
Chapter 2 : Topological spaces and continuous functions

Section 12 : Topological spaces

Many concepts in analysis (continuity
, convergence, compactness

only require knowledge of the open sets.

Def A topology on a set X is a collection [ of

subsets
,

called open sets
, satisfying

· a
,
x

.

· Arbitrary unions of open sets are open :

NOEI Frel =>Vel Ro E
.

· Finite intersections of open sets are open
:

U
,
,

.

. .,
Un - => H, ... Une E

,

We denote this topological space by (X, E) or X.

E Which of the following are topologies on X = Ea, b
,
ch ?

& Yes
,

indiscrete

⑬a b c or trivial

topology topology
①

a b < No " tes

d

a b c No
&

ab a tes



Ex Every metric space is a topological space.

The open sets are unions of (open) balls .

Ex X is a set.

= EUcX 1 U = 0 or X-U is finite 3
.

Let U = X- U
.

Called the finite complement topology.

For example,
if X=R

,
then a nonempty open set is R with

at most a finite number of points removed :

E
↑

7

Pf

·,X
· Consider EUabatI

,
HatY

.

Want : Use Us = Y
.

WLOG
,

assume Un #4 for all del
.

So (Uo) is finite
.

Note (VocIUa = voel(o)" , which is finite.

So Vatillo Et
.

· Let & * M
, . .

.,
Un EE

.
So X-Ui is finite .

Note (U. . . Hn)) = UiU ... Un
,

which is finite.
So U, ... Un Ele

Rmk There is also a countable complement topology.

Def If I andI are two topologies on X with

= <v'
,
then we say I is coarser and It is finer

.



Section 13 : Basis for a topology

Instead of specifying all open sets in a topology I,

it is often convenient to specify a nice subset

that generates to

Def A basis for a topology on X is a collection B of

subsets of X such that

(1) FreX JBEB withEB.

(2) If we B
,
Be with B

,
Be < B

,
then

B
,
- - Y= -z

5 By B with re By < B
,
rBe · !

Prop Given
a basisB for a topology or X.

Let E = GUcX/FxUGBcBstXcB > U]

~
Let E = &Uc X 1 V is a union of sets in BS
Then (a) ve is a topology on X

(b)21 = 5
.

De Call this the topology generated by B .



Ex X a metric space,
B = E open balls 3

Ex X = R2 B = Sopen balls 3
op B = Eaxis-aligned open rectangles3
These generate the same topology.

Ex X B= Gone point sets 3 is a basis
for the discrete topology.

Ex Choosing B = I always gives a basis
,
but it is

more valuable to find bases BET ·

Proof of Proposition
(a) det since condition is vacuously true.

X = UBeBB by (1)
,

so Xe E
.

· EUobet with UOEE
.

B
If we Wet No

,

*

then JrEI with welld,
so 7 BE B with NEBCUOCVozIUo

.

· U
, . . .,
Une to Let tell, ... Un

.

Claim : J BeB with <BCU , v
... "Un .

Uz
Use induction on n. U , ·

Base case n = / by definition of 5
Bi B3

Be

Assume true for n
.

Let Xe U, ... Unt
,

Then Xe U. ... He
. By induction & B , B with Xe B , < U

.

1 ... H.

Also x Unti
. By def of 7 Bre B with Xe Bu Una

.

By (2) 7 By B with Xe By < B
,

c Ba > We ... Unti ~



(b) (4' < 5) Consider an arbitrary element ofU ,
Use

Let xe Un
.

The - st xU

So xeUsUUs . HenceUl

[c5') Consider an arb elt of % :

UX st
.

Ext U 7 BeB St
.

xe B< U
.

The U = U Bx Hence UE Y' D
x = U

Lemma 13
.
2 Let (X,

2) be a topological space.

Let I be a collection of open sets such that

ifzeU for UEt
,
then J Ce2 with ECCU .

Then I is a basis for I

.

Pf (1) Since XEE
,
Feex ICE2 with NeCaX

.

r

(2) If recode for 2
,
G - [cE

,
then C1C & F

,

so (get with reCy < 412.

