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Persistent homology applies homology to a nested sequence of spaces to obtain a graded

module called a persistence module. The stability of persistence modules with respect to changes

in the input supports their use as a signature of the underlying space for statistics and machine

learning. This stability is with respect to a family of metrics on persistence modules parametrized

by a constant p between one and infinity. Since every metric in this family is incompatible with an

inner product, a non-trivial feature map is necessary in order to use kernel methods. It is natural

to ask how much such maps necessarily distort the metric on persistence diagrams. We show that

when p is strictly greater than two, the associated metric space does not coarsely embed into any

Hilbert space. The nerve theorem allows for the computation of the persistent homology of

certain continuous filtered spaces. This computation has a complexity which is cubic in the

number of simplices of the associated simplicial filtration and may be prohibitively slow. To

mitigate this, we approximate the persistent homology up to some pre-specified error using

discrete Morse theory and prove the approximation is optimal among a restricted set of nearby

filtrations. Finally, we propose a general technique for extracting a larger set of stable information

from persistent homology computations than is currently done. These computations also produce

other information of great interest to practitioners that is unfortunately unstable. We recast this

information as discontinuous real-valued functions and observe that convolving such a function

with a suitable function produces a Lipschitz function. The resulting stable function can be

estimated by perturbing the input and averaging the output.
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CHAPTER 1
INTRODUCTION

1.1 Overview

Persistent homology takes in a one-parameter family of topological spaces and outputs a

signature, called the persistence diagram or barcode, of this family’s changing homology.

Persistence diagrams are one of the main tools in topological data analysis (TDA)

[13, 33, 38, 40]. In combination with machine learning and statistical techniques, they have been

used in a wide variety of real-world applications, including the assessment of road network

reconstruction [3], neuroscience [7, 24], vehicle tracking [5], object recognition [46], protein

compressibility [39], and protein structure [43]. Put briefly, these persistence diagrams are

multi-sets of points in the extended plane, and they compactly describe some of the multi-scale

topological and geometric information present in a high-dimensional point cloud or carried by a

real-valued function on a domain. There is a natural metric on one-parameter families of

topological spaces, called the interleaving distance, and a family of metrics on persistence

diagrams, called the p-Wasserstein distances. Several theorems [17, 25, 27] state that persistence

diagrams equipped with these metrics are stable with respect to certain variations in the point

cloud or functional input. This stability supports the use of persistent homology for machine

learning because it guarantees that small perturbations of the data, such as those caused by

measurement noise, do not cause large changes in the associated features.

Kernel methods, such as support vector machines or principal components analysis, are

machine learning algorithms that require an inner product on the data [64]. When the original

data set X lacks an inner product or one would like a higher-dimensional representation of the

data, a standard approach is to map the data into a Hilbert space H . Such a mapping is called a

feature map and kernel methods are implicitly performed in the codomain of the feature map.

While specifying an explicit feature map may be difficult, it turns out to be equivalent to the often

simpler task of constructing a positive definite kernel on the data. This equivalence is important

for the practical success of kernel methods but should not obscure the fact that there is an

underlying feature map ϕ : X →H and that the associated learning algorithm works with

ϕ(X)⊆H . Because of this, when X represents stable signatures of input data, one would like a

9



feature map ϕ that changes the original metric as little as possible. If one would like to apply

kernel methods to persistence diagrams, a natural first question is whether the metrics on

persistence diagrams can be induced by an inner product. More precisely, does there exist an

isometric embedding of persistence diagrams into a Hilbert space? We show in Section 2.4.1 that

the impossibility of such an isometric embedding follows from work of Turner and Spreemann

[66] and classical results of Schoenberg [59, 60]. In other words, any feature map from

persistence diagrams into a Hilbert space necessarily distorts the original metric.

