

<u>Chapter 4</u>: Countability and separation axioms e.g. first cambole e.g. Hausdorff When can a given space be embedded in a metric space or a compact Hausdorff space? Munkres' goal: Urysohn metrization theorem, which says a second countable regular space is metrizable. countable basis × A second goal: A compact manifold can be embedded C R4 in some Finite-dimensional Euclidean space. Klein bottle

Section 30: The countability axioms

Def A space X has a <u>countable basis at $x \in X$ </u> if \exists a countable collection of nbhds $\{B_n \ni x_n^2\}_{n \in \mathbb{Z}_+}$ such that for each nbhd $U \ni x$, \exists some n with $x \in B_n \subset U$.

Space X is first countable if it has a countable basis at each xEX

Ex A metric space (X,d) is first countable: Consider $\{B_{Yn}(x) \mid n \in \mathbb{Z}_+\}$

We previously saw the following theorem with (=) for metric spaces:

 $\frac{\text{Thm}}{(a)} X \text{ a topological space.}$ (a) $A \in X$. \exists sequence $(a_n) \in A$ with $a_n \rightarrow x \Rightarrow x \in \overline{A}$ and (\Leftarrow) if X first countable. (b) $f: X \rightarrow Y$. f continuous $\Rightarrow \forall$ sequences $x_n \rightarrow x$, $f(x_n) \rightarrow f(x)$ and (\Leftarrow) if X first countable.

Def Space X is second countable if it has a countable basis.

Rmk Second countable spaces are first countable.

$$\begin{array}{c|c} E \times & R & \{(a,b) \mid a,b \in \mathbb{Q}, a < b\} \\ \hline & R^n & \{(a_1,b) \times \dots \times (a_n,b_n) \mid a_i, b_i \in \mathbb{Q}\} \\ \hline & R^W & \text{Similarly} \end{array}$$

Pf Quick. See book.

 ∞ Def AcX is dense if $\overline{A} = X$ R EX QCR is dense $\mathbb{Q}^2 \subset \mathbb{R}^2$ is dense A non-compact, locally compact Hausdorff space is dense in its one-point compactification.

I hm For X second countable, (a) Every open cover has a countable subcover (Lindelöf property) (b) I countable dense subset of X (separable property).

Rink The three are equivalent if X metrizable.

Pf Let {Bn3 be a countable basis for X.

(a) U open cover of X. Let J = 2n ∈ Z+] ∃ U ∈ U s.t. Bn ⊂ U3 For n ∈ J choose Un ∈ U s.t. Bn ⊂ Un.
This gives a countable subcollection £ Un3, n ∈ J of U.
Let x ∈ X. ∃ U ∈ M s.t. x ∈ U. U open ⇒ ∃ Bn s.t. x ∈ Bn ⊂ Un.
Then n ∈ J. Thus x ∈ Bn ⊂ Un. ∴ {Un3n ∈ J covers X.

(b) $\forall n$ choose $x_n \in B_n$. Let $D = \{x_n \mid n \in \mathbb{Z}_+\}$. For any $x \in X$, note any basic open B_n intersects D; hence $x \in \overline{D}$ and $X = \overline{D}$. U

Section 31: Separation axioms

Ex Let \mathbb{R}_{K} be \mathbb{R} with basis $\{(a,b), (a,b)-K\}$, where $K = \xi - \frac{1}{n} : n \in \mathbb{Z}_{+}\}$. (We've added enough open sets so that K is closed.) IRK is Hausdorff: Use open intervals.

 \mathbb{R}_{K} is not regular: Consider O and $O \notin K \subset \mathbb{R}_{K}$. Can show any open sets about O and K intersect.

Later, we'll see a space that is regular but not normal.

Ihm Subspaces and products of Hausdorff spaces are Hausdorff. Subspaces and products of regular spaces are regular.

Proof: See book. D

The same is not true for normal spaces:

 $\underline{\mathsf{Ex}} \ \mathbb{R}_{\ell}$ (lower limit topology) has basis: $\{(a,b), [a,b)\}$.

Re is normal. Indeed, let A, B C Re be disjoint. VaEA, since a 4 B= B, I open [a, a+ En] disjoint from B. YbeB , 7 open [b, b+ 2b) disjoint from A. Then $\bigcup_{a \in A} [a, a + \mathcal{E}_a) > A$ and $\bigcup_{b \in B} [b, b + \mathcal{E}_b] > B$ are disjoint opens. Hence Re is regular. By the above theorem, the Sorgenfrey plane $(\mathbb{R}_{\ell})^2$ is regular. But $(\mathbb{R}_{\ell})^2$ is not normal.