Sot is a basis
.

By definition
,
I generates the topology I. D



Lemma Let B
,
B' be bases for the topologies &

,
I on X.

Then i' is finer than It < I' allowing equality
#> FBEB and weB

,
7 B'EB' with weB'cB

.

Pf See book
At

Ex X = R2 B = Sopen balls 3
and B = Eaxis-aligned open rectangles?
generate the same topology. &

Def X=R
B = Ela , b) 1 a = b3 generates the standard topology
B = &[a , b) 1 a = b3 generates the lower limit topology

E ( 37 E [ S 7

a b a b

Fact [It ' /I . e.,
i'is finer than I

, &and not vice-versa

Pf Sketch Apply the prior lemma .
Consider (a

,
b) EB

and we (a , b) .
Note [v

,
b) @B' satisfies

* [v
,
b) < (ab) ,

as required .

2 · 3
However for Ca

,
b) and X = a and

any
(a,b) containing a also

contains as for some so and a - 3 (a
,

b).



An imperfect analogy

Vector spaces Topological spaces

Rn open sets in R
vector spaces topological spaces
basis basis

Any rector is a sum of basis elements
. Any open set is a union of basis elements

.

This description is unique . Nope .

A vector space has many bases. A topological space has
many

bases.

All bases have the same size. Nope.



unions
Basic open sets c topology

Certain open sets
unious and finite intersections

, topology ?

Def A subbasis 9 for X is a collection of sets
whose union is X.

The topology I generated by subbasis 9

is the collection of all unions of finite intersections of

elements in $

Ex X = 50 ,
1

, 2)
9 = E90, 13

,
50 , 233 is a subbasis but not a basis

.

- = 20
,

903
,

90,
13

,
90, 23

,
90,

1
,
233 :

One basis is B = 5303
,

90, 13
,

20, 23 ⑧s
Lemma I is indeed a topology

Pf sketch Show that the collection B of all finite intersections
of elements in 9 is a basis.

is easy.& follows since if B= S
,

1 .... Sm and B = Sin ..... Sin are

two elements of B
,
then BeB' is also an

element of B.

191 = 3 /BFit8 11 = 25



Section 14 : The order topology

Let X be a set with total order E
.

For a
,
b eX

,
define

· (a
, b) = (xX : a = x = b3

· [a
, b) = SeX : a = +2b3 - !

· (a , b] = EweX : a = v = 63
· [a ,

b] = ExeX : acv = b3
.

Def Let B contain

(1) all intervals (a,
b)

(2) all intervals [do,
b) where do is the smallest element (if any) in X

(3) all intervals (a,
bo] wherebo is the largest element (if any in X.

The collection & forms a basis for the order topology on Xo

Ex The order topology is the standard topology on R.

Ex 1x with the lexicographic order :

a + be end E aec or a= c
,

bed
.

axb-
-and

- These intervals actually form
d ~ axb

a basis on their own .

This is not the standard topology on R2.

Ex The order topology on It is the discrete topology
Note En3 = (n-1

,
n +1) for U1

,
and 313 = [1

, 2) ·



Ex The order topology on E1
,
23 x*+ (lexicographic order)

is not the discrete topology, since any basis element

containing 2x1 must contain some I
,

=
!

1x8 & 22

1x70 0 2x7

1x6 o . 2x6

14500 2x5

134 · o 2x4

1x30 o 2x3

1x20 - 2x

| x | 0024

Later : NoteI is a convergent seeare



Ex Let X be an ordered set and aEX.
Let (a

,
c) = ExeX(xa) E 7

and (-y
, a) = Ev =X(a2x3 &

be the open rays.
Show these are indeed open in the order topology.

# If X has a largest element bo
,

then

(a , u) = (a , bo] is a basis element
,
else

(a , c)= (a , 2) is a union of basis element.

Ex Do the open rays form a basis for R ?

Ans No - consider a <b .
No open ray is

contained inside (0 , b) ~ (a
, a) = (a , b)

Ex Do the open rays form a subbasis for the

order topology on X ?

