B = 0

,
and #g : EE13 .

If theorem is true for n
,
we'll show true for ht

.

Let f : A =El , . . .,
n + 13 ,

let BEA .

If B : 0
,

same as before.
If B + 0

,
choose aoEB and a

,
EA-B.

Apply lemma to get A-Sao3 => E , .
. ..
n3

·

Note B-Ear3 & A-gao3 (consider a . ) .

Since the theorem is true for n
, Ag : B-Saob>E , .... n3
.By lemma

,
7) bijection B = E1 , ...,

n + 13 ·



Corollary 1 If A is finite
,
there is no bijection

of A with a proper subset of itself
.

If A =
> B

f

Elis =

g - "Would contradict Theorem
.

El, ..., n32

Corollary 2 The cardinality of a finite set A is unique.

If For men
, suppose we had bijections

A E
> El , ..., n3f

T

=L 9 E

gof "would contradict Corollary 1
.

El , ..., m}

Corollary 3 It is not finite
.

5 : 1+
-> E+

- E13 is a bijection of I+ with
n> n + 1 a proper subset.

From now on
,
we'll freely use basic facts about

finite sets
,
such as :

Corollary 4 Set A + 0 is finite
=>I surjection E1 , . .

.,n3*A for some neLt ·
=> 5 Injection AE, ..., 63 for some he l+.

see book for a proof of this.



Section 7 : Countable and uncountable sets

Lef A set A is

· infinite if it is not finite
· countably infiniteif 7 bijection A = L +

· countable if it is finite or countably infinite
· uncountable if it is not countable

.

Ex I is countably infinite .

1+ 12345678 ...
Zi Zi+ /

= If I I I I I I I I I E
R 0 1 -12 -23 -34

...
i - i

Lemma If (c It is infinite,
then C is countably infinite .

# Define 5 : 4+> C
.

Let f (1) = smallest element of C.
If f(l) , ...,

f(n-1) have been defined
,

then let f(n) = smallest element of C-Ef(), . . . ,
f (n - 1)3.

This is called a recursive definition
.

Must do things "in order" :

certainly can't define f(n) = smallest element of C-35(1), ..., flu) .

- injective : For men
,
note C-[FLD), ...

, f(n-1) contains
f(n) but not f(m)

.

So f(m) + f(n)
·



- surjective : Let CeC
.

E + infinite and

Note f(I +) 4 ( , . . .

,
2-13 Since 'f injective .

HenceInc [+
with f(n) = C

Let mel + be the smallest integer with f(m) = C
.

SoFiem
,
flite => [f(), . . .

,
f(m-13

=> f(m) = < by def *
of f

.

Hence f(m) = c
,

as desired. #

Thm For B= 0
,
the following are equivalent :

(1) B is countable

(2) 7 surjection f:+ = B
(3) 7 Injection g

: B2+·

By definition,

# (1) => (2) B countably infinite
" 55 :+-B

B finite
min (m

,
n) (, . . .. n3=oB ~

↑ -M
(2)= (3) Given f: l + ->B

,
define g : B->+ by

g (b)
= smallest element of f"(b) · (nonempty sincef surjective)

Note
g is injective since b + b' = f+ (b) - f (b) = 4 = g(b) + g(b)).

(3)= (1)

g
: B2 + If image (B) finite

Es If image (B) infinite - apply last lemma

image (B)
· Ene+: n = g(b) for some beB3 D



Corollary I+ x X
+ is countable.

# Define -:+
+ E

+
- It

(n
,
m) + 2" . zm

Notef is injective by the uniqueness of prime factorizations. I

Thm A finite product of countable sets is countable

If Proceed by induction . a

Thm 50, 13 is uncountable ISothecountableproductofcount
aa

Pf Recall an element of 50
,

132 is an infinite tuple
(X,

,
X2

,
Xz, . . . ) With X: 50

,
13·

We show
any g :++ 50, 13" is not surjective ·

g(1) = (X,
,

Xi2
, Xiz

,

X, 4, ...
/

g(z) = (X1
,

X22
,

X2
,

xzy, . . .
)

g(z) = (X3)
,

X32
, X32

,
Xsy, . . . .

g(4) = (X41
,

X42
,

X43
,

X44
,

... )

Define y = (41
, 42, 43 , 0 ..) 50, 13W by ye =30 x

Note
y is not in the image of go I

Fact R is uncountable
· (Muntres : "decimal exparison proof unsatisfying

Later proof using order properties.



For A a set
,
recall the power set PLA) is the set

of all subsets of A.

Thm P([ +) is uncountable
.