Indeed, $L = \{(x, -x) : x \in \mathbb{R}^3\}$ is closed in \mathbb{R}^2 , hence closed in $(\mathbb{R}e)^2$.

Section 32: Normal spaces
The Every metrizable space
$$(X, d)$$
 is normal.
PE Metric space X Hauslorff \Rightarrow one-part sets are closel.
Let A, B c X be disjoint closed subsets.
Va $\in A$ \exists B $_{2a}(a)$ disjoint from B
(else a is a limit point of B and hence in B)
Vb $\in B$ \exists B $_{eb}(b)$ disjoint from A.
Let $U = \bigcup_{a \in A} B_{2a/2}(a)$ and $V = \bigcup_{b \in B} B_{eb/2}(b)$
These open sets containing A, B are disjoint since if $z \in U \cap V$,
then $\exists a \in A$ and $b \in B$ with $z \in B_{2a/2}(a) \cap B_{2a/2}(b)$.
WLOG let $z_a \leq z_b$.
We'd have $d(a,b) \leq d(a,z) + d(z,b) \leq za/2 + z_b/2 \leq z_b$, a contradiction.

Thm Every compact Hausdorff space X is normal. <u>Pf</u> Hausdorff \Rightarrow one-point sets closed. Uy, \{<mark>\y</mark>1 Let A, B C X be closed and disjoint. • 42 V42 iha. X Hausdorff => A, B compact • 93 Let a & A. Ybe B & disjoint open nights Us 3a, Vo 3 b Ug3 The open cover & Vb3 here of B has a Jub cover & Vb1 ... , Vbn f Vyz Let V = Vb, U = Ub, Or a Ubm. Then U, V disjoint opens, Xe U, BeV. Hence $\forall a \in A \exists$ disjoint open sets $U_a \ni a$, $V_a \ni B$. $\exists U_a^3$ covers the compact set $A \Longrightarrow$ finite subcover $\{ U_{ai} \}_{i=1}^n$. Note $U = U_a, \dots, U_{an}$ and $V = V_a, \dots, V_{an}$ are Var disjoint opens containing A and B. ٧<u>م</u>,

Theorem Every regular space with a countable basis is normal
Pf Sec book. D
Theorem Every well-ordered set with the order topology is normal.
Pf See book D
<u>Recall</u> IR ^w metrizable J uncountable => IR ^J not metrizable.
Nonexample Juncountable => RJ not normal See book

Section 33: The Urysohn Lemma Thm (Urysohn lemma) Let X be a normal space, A, B disjoint closed subsets, and [a,b] c R (a < b). Then \exists continuous $f: X \rightarrow [a,b]$ with f(x)=a $\forall x \in A$ and f(x)=b $\forall x \in B$. Pf It suffices to consider the case [a,b] = [0,1]. Úy; Order the countable set Q^[0,1] starting with 1,0. - Let $U_1 = X - B$ (open). U1/2 Apply normality to get Uo open with A clocuocu. U2/3 B Continue inductively, obtaining open sets Up $\forall p \in \mathbb{Q}^{n}[0, 1]$ satisfying $p < q \Rightarrow Up \in Uq$. U1=X-B

(For example, when constructing $U_{2/5}$, apply normality to get $U_{2/5}$ open (with $U_{1/3} \subset U_{2/5} \subset U_{2/5} \subset U_{1/2}$. For $p \in \mathbb{Q} \cap (-\infty, 0)$, define $U_p = \phi$. For $p \in \mathbb{Q} \cap (1, \infty)$, define $U_p = X$. Now, define $S: X \rightarrow [0,1]$ by $f(x) = \inf \{ p \in \mathbb{Q} \mid x \in U_p \}$. If $x \in A$, then $x \in U_p$ $\forall p \ge 0$, so f(x) = 0 as required. If $x \in B$ then $x \notin U_p \forall p \in [1, so f(x) = 1]$ as required.

We now check f is continuous. Given $x_0 \in X$ and open $(c,d) \ni f(x_0)$, pick $p, g \in Q$ with c . $We claim <math>U_q - \overline{U_p}$ is an open neighborhood about x_0 with $f(U_q - \overline{U_p}) c(c,d)$. Note $f(x_0) < q \Rightarrow x_0 \in U_q$ and $f(x_0) > p \Rightarrow x_0 \notin U_s$ for some $s > p \Rightarrow f(x_0) \notin \overline{U_p}$. So $x_0 \in U_q - \overline{U_p}$. Similar arguments show $f(U_q - \overline{U_p}) c(c,d)$, as desired.