As Yes .

They're open in the order topology, so the topology
they generate is contained in the order topology

Also
, every basis element for the order topology is a finite

intersection of open rays :

(a
, b) = (- u

, b) e (a
, a)

(a
, bo] = (a

,
u) forbo largest

[ao
, b) = (- 0

, b) for do smallest
So the reverse containment of topologies is also true·



Section 15 : The product topology on XY E
Def For X and Y topological spaces, the product
topology on X *Y is the topology generated by
the basis B with all sets of the form

UXV
,
with U open in X and V

open in
X.

Check Is this a basis ? iNote XXY EB
.

Also
,
for U= V

,
UnVz = B,

(u ,
x v

,) - (uz + Vz) = (4,142) x (V .
c V2)" =B

Question Is B a topology ?
No

,
the union (U ,

xV ,)v(U2 + V2) is not in B

Smaller bases are possible :

Thm If B is a basis for X

and C is a basis for Y,
then 1) = EBXC / BEB

,
CE23 is a basis for X*Y

.

If Check that D is a
basis. leasy)

By def of product top J U open:X and①
Let W

open in X* Y
.

Let way EW .

7 Vapen :n Y St . xy
= U + VCW .

By def of basis
,

E B=B and CeJ sit.

x +

y
= B+ xy+ V -W .

Therefore& generates the product topology. is



Given Sets X
,

Y
,
there are projection maps

#
: XXY -+ X and itz : XXY + Y which are outo.

(x
, y)1+ X (x

, y) +

y

Now assume X
,

Y are topological spaces .
Let U be an open set in X. #" (U) = UXX

,
which

is
open in XXY.

Similarly ,

for V open inY2" /) = XXV
,

which is open in XXY.

Then T
:

"

(U) 12" (v) = UX

Theorem 1 = E (4) Hope X3 vGti(V)/ Vopen in &
is a subbasis for the product topology on XXY.

Proof easy-see textbook. I

-

-



Section 16 : The subspace topology wity

Def Let (X
,
i) be a topological space.

For YEX
,

the collection

Yy = Su+Y(u3 ·
is the subspace topology on Y

.

W

↳. heck it is atopologya
· Arbitrary unions : Uz

Voet(Ko1y) = (VoetUo)of ·· Finite intersections :

(U ,
cy)e .... (UncY = (d .... Un) +Y v

--------

U

Yax

Ex Though [0, 1) is not open in I
,
it is open in the

subspace topology on[o
, 2] < I

.

C I >

Lemma If Y is an open subset of X then for UCY,
UeYyUeY

Lopen in Y) Copen in X

&of (E) Ue 2 = 7 VeY St . U = V1Y => He Y

(E) Assume Ue3
.

Since U = UnY
,

UeY
. D



Lemma If B is a basis for the topology on X,
then By = EBrY / BE B3
is a basis for the topology on

%Pf Given UY open in Y
(with U open in X

and yeUuY,
we can find

Y(X
Be B with yeBa No
Note ye BrY a UrY

It follows from Lemma 13
.

2

that By is a basis for

the topology on Yo

Thm If AX and BEY
,
then the product topology

on AxB the same as the subspace topology on

AxB a XXY.

-
Pf Consider first the product #
topology on the larger space X*Y, Bwhich has as a basis all UX,
1 open in X

,
V open inYo

So the subspace topology on AxB has as a basis all

[U x V) - (A + B) = (U -A) = (VoY)
,

which is a basis for the product topology on AxB
.

These topologies are the same since they have a common basis
.



Rmk The order and subspace topologies are not

compatible in general.

For example, let Y= [0 ,
1) vE23 < I

.

In the subspace topology ,

223 is open in Y
.

C ! >

But in the order topology, any basis element containing
2 is of the form

(a ,2] := EyeY 1 acyez3 for some net

and it follows that 923 is not open.

Def If X is totally ordered, a subset XCX

is convex if VabEY with a =b
,
the interval

(a
, b) = EveX/a = xeb3 is contained in X.