Our first main result concerns the ∞-Wasserstein distance, also called the bottleneck

distance. Among the p-Wasserstein distances on persistence diagrams, this is the only case for

which persistent homology is 1-Lipschitz. Isometric embeddings require distances to be exactly

preserved. More general are bi-Lipschitz embeddings which are allowed to distort distances at

most linearly. Considerably more general are coarse embeddings, which need not be continuous

and only require that distances be distorted in a uniform, but potentially non-linear, way. Coarse

embeddings are an important notion in geometric group theory and coarse geometry [41, 58]. We

show that the space of persistence diagrams with the bottleneck distance does not admit a coarse

embedding into any Hilbert space (Theorem 3-2). In other words, the distortion caused by a

feature map to the bottleneck distance is not uniformly controllable. In fact, even if one restricts

to the subspace of (finite) persistence diagrams arising as the homology of a filtered finite

simplicial complex, there still does not exist a coarse embedding of this subspace into a Hilbert

space (Remark 3-1 and Lemma 3-1). This result about distortions of embeddings is something

that people working with persistence diagrams have noticed in practice. Philosophically, this is to

be expected because bottleneck distance is an `∞-type distance, and `∞ can only be embedded in

`2 with distortion growing with dimension. Our result makes such an argument rigorous. As

corollaries of Theorem 3-2, we obtain the generalized roundness, negative type, and asymptotic

dimension of persistence diagrams with the bottleneck distance (Corollary 3-1, Remark 3-2, and

Corollary 3-3). Toward our proof of Theorem 3-2, we show that any separable, bounded metric

space isometrically embeds into the space of persistence diagrams with the bottleneck distance

10



(Theorem 3-1). Our proof of Theorem 3-2 combines Theorem 3-1 with ideas of Dranishnikov et

al. [32] and Enflo [34].

We subsequently extend this result to p > 2. We begin by showing in Proposition 3-2 that

every finite subset of (Rd,‖ · ‖p) isometrically embeds into the space of persistence diagrams with

the p-Wasserstein metric. Equipped with Proposition 3-2, we can embed any finite subset of `p

into the space of persistence diagrams with arbitrarily small metric distortion. If we suppose a

coarse embedding of the space of persistence diagrams exists when p > 2, the associated

distortion functions can be modified to bound the distortion of embedding any finite subset of `p

into a Hilbert space. This implies by Theorem 3.4 of Nowak [55] that `p coarsely embeds into a

Hilbert space, contradicting Theorem 1 of Johnson and Randrianarivony [42].

The computation of persistent homology is based on the construction of a filtered cell

complex and scales with matrix multiplication coefficient in the number of cells [48]. Discrete

Morse theory reduces the number of cells in a complex without changing its homology.

Mischaikow and Nanda [49] use filtration-wise discrete Morse reductions to speed up certain

persistent homology computations and implemented their algorithm MorseReduce in the

software Perseus [53]. For many steps of certain filtrations, such as Čech and alpha filtrations,

there is only a single cell added to the complex. These cells cannot be reduced by Nanda and

Mischaikow’s approach, as there is no possible matching cell.

In a data analysis setting, we might not be interested in an exact knowledge of the

persistence diagram. In Chapter 4, we present and compare three different approaches,

summarized below, to trade off correctness of the persistence diagram for a higher number of cell

reductions. In all cases, we begin with a complex X and filtration f : X → R. Given an error

bound δ , we approximate the persistent homology of f within δ in the bottleneck distance, w∞.

For definitions of these terms, see Sections 2.1 and 2.2.

1. (Binning) Find an approximate filtration, then use MorseReduce to construct and reduce by

a filtered acyclic partial matching based on the approximate filtration.

2. (Induced Filtration) Construct an unfiltered acyclic partial matching and use this additional

11



information to find an approximate filtration whose induced filtered matching preserves as

many matches as possible.

3. (Gradient Paths) Adapt the search of MorseReduce such that gradient paths are allowed to

grow up to a δ filtration difference between start and end points, then reduce by this filtered

acyclic partial matching.