This follows from the following stronger theorem :

#m For A a set
,

# a surjection g
: A - PCA)

and7 an injection f : PCA) - A

If Let g : A +> P(A) .

Let B = SazA)a = A - g(a)3 .

If we had B = glao) for some doEA
,
we'd have

aoEBE) do A-g(ar) #-> doEA-B.

This is a contradiction.

Hence g is not surjective.
B + 6 and let be B and

If If : BCoA
,
then "define g

: A B by lettingI g(a) = [fi(a) for atimt (a
S



Ex The set Q +
of positive rationals is countable

.

(n
,
m)/

2+
+ 1+ Q +

-
2 +

Thm A countable union of countable sets is countable
.

# Let SAnines be an indexed family of countable sets

with J countable .

Get surjections [+
E An En
I

+
-x5

Define surjection [ ++ 1+
->

-
An

- (h .
m) gims (m)

+



Def Sets A
,
B have the same cardinality

if 7 bijection F :A B
.

Cantor-Schroder-Bernstein Thm (SectionFE
If 5 Injections f : ACOB and g

:BLA
,

then A and B have the same cardinality.

Pf Assume WLOG A and B are disjoint .

For aA consider

E
· . .
rob,fra ,

Febz Fob,FraFobat
This

sequence is uniquely determined !

Similarly for beB .

Three possibilities : The sequence
() Stops at some b -mEB /B-stopper)
(2) stops at some a-mEA (A-stopper)
3) Is bi-infinite or cyclic .

Since fig injective,
these sequences partition A B.

Define hiAE>B via B
h(a) = f(a) if a is in A stopper sey,

(either works) if a is in birinfute/cyclic sey.
· ⑳

h(c) = g (a) if a is in B-stopper seg.

·⑤
!

D



Sections 9-11

Perhaps the most commonly used axiomatic system for mathematics

is Zermelo-Frankel set theory
- EFC with Axiom of Choice

- ZF without Axiom of Choice

# In EF
,
the following are equivalent :

· Axion of Choice (59)
·Well-ordering theorem (510)
· Hausdorff maximal principle (S11)
· Zorn's lemma (511)



Section 10 : Well-ordered sets

Def A well-order on a set A is an order relation (total order)
S . t

. every nonempty subset of A has a smallest element
.

.....

Ex([ +, 1) - -.. n

... d

Ex (1 +
+ E

+,
= lexicographic) ....S
· ·

Non-Ex (4,)

Non-Ex (12o
,

= ) think (0, 1)

Non-Ex ([ +) = [+
+ E +

+ E+"..., lexicographic order
.

Indeed
,

consider the set of all sequences with a single entry
2 and all other entries 1 : 1 1

,
1
,

1
,

1
,

2
,

1
,

1
, 61 ... )

Well-ordering theorem Every set has a well-ordering.

Proved by Zermelo in 1904.

Startled mathematical community.

Nobody has constructed specific well-ordering on (E+)"·
Proof uses Axiom of Choice

.



Section 9 : Axiom of Choice

Axiom of Choice Given a collection A of disjoint nonempty sets,
=. a set C consisting of exactly one element from each set in A.

(I .e ., C<UA ,
and ICvAl = 1 for each At A

.)

Def A choice function on a collection B of nonempty
sets is a function f : B -U B

(such thatfIBB ,
for l B. .

BEB

Consequence of For any collection of nonempty sets,
Axiom of Choice there exists a choice function .



Section 11 : Hausdorff maximal principle and Zorn's lemma

Def A partial order= on a set S(poset)
satisfies
· na

· a = b
,

b = a = a =b
· a = b

,
bec = a = c

Some pairs of elements may not be comparable
la + b and bEa is okay)

Ex Subsets of El , 2
,
33 under inclusion .

El , 2
,
33

51 , 23 31 ,3332 , 33

513323433

①
Def A chain is a totally ordered subset of a poset .

Ex $ c523c31 ,
2

, 33 is a chain
.

It is contained

in a maximal chain $2523c52,33 < 31 ,
2
,
33

,

for example.

Maximalprinciple In a poset, every chain is

contained in a maximal chain.



Zorn's lemma Let A be a poset .

If every chain in A has an

upper bound in A
,

then A has a maximal element.

↑

U S
.
t

. CEU FC in chain m S
.
t

.
mea = m= a FaeA

Maximal Principle implies Zorris lemma

Let A be a poset in which every chain has an upper
bound.

By the Maximum principle,
let BCA be a maximal

.

Chain
.

letlet be an upper bound for B.
To see U is

maximal in A
,

note that if nev
,

then the chain

BuSv] would contradict the maximality of B .