Thm If X is an ordered set with the order topology
and YCX is conver

,

then the order and subspace
topologies on Y agree.



Section 17 : Closed sets and limit points

Def A subset A of a topological space X is closed

if X-A is open.

Ex [a
,
b] is closed in IR since IR-[a, b] = (n

,
a) - (b

,
u) is open.

& I >

Ex [a . b] x [c , d] is closed in IR?

Complement is union of four basic open sets
. )

Ex In the finite complement topology on a set X
,
the

closed sets are X
, 0 ,

and all finite subsets of X.

Ex In the discrete topology, every set is closed
.

Rmk closed # not open

Ex [0
,
2) is neither open nor closed in IR .

# Let Y= [0 , 2) 1343 <IR have the subspace topology·
Is [0, 2) open in Y Yes ,

Is 243 open in X ? Yes ,

Is [0,
2) closed in Y ? Yes

,

Is 343 closed in Y ? Yes
,



Thm For X a topological space,
· O and X are closed
· arbitrary intersections of closed sets are closed
· finite unions of closed sets are closed

.

Pf See book
. (X-G= (X-Co) (

Rmk Topological spaces could have instead been defined via closed sets
.

Thm For YcX with the subspace topology, a set
AcX is closed in Y #S A = But for some closed set

B in X

& X = 1R2

Pf See book
.



Def For X a topological space and AcX,

· the interior of A
,
denoted IntA

,
is the union of all

open sets contained in A
· the closure of A

,
denoted CIA or E

,
is the intersection

of all closed sets containing A.

Int A < A c A
↑ Plosed⑰

open set

Ex For X = IR and A = [0
, 2)

,

IntA = (0
, 2) and = [0

,
2]

.

Thm X topological space with basis B
,

A CX.

(every open setcontaininginter

G Munkres calls these neighborhoods of X.

↓

Rmk An open set containgo is called an open neighborhood of X.

A set containing an open neighborhood of X is called a neighborhood of X.

# (a) (S) Assume J an open neighborhood U of

that doesn't intersect A
=> X-U is a closed set containing A
=> AcX - u = xA

(E) EPA means X-A is an opennbhd of a not intersecting A



(b) Use (a).
E) Basis elements are open
(E) An open nghd containing - contains

a basis element containing f.

Def X topological space ,
ACX. A point NEX is a limit point

of A if every open ubld of a contains a point in A

other than ↓ .

( may or may not
be in A)

E A = [0, 2) < IR
.

The set of limit points is 10
,
2]

.

Ex B = En/ne[ +3 < IR
.

The only limit point is 0.

Ex QCIR
.

The set of limit points is R
.

Thm X topological space,
AcX.

Let A be the set of limit points of A .

Then E = AvA' ·

Cor A subset of a topological space is closed
= it contains all its limit points .



Def A topological space X is a Hansdorff space if

* distinct N
,yEX,

I open neighborhoods U of a

and V of y with UnV = 0
· · Y

Thm In a Hausdorff space X
,
finite sets

U W

are closed.

Pf If suffices to show that Gab is closed FaeX
,

since finite unions of closed sets are closed .

So
,
let y in X. By the Harsdorff assumption

,

7 open neighborhood Very with# V
.

·Y So y is not a limit point of Ex3.

uv By Theorem above
,
y

So Jes = 323
, meaning S23 is closed

ois

Def A sequence # ,
*2

,
*,.. converges to a point

NEX ifF open neighborhoods U of N
,
JNEX

+

such that EneU FnENo

Ex +,
,
5

,

#
,

...

-> O in R

2

u8 a I



Ex In the topological space

d
⑧

note that [b] is not closed
,

and note that the sequence b
,
b

,
b

,
b

,
b

, ...

converges not only to b
,
but also to a or to c.

Thm In a Hausdorff space, sequences converge
to at most one point .

#YandYthen let U andS
many elements of the sequence,

·N and hence V cannot.