Random Alpha complex with MorseReduce Result of exact MorseReduce, input for next steps

Prereduced complex with Binning-matching Result of Binning

Prereduced complex with Induced-matching Result of Induced

Prereduced complex with Gradient-matching Result of Gradient

Figure 1-1. Reducing Alpha Complex by Three Methods. Alpha complex based on 100
standard normal samples from the plane, δ = 0.05. Prereduced by
MorseReduce and further reduced by three approximation algorithms.
Lighter colors show higher filtration values; black lines are matches.

The first row of Figure 1-1 shows how an alpha complex constructed on 100 points drawn

from the standard normal distribution on R2 is reduced with MorseReduce until it stabilizes. The

lower rows show how the proposed approximation algorithms further reduce this complex. Figure

1-2 shows how this changes the persistence diagrams. The three algorithms considered here do

not modify the appearance time of any simplex by more than a pre-specified error δ . This

guarantees by Theorem 2-1 that the persistence diagram will not change by more than δ in the

bottleneck distance.

12



0.0 0.5 1.0
0.0

0.5

1.0
Original

0.0 0.5 1.0

6

46
6 7

3

Binning

0.0 0.5 1.0

34

29
21

2
2

3

Induced

0.0 0.5 1.0

Gradient

Figure 1-2. Approximate Persistence Diagrams. Persistence diagrams for the different
algorithms with δ = 0.05 band. Color shows homology degree, numbers
show multiplicity greater than one.

There is additional, potentially very useful, but unstable information produced during the

computation of persistence diagrams. For example, a point far from the diagonal in the

degree-zero persistence diagram represents a connected component with high persistence. This

component first appears somewhere and the computation that produces the persistence diagram

can be used to find its location. However this location is not stable. As we will describe below, a

small change in the input will cause only a small change in the persistence of this connected

component, but it can radically alter the location of its birth. We summarize this as follows.

Definition 1-1 (Fundamental Conundrum of Topological Data Analysis). Users of topological

data analysis would like to find the simplices or cycles corresponding to the birth of the most

significant pairings of critical values. However, unlike the paired critical values, these simplices

and cycles are unstable. In addition, persistent homology computations may rely on parameters

such that the output persistence diagram is not stable with respect to changes of these parameters.

In Chapter 5, we introduce a method for stabilizing desirable but unstable outputs of

persistent homology computations. The main idea is the following. On the front end, we think of

a persistent homology computation C as being parametrized by a vector a = (a1, . . . ,an) of real

numbers. These parameters could specify the input to the computation, such as the coordinates of

the vertices of a simplicial complex, or they could specify other values used in the computation,

such as threshold parameters used in de-noising or bandwidths for smoothing. For a given choice

of a, we get a persistence diagram. On the back end, we consider a function p that extracts a

13



real-number summary from a persistence diagram. For example, p might extract the persistence

of a homology class created by the addition of a specific edge in a filtered simplicial complex, or

it might be an indicator function on whether or not the longest bar was born by the addition of a

simplex contained in a fixed region of the input space, or it may indicate whether or not a chosen

representative geometric cycle intersects a given region. The composite function h that maps the

parameter vector to the real number need not be continuous, but it will in many cases be

measurable. We convolve this function with a Gaussian, or indeed any Lipschitz function, to

produce a new Lipschitz function that carries the persistence-based information we desire.

Our main theoretical results (Theorems 5-1, 5-2, and 5-3) give conditions on functions h

and K, where K is a kernel, that guarantee that the convolution h∗K is Lipschitz with specified

Lipschitz constant. From these we obtain the following theorem, where more precise statements

are given as Corollaries 5-1, 5-2, and 5-3.

Theorem 1-1. If h is locally essentially bounded then for the triangular and Epanechnikov

kernels, h∗K is locally Lipschitz. If h is essentially bounded then for the Gaussian kernel, h∗K is

Lipschitz.

In practice, this can be translated to a simple procedure for stabilizing unstable persistent

homology computations: perturb the input by adding, for example, Gaussian noise and redo the

computation; repeat and average. By the law of large numbers, the result converges to the desired

stable value.

Theorem 1-2. Let ε1, . . . ,εM be drawn independently from a kernel K. Then

1
M

M

∑
i=1

h(a− εi)→ (h∗K)(a).