·
NN+2

Thm A subspace of a Hausdorff space is Hansdorff
.

The product of two Harsdorff spaces is Hansdorff
.



Section 18 : Continuous functions

Def X
,
Y topological spaces. A function f : X+ Y is continuous

if I open U in Y
,
f"(U) is open in X.

f

f(u->⑳
X Y

Rmk It suffices to check this condition on basis elements
of Y :

U= +
Bof (4) = -

(B)
Rmk It suffices to check this condition on subbasis
elements of X :

B = S
,

1
... Sn f -

(B) = f (S ,
c .... Sn) = f " (S ,) v

. . .

-f" (Su)

Ex Id : Re-IR (defined by Id(x)= 2 VERRel
is continuous since Id"((rib) = (a, b) is open in Re

,

Id : IR-Re is not continuous since Id" ([a ,b) = [a ,
b)

is not open in IR
.



F

Thm Let X andY be topological spaces,
and let fix-X

The following are equivalent :

(1) f is continuous

(2) F AcX
,
f(i) <FTA)

(3) V closed sets B in Y
,
+(B) is closed in X.

(4) FX eX and
open nghds V of f(x) J openaghd Mof * St. f(U)V

(5) ExeX and basic Open Ughd V of f(x) E basic open eghd U of x St
. flu)CV

M & ~ If X Y are metric
space then

·
U

↳ f(x) (5) agrees with the E-5 definition

of continuity
.

-

Rmk If (4) holds at roEX but not necessarily at all

points in X
,
then we saf is continuous at No

&f We will show that (1) = (2) = (3) => D) and (1) = (4) = (5) = (1)

(1) + (2) Let AcX
.
Let xeE

.

Want : f(x) -> f(A).

Let V be an open nghd of f(x)
.

Since + cont
,
+"(V)penX

Since Xe f"(V)
,

fi(V) is an open ughd of X.

Since XeE
,

fir) e A + 0 Let xefr) et.

Then f(x) = Vef(A) ·

Therefore f(x)ef(A).

2) = (3) Let B closed Y
.
Let A = f" (B) · Want : A is closed . i. =A.

f(A) = f(f(B)) < B
.

Let XeF.
Then f(x)ef(E) < f(A) < B = B

.

Thus x = f" (B) = A.
Hence ACA .

Therefor = A.



(3) = (1) Let Hopen Y
.

Then U = X-U closed Y
.

Hence(f"(U))" = f
*

(4) closed X .

Therefore f(U) open X.

() = (4) Let x = X
.
Let V be an open ughd of f(x).

Let U= f"(V) ·

U is an open ughd of x St . f(U) CV·

(4) + (5) Let xeX. Let C be a basic open nghd of f(x).
Than - open nghd U of x St · f(u)

Hence J basic open Ughd B of x St
. BaU .

Therefore f(B) < f(u) < C
·

(5) - (1) Let Upon Y .

If f(l = 0 we are done .

Assume f(x) =U . Then 7 basic open aghd C of f(x) with CCU .

ThusI basic open nghd B of x with f(B) < CU .

Therefore BCf"(U) ·

Hence f"(U) open X.



Def A homeomorphism is a continuous bijection fix-X
such that f" : X-X is also continuous

·

We say "X is homeomorphic to X" and write X = Y.

Ex Ex
-

1

Ex f : ( ,
1) + IR defined by +(e) = # is a

homeomorphism with inverse f+ :R+ (1 , 1) defined

by -"(y) =

1+·
So homeomorphisms need not preserve boundedness.

Non-Ex f: [0
, 2n) ->S' defined by f(t) = /cost

,

sint) is a

continuous bijection that is not a homeomorphism.

f - of
· ·

Rmk A homeomorphism gives a bijection blo the

open sets of X andYo So it preserves
all topological properties .

Det An embedding f : X-Y is a continuous injective map
St . f : X + f(x) is a homeomorphism

t image of f with subspace top .

Munkres : imbedding



Thm (Constructing continuous functions)
(a) Constant functions are cont.

->
(b) The inclusion of a subspace is cont .