We summarize our computational pipeline in the following algorithm, also shown in

Figure 1-3. Say we have performed a persistence computation and obtained an unstable output.

For example, we have determined that the longest interval in the degree-one barcode of the

Vietoris-Rips complex on points X1, . . . ,XN ∈ Rd is born with the addition of the edge X1X2. We
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encode this output as a function h : Rn→R with input a ∈Rn. For example, the coordinates of the

above points give us a ∈ Rn where n = Nd. We define the value of h : Rn→ R to be the length of

the longest interval in the barcode if it is born with the addition of the edge X1X2 and 0 otherwise.

The choice of standard deviation σ , also called bandwidth, is discussed in Sections 5.4.1 and

5.4.2. In Section 5.3.6, we prove the algorithm in Figure 1-3 is stable with respect to this choice.

Figure 1-3. Stabilizing Unstable Persistence Computations

1.2 Related Literature

Carrière and Bauer [16] have investigated bi-Lipschitz embeddings of persistence diagrams

into separable Hilbert spaces. They have shown the impossibility of a bi-Lipschitz embedding

into a finite-dimensional Hilbert space and that bi-Lipschitz embeddings into

infinite-dimensional, separable Hilbert spaces only exist when restrictions are placed on the

cardinality and spread of the persistence diagrams under consideration. Bell et al. [4] have shown

that the space of persistence diagrams with the p-Wasserstein distance for p < ∞ has a discrete

subspace that fails to have property A. The relevance of this result is that a discrete metric space

with property A admits a coarse embedding into a Hilbert space [70]. Bubenik and Vergili [12]

have shown that there exist cubes of arbitrary dimension with the `∞ distance which isometrically

embed into the space of persistence diagrams with the bottleneck distance.

The standard persistent homology algorithm has a computational complexity that is cubic in

the number of simplices. The fact that the number of simplices grows exponentially in the number

of points for the Čech and Vietoris-Rips filtrations motivates the search for approximation

algorithms. The seminal paper of Sheehy [61] addressed this problem by replacing the
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Vietoris-Rips complex with a complex of size O(n), where n is the number of points, that can be

computed in O(n log(n)) time. Classical persistent homology algorithms compute the persistent

homology of a sequence of simplicial complexes with inclusions. Dey et al. [30] developed an

algorithm to compute the persistent homology of a sequence of simplicial complexes connected

by simplicial maps that may not be inclusions. Using this, they also provide an approximation

algorithm for the Vietoris-Rips filtration similar to Sheehy.

Partial inspiration for the main idea in Chapter 5 comes from the trembling-hand

equilibrium solution [51] to the non-uniqueness problem for Fréchet means of persistence

diagrams. Our approach should also be compared with the topological reconstruction results of

Niyogi, Smale, and Weinberger [54].

Several recent papers have advocated principled approaches for extracting features from

persistence diagrams, including persistence landscapes [10], the stable multi-scale kernel [57],

intensity functionals [23], persistence images [2], the stable topological signature [15], and the

cover-tree entropy reduction [63]. Our result complements these ideas. Once one identifies some

specific parts of the persistence diagram as having good classification power, one can then attempt

to locate, in a robust way, the portions of the domain responsible for these parts. Other papers

[1, 11, 18] have developed sophisticated schemes for data cleaning before persistent homology

computation. These techniques are generally fragile to certain initial parameter choices, such as

the m0 parameter in Chazal et al. [18]. Again, we provide a complementary role. Any of these

schemes can be run many times for several perturbations of an initial parameter choice, and the

output can then be taken with confidence.

Dey and Wenger [31] have shown that the critical points of interval persistent homology are

stable in the sense that they remain within some path-connected component. Zomorodian and

Carlsson [71] use Mayer-Vietoris as inspiration in their technique for localizing (relative to a

cover) homology classes within a given simplicial complex. However, this works only for a fixed

simplicial complex, not a simplicial complex endowed with a filtration, and the results are

certainly fragile to changes in this fixed complex. Weinberger [68] considers the sample
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complexity of some basic problems of topological inference. Specifically, he estimates the

number of sample points necessary to determine the dimension, topological type, and to detect

singularities for certain spaces.

Robust summaries of persistent homology are considered in the following papers; they do

not consider the location of homology generators. Blumberg et al. [9] show that persistent

homology on a metric measure space induces a stable empirical measure in the space of

persistence diagrams. Taking the distance to a reference distribution or a reference barcode, they

obtain robust statistics. Chazal et al. [19] derive limiting distributions and confidence sets for

persistence diagrams based on the sub-level sets of the distance-to-a-measure.

Convolving with a kernel to obtain smoothness is a classical idea in statistics [62, 67]. It has

been used to construct smooth estimators of discrete data as an initial step to computing persistent

homology [10, 11, 35]. A related idea is to perform subsampling to obtain convergence results

and confidence intervals for persistence diagrams and persistence landscapes [20, 21, 22, 35].

These papers use ideas related to ones presented here but to smooth initial data or to smooth stable

outputs of persistence computations, not to stabilize unstable outputs of persistence computations.
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CHAPTER 2
MATHEMATICAL BACKGROUND

2.1 Complexes and Persistence Homology

We use the following definition of complexes dating back to Tucker [65] and Lefschetz

[44]. For concreteness, Chapter 5 deals with the special case of simplicial complexes. All

homology groups are assumed to be computed over Z2. For a more thorough discussion of

homology and persistence, we refer the reader to Munkres [52] and Oudot [56], respectively.

Definition 2-1. Given a finite graded set X =
⊔
k

Xk and a matrix ∂ ∈ ZX×X
2 we define a complex

(X ,∂ ) to have the following properties:

• (Grading) For each a and a′ in X, ∂ [a,a′] 6= 0 implies dima = dima′+1.

• (Boundary) ∂ 2 = 0.

An element a ∈ X is called a cell, its grade dima is called dimension. The boundary matrix

∂ induces a partial order 4 on X by the generating relation a′ ≺ a⇔ ∂ [a,a′] 6= 0. We frequently

drop ∂ from the notation and refer to the complex simply as X . A subset X ′ ⊂ X is a subcomplex

of X if for all a ∈ X ′ and a′ 4 a it follows that a′ ∈ X ′. A subcomplex X ′ is a complex in its own

right by restricting ∂ to X ′. A filtration f : X → R is a function such that a′ 4 a implies

f (a′)≤ f (a). Equivalently, f is a function such that X t := {a ∈ X | f (a)≤ t} is a subcomplex

for every t. We refer to (X ,∂ , f ) as a filtered complex.

Let X be a complex, f : X → R a filtration, and fix a homological dimension p. Suppose the

distinct values of f are r1 < .. . < rm. Whenever i≤ j, there is an inclusion X ri ↪→ X r j , which

induces a homomorphism

f i, j
p : Hp(X ri)→ Hp(X r j).

A homology class α ∈Hp(X ri) is a persistent homology class that is born at level i if α /∈ im f i−1,i
p

and that dies entering level j if f i, j
p (α) = 0 but f i, j−1

p (α) 6= 0. If α never dies, we say that it dies

entering level j = ∞ and r∞ = ∞. The persistence of α is defined to be pers(α) = r j− ri. The set

of classes which are born at i and die entering level j form a vector space, with rank denoted µ
i, j
p .

The degree-p persistence diagram of f , denoted Hp( f ), encodes these ranks. It is intuitively a

multiset of points in the extended plane, with a point of multiplicity µ
i, j
p at each point (ri,r j).
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2.2 The Space of Persistence Diagrams

In this section, we define persistence diagrams and a family of associated metric spaces.

Persistence diagrams naturally arise as the output of persistent homology, which describes the

changing homology of a one-parameter family of topological spaces. Persistence diagrams are

usually defined to be multisets. We find it convenient to instead define them as indexed sets.

Definition 2-2. Denote {(x,y) ∈ R2 | x < y} by R2
<. A persistence diagram is a function from a

countable set I to R2
<, i.e. D : I→ R2

<.