->

(c) Compositions are continuous : If F: x +Y
, g

: /+ z

are cont
.,
then so is got : X -> Z.

X - y - z

(d)n f: X + Y cont
.

and AcX => fla cont
XRestrict domain

A + itY
(e)

fix ->Y cont
.

#
fix-2 cont

·
for XCZ Extend codomain

=> fix-W cont
, for f(X)CW Restrict codomain

(f1 f : X + Y
,
X = Vo ,

fluo cont to >f contr

Locality of continuity open un ·

8->

Uz

(g) (Pasting lemmal X = ArB
,

A
,
B closed in X .

f: A +Y and g
: B-Y cont . and f(z=gle) VueAnB.

Then the function hiX-X defined via

h(z) =S3
is continuous

,

AB -

Proof : Exercise/see book
.

·
Ex Why is fiR-R not continuous ?

~



Thm Let f : A + XXY be given by fla) = (fi(a)
·
fila)

·

Then f is continuous E) f
1, fc are continuous

.

Pf Let Mi : XxY-X and
(x,y)

#2 : X + y -> Y
. ↳(v , y) +0 y

Note it
,

is continuous since if

U is open in X
,
then fu

#" (u) = UXX is open in XXX
. Dis

And similarly for itz 82 I

E f conte implies 4)(4) I# of = f ,
and Not = 52

are continuous. R

(E) For UV a basic open set in XXY

(meaning U open in X
,

V open in X,
note f"(UV) = fi (n) -f ,"(V) is open in A

↑ ↑

open in A open in A

since f, cont
.

Since be cont
.

f"(UV) Asar fa

-
fi'(u) IR2

f
, ↓. UN

In

Ev

U



Section 19 Product topology

Recall

Def Given EXa30e5
,

the cartesian product
#res Xo is the set of all J-tuples (NJES
which are maps 2 : J+ UretX With v= z(0)X

For each get we have a "projection map"Ta
:Xa - X

X ++ Xa

Def The Cless-important) box topology on Tres Xa
has as its basis all sets

&oet Ho I No open in Xo to3

Def The (more-important) product topology on Toes X-
has subbasis given by Sta (n) /de5, Hopen Xa].

Remark This subbasis consists of exactly the subsets ofT Xa
that need to be open for the projection maps

245

#a to be continuous
.

·

The product topology on Toes Xo has basis

No open in VoEttre-Uo1 Us = Xo for all but finitely many oh



Rmk These topologies agree if J is finite .

UiXRxU,
U

,
+ 12 +Us

If J infinite then the box topology is finer.

The previous theorem is a special case of the following
.



Thm Let fo : A+X Vee]

Define Fit Xa by a -(fo(a)des

Let TX have the product topology·
Then f is continuous E) fr is continuous &.

Recall each projectionB: Xo -> XB is continuous
.

Observe : sof = fo

() f cont
.

=> for roof cont
.
For

(E) Consider a subbasic open setr (U) , UCpenX
f"(i= (U)) = fr (h) open since fa is continuous is

Important fact :

Rmk (E) need not be true if It Xo has the

box topology. Let RW= IneztXn with Xn =R En
.

Define f: R- IRV by f(t) = (t, t,
+
,

000)
Each coordinate function fuRelR by fact)= t is continuous

.

But, f is not continuous if RW has the box topology,
Since B = 1 - 1, 1) x ( -, 2) + (t

,
5) X

... is open in the

box topology
,

but f"(B) = 303 is not open in M
.



Section 20 : The metric topology

Def A metric on a set X is a function d: X =X+ IRs
.
t.

() d(w
,g) = 0

, d(w
, g)= 0 E v =

y

(2) d(x
,y) = d(y ,

x) triangle inequality
(3) d(x

,
z)d(x,y) + d(y , z) ·

·d Z

Br(z) = EyeX/daylar3 is the
N

I r-ball centered at
.

Br(x) ...

Def Given a metric space (X,
d)

,
[Br(z)(veX

,
+03

is a basis for a metric topology on X.

Check its a basis (2) Bi

By B

Rmk U is open in (X
,
d)

# Feel FreBs(y) CU

# Feel 7 eBr(z)cU

Def A topological space X is metrizable ifJ a

metric on X that induces the topology on Xo

Important Question Is a given topological space metrizable ?



E For X a set
, defining d(x,y) =31 x +

y
0x=y

gives a metric inducing the discrete topology.

Ex Metrics on IR

For KEPECO
,
let dp(,y) = 1v-yllp ,

where

where Iellz =F+ up
Nell

,
= (w

, 1 +... + (2) "taxicab" metric

llello = max Gla , .... Inl3 "Sup" metric

1 Ellp = (1 ,
1+... + (p) " for allpeCo .

Note B10) < Bi() < Bi (8) > Br(0).

Hence the following lemma
shows that all of these

metrics induce the same

topology on R :

land
,

moreover
,
this topology is the product topology)

Lemma Let X have metrics d, d'generating the

topologies I
,
51

· Then i' is finer thana

(i
. e.cro if F Br(z)

,

7 BS(z) < BR(z)·

If see book
.



(x,
)= 23

(x,!= 13 & (x,) = 1

T

Def Given a metric space (X ,
d)

,
define

& (w , y) = min (d(x,y)
,
1) · This is the standard bounded metric

.

Thm It is metric on X and induces the same topology as d.

Pf See book .

Cor Boundedness (a set having finite diameter) is a metric

property but not a topological property.

Metric for R Ideas : dix
, y) = (3 King . )2]" ,

p(xy) = Sup(xe-yal
Problem : Make take value8

Pet the uniform metric on IT is given by j(xy)=Sup Edva ,l
Recall: (a ,b) = min (la-s1

, 1)

Theorem (a) Uniform top on R fiver than product topology.
(b) Uniform top on RT coarser than box topology.
() For J infinite

,

all 3 are distinct
.

Proof Let X = IR*

(a) Let & Wa be a basic open nghd of X in produtop.
Le J



Let d
, . ..,

do be the indices for which Ua # R.

For 12iIn
,

choose di sit . Ba(xi Ha .

Leta: min 33, ..., 3.] ·
Claim : Bi(x) < Matt Ua.

Let ze RW st . J(x ,
zK3

.

Than Fact, (x
,
za) < 3.

: ze Matt Ua .

r

(b) Consider B(X). Let U = Marj (xo-
,

Xa+) .
Than xeU .

Clair : UCB5(x). Let
you .

Then Fact
,

Exa
,ya) 3 .

So pixy)=E.

<) Let & be the J-tople with all coordinates equal to 0.

Than Beca is open in uniform top but not in the product topology.-

There are subsets of RT that are open in the box topology
but not the uniform topology. Exercise

.
<HWK4)

·
I

Thm The product topology onRRV is induced by the

metric D(x
, y) = Sup &(vyi)3

Pf See book .

Rmk More generally, countable products of metric spaces

are metrizable· You will show his in HW4

Rmk supEd( , yf3 is not a metric

It can
"take the value 8.



Section 21 : Metric topology (continued)

Rmk Metric spaces are Hausdorff : If Ney ,
then

Bc(z) and Baly) are disjoint for 0egEd(y) by the

triangle inequality .

.......
M &

Thm 5: (X ,dx)+ (Y
,
dy) continuous

# · ↳ f(x)

Given weX
,

EO
,
7530 st

dx(v
,
2)= 5 = dy(f(x), f(x))25

.
N W

Lemma (Sequence Lemma) X topological space, A2X.
If a sequence inA converges too, then &A.

Converse holds if X metrizable·

Pf (E) En-X implies every&
nbhd of a contains a point in A,
so Xeo

Pf (E) Let & be a metric giving the topology on X.

Unet+, choose Une Bin(1) 1 A
.

Note -N.

LRmk
For the converse of this land the next) lemma

, assumption "X metrizable"
can be relaxed to X first countable

,
which means :

VzeX
,
5 countable collection of ubhds EUnBnezt such that

↓ nbhds U72,
Ene with XeUnCU .