To define the relevant metrics on persistence diagrams, we need two preliminary definitions.

Definition 2-3. Suppose D1 : I1→ R2
< and D2 : I2→ R2

< are persistence diagrams. A partial

matching between them is a triple (I′1, I
′
2, f ) such that I′1 ⊆ I1, I′2 ⊆ I2, and f : I′1→ I′2 is a bijection.

The p-Wasserstein distance between two persistence diagrams will be the minimal cost of a

partial matching between them. More precisely, the p-cost of a partial matching is the `p norm of

the sequence of `∞ distances between points paired by the partial matching and unpaired points

with the diagonal in R2.

Definition 2-4. Suppose D1 : I1→ R2
< and D2 : I2→ R2

< are persistence diagrams and (I′1, I
′
2, f )

is a partial matching between them. Equip R2
< with the norm ‖a‖∞ = max(|ax|, |ay|). The p-cost

of f is denoted costp( f ) and defined as follows. If p < ∞,

costp( f )=

∑
i∈I′1

‖D1(i)−D2( f (i))‖p
∞ + ∑

i∈I1\I′1

(
D1(i)y−D1(i)x

2

)p

+ ∑
i∈I2\I′2

(
D2(i)y−D2(i)x

2

)p
1/p

.

If p = ∞,

cost∞( f ) = max

{
sup
i∈I′1

‖D1(i)−D2( f (i))‖∞, sup
i∈I1\I′1

D1(i)y−D1(i)x

2
, sup

i∈I2\I′2

D2(i)y−D2(i)x

2

}
.

If any of the terms in either expression are unbounded, we define the cost to be infinity.

Definition 2-5 ([25, 27]). Let 1≤ p≤ ∞. If D1, D2 are persistence diagrams, define

w̃p(D1,D2) = inf{costp( f ) | f is a partial matching between D1 and D2}.
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Let (Dgmp,wp) denote the metric space of persistence diagrams D that satisfy w̃p(D, /0)< ∞

modulo the relation D1 ∼ D2 if w̃p(D1,D2) = 0, where /0 is shorthand for the unique persistence

diagram with empty indexing set. The metric wp is called the p-Wasserstein distance and w∞ is

called the bottleneck distance.

Note that the empty partial matching is the only one between D : I→ R2
< and /0. Hence,

w̃p(D, /0) is the `p norm of the sequence of distances between {D(i)}i∈I and the diagonal. In the

following lemma, we prove that when p < ∞, two persistence diagrams D1 and D2 satisfying

w̃p(D1, /0), w̃p(D2, /0)< ∞ belong to the same equivalence class if and only if they are equal up to

a permutation of their indexing sets.

Lemma 2-1. Let p < ∞ and suppose D1 : I1→ R2
< and D2 : I2→ R2

< are persistence diagrams

satisfying w̃p(D1, /0), w̃p(D2, /0)< ∞. Then D1 and D2 satisfy w̃p(D1,D2) = 0 iff there exists a

bijection f : I1→ I2 such that D1(i) = D2 f (i) for every i ∈ I1.

Proof. If such a bijection exists, the partial matching (I1, I2, f ) has zero p-cost. Conversely,

suppose w̃p(D1,D2) = 0. We will show that for any p ∈ D1(I1), there exists a bijection fp

between D−1
1 (p) and D−1

2 (p) satisfying D1(i) = D2 fp(i) for any i ∈ D−1
1 (p). Defining

f (i) = fD1(i)(i) then gives the desired bijection between I1 and I2.

Note that for j = 1,2 the pre-image of any point in R2
< under D j must be finite since

w̃p(D j, /0)< ∞. For the same reason, D j(I j) has no limit points in R2
<. Let p ∈ D1(I1). Since p is

not a limit point for either D1(I1) or D2(I2), there exists an ε ∈ (0,(py− px)/2) such that

B(p,ε)∩D j(I j) = {p}. This implies that every partial matching between D1 and D2 has a cost of

at least |card(D−1
1 (p))− card(D−1

2 (p))|ε , which implies card(D−1
1 (p)) = card(D−1

2 (p)) since

w̃p(D1,D2) = 0. Letting fp be an arbitrary bijection between D−1
1 (p)) and D−1

2 (p) completes the

proof.