Un

Preview : Leave in notes
,

but skip in class. #a



Cor A space X with a subset ACX and xet and no sequence in

A converging to x is not metrizable.

Exampl RJ not metrizable for J uncountable. Indeed
,
let

A = Ex = (JER5) *-
= 1 for all but finitely many deJ3.

Define GERT to be the point - with No = 0 FOEJ·

Then JE A since any basic open set about8 is

↑ in all but finitely many coordinates
,
hence intersectsA

.

But for any sequence I' ,
X?

,

&, ...
[A

,

7) some BET with E = 1 En ( sinceacountableunionof
hence ITB"([1, 1) is a ubled about t containing no z
so no sequence in A can converge to

0

.

Thm X
,
Y topological spaces,

fix-> X
.
If f is continuous

,

then F on + -
,

we have f(x) + f(x).
Converse holds if X is a metric space.

f"(v)
Pf()) Given nbhd VE f(f)

, · X

z

note f"(v) is a ubhd of X, ·f(x)

soIn eventually in f+ (v)

implies that flen) is eventually in V .

# Suffices to show f(E) < -(A) for any AcX.

IfXE
,
then by prior lemma (since X metrizable)

,

7AnEA with En-to By assumption,
flon) -> flu)

.

Since F(n) ef(A) En
,
the prior lemma gives f(x)Ef(A) .

Hence f(I) < f(A) as desired
.



Section 22 : The quotient topology

Let X be a topological space,
and let X

* be a partition
of X

, namely a collection of disjoint subsets whose union is X .

(In other words
, suppose we have an equivalence relation on X .)

Ex [0
,1[0,1/- [0, 1 = [0, 1/ DYsI

> >
· ·

*

%

* · Di
i ⑭12

⑭ & -

torus Klein bottle sphere

From the topology on X
,
how do we get a topology on X*?

Give X * the first topology such that p: X-> **
is continuous

.
N + [x]

U open in X*) p" (U) open in X . Largestsuchtopolog n)

Def Let X be a topological space,
I be a set

, pix-X
be surjective .

In the quotient topology on
Y,

U open in XX p"(n) open in X
.



Check This is a topology.

p"(X) = X open in X = ↑ open in Yo

p" (d) = o open in X = O open in .

Pope Volpe
Ex

*

Zum

X ·Dmx
sm

tor Y spherey
Ex

p : R- 5- 1 ,
0

,
13 by plateful

if wo

O if v = 0

I ifo

The induced quotient topology on E-
,

0
, 13 is

·.



Let p :X-Y be surjective, X a topological space .

What ifI already has a topology ?

Def For X
,
Y topological spaces and p: X-X surjective,

p is a quotient map if

U open in XE- p" (h) open in X.

Ex All the examples above
,
where I has quotient topology·

Non-Ex L X = G(x ,y)(IR2(zy = 13 v50, 03
with the subspace topology

- Y= IR

↓
P p((,y))= x

Note p :X-Y is continuous and surjective ,
but not a quotient

map since p" (502) = E10,
03 is open in X.

but 502 is not open in Yo

Remark
p

: X-Y is a quotient map
if

(a) KopanY = p (U) Spen X is p continuous
,

and

(b) po (U)penX = HopenX is p sends open sats that are

complete inverse images of a subset of Y to an open set.

called saturated

Remark The product of quotient maps needs not be a quotient map
.

See Example E in Ch22 in Munkies.



Thm (Continuous maps out of quotient spaces)
X

, Yz topological spaces, pix-Y a quotient map.
of

Let g : X + z be constant on each p
+ (Ey3), Y ...... Z

hence inducing a function f:-2 with top =g .

Thena continuous ET g continuous · #
# E)) - cont

. implies fop=g cont
. ·

(E) Given V open in E
, g

+ CV) open in X since g is continuous
·

12

p
+ (f - (v))

Now
, p a quotient map implies f"(v) open in Y,

gof is continuous .