We end this section by recalling the diagram stability theorem which guarantees that

persistence diagrams of nearby filtrations are close to one another in (Dgm∞,w∞). An illustration

of the theorem is given in Figure 2-1.

20



Theorem 2-1 ([17, 25]). Suppose X is a complex and f ,g : X → R are filtrations. Let

Hp( f ),Hp(g) be the degree-p persistence diagrams of f and g. Then

w∞(Hp( f ),Hp(g))≤ ‖ f −g‖∞.

u

xy zw

v

v’

u’

Figure 2-1. Stability Example. The graphs of functions f (black) and g (red), both on
the same domain and the degree-0 persistence diagrams, H0( f ) and H0(g),
using the same color scheme.

2.3 Discrete Morse Theory

The definitions here are adapted from Mischaikow and Nanda [49].

Definition 2-6. Let (X ,∂ ) be a complex. A partial matching consists of a partition of X into sets

A, Q, and K and a bijection w : Q→ K such that ∂ [w(q),q] 6= 0 for every q ∈ Q. Define� on Q

to be the transitive closure of the generating relation q′ C q iff q′ ≺ w(q). If the relation� is a

partial order, then the partial matching (A,w : Q→ K) is said to be acyclic.

We are interested in using discrete Morse theory to approximate the persistent homology of

filtered complexes. As such, we now recall an extension of acyclic matchings to the filtered case.

Definition 2-7. Let (X ,∂ , f ) be a filtered complex. A filtered acyclic partial matching on (X ,∂ , f )

is a family of acyclic partial matchings (At ,wt : Qt → Kt)t∈R on X t := {a ∈ X | f (a)≤ t} such

that At ⊂ At+s, Kt ⊂ Kt+s, Qt ⊂ Qt+s, and wt = wt+s|Qt for all s > 0.

We are now equipped to give the main theorem of discrete Morse theory due to Forman [36]

and the extension by Mischaikow and Nanda [49] to the filtered setting.
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Theorem 2-2 ([36, 49]). Let (X ,∂ ) be a cell complex with an acyclic partial matching

(A,w : Q→ K). Then there exists an induced boundary map ∂ A such that H∗(X ,∂ )∼= H∗(A,∂ A).

We call the complex (A,∂ A) the Morse complex. Moreover, if (At ,wt : Qt → Kt) is a filtered

acyclic partial matching on (X ,∂ , f ), then H∗( f )∼= H∗( f |A).

2.4 Negative Type and Kernels

The following definition and theorem equate the problem of defining a feature map on a set

to the frequently simpler problem of defining a positive definite kernel. Theorem 2-3 and the fact

that kernel methods require access to only the inner products of elements is the content of the

so-called kernel trick.

Definition 2-8. Let X be a nonempty set. A symmetric function k : X×X → R is a positive

definite kernel if for any n ∈ N, c1, . . . ,cn ∈ R, and x1, . . . ,xn ∈ X,

n

∑
i, j=1

cic jk(xi,x j)≥ 0.

Theorem 2-3 ([64]). Let X be a nonempty set. A function k : X×X → R is a positive definite

kernel iff there exists a Hilbert space H and a feature map ϕ : X →H such that

〈ϕ(x),ϕ(y)〉= k(x,y) for every x,y ∈ X.

We now turn to the definition of negative type, which is closely related to positive definite

kernels and to the embeddability of metric spaces into Hilbert spaces. Negative type played a

central role in work of Schoenberg [59, 60] characterizing semi-metric spaces that admit an

isometric embedding into a Hilbert space; see Theorems 2-4 and 2-5. Enflo [34] also implicitly

used negative type to answer negatively the question of Smirnov on whether every separable

metric space is uniformly homeomorphic to a subset of L2[0,1]. The equivalence between Enflo’s

notion of generalized roundness and the older notion of negative type was not proven until much

later by Lennard et al. [45], giving a geometric characterization to the notion of negative type and,

in particular, to the existence of isometric embeddings into Hilbert spaces. We refer the reader to

Berg et al. [8] and Wells and Williams [69] for a more thorough treatment of the results
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referenced here. We remark that what we call a semi-metric space in the following definition is

called a quasi-metric space in Wells and Williams [69].

Definition 2-9. A semi-metric space is a nonempty set X together with a function

d : X×X → [0,∞) such that d(x,x) = 0 and d(x,y) = d(y,x) for every x,y ∈ X.

Definition 2-10. Let q≥ 0. A semi-metric space (X ,d) is said to be of q-negative type if for any

n ∈ N, x1, . . . ,xn ∈ X, and a1, . . . ,an ∈ R satisfying ∑
n
i=1 ai = 0, the following inequality is

satisfied.
n

∑
i, j=1

aia jd(xi,x j)
q ≤ 0

We define the negative type of a semi-metric space (X ,d) to be the supremum of the set of

q ∈ [0,∞) such that (X ,d) is of q-negative type.

A relationship between positive definite kernels and negative type is given in the following.

Theorem 2-4 ([8]). Let (X ,d) be a semi-metric space. The following are equivalent.

1. (X ,d) is of 1-negative type.

2. For any x0 ∈ X, k(x,y) = d(x,x0)+d(y,x0)−d(x,y) is a positive definite kernel.

3. k(x,y) = e−td(x,y) is a positive definite kernel for every t > 0.

The negative type of a semi-metric space is closely related to questions regarding its

embeddability into Hilbert spaces. An isometric embedding of a semi-metric space (X ,d) into a

Hilbert space H is a map ϕ : X →H satisfying d(x,y) = ‖ϕ(x)−ϕ(y)‖H for every x,y ∈ X .

Theorem 2-5 ([69]). A semi-metric space admits an isometric embedding into a Hilbert space iff

it is of 2-negative type.

Besides 2-negative type characterizing isometric embeddability into a Hilbert space, the

following theorem states the important property that negative type is downward closed.

Theorem 2-6 ([69]). Suppose (X ,d) is a semi-metric space of q-negative type. Then it is of

q′-negative type for any 0≤ q′ ≤ q.
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2.4.1 Isometric Embeddability of Diagram Space

It was shown by Turner and Spreemann [66] that (Dgmp,wp) is not of 1-negative type for

any 1≤ p≤ ∞. This leads to the following negative result.

Theorem 2-7. (Dgmp,wp) does not admit an isometric embedding into a Hilbert space for any

1≤ p≤ ∞.

Proof. Let 1≤ p≤ ∞. Since (Dgmp,wp) is not of 1-negative type, by Theorem 2-6, (Dgmp,wp)

is not of 2-negative type and so does not admit an isometric embedding into a Hilbert space by

Theorem 2-5.

2.4.2 Coarse Embeddings and Related Notions

If instead of demanding that distances be exactly preserved, we only require that distances

be contracted or expanded a uniform amount, we arrive at the following definition.

Definition 2-11. A map f : (X ,d)→ (Y,d′) is a coarse embedding or uniform embedding if there

exists non-decreasing ρ−,ρ+ : [0,∞)→ [0,∞) such that

1. ρ−(d(x,y))≤ d′( f (x), f (y))≤ ρ+(d(x,y)) for all x,y ∈ X, and

2. limt→∞ ρ−(t) = ∞.

Note that if ρ−(x) = Ax and ρ+(x) = Bx for some 0 < A≤ B then f is a bi-Lipschitz

embedding. This definition was introduced by Gromov [41] where he posed the question of

whether every separable metric space, of which (Dgmp,wp) are examples [9, 47], admits a coarse

embedding into a Hilbert space. This question was answered negatively by Dranishnikov et al.

[32].

Nowak [55] proved that a metric space can be coarsely embedded into a Hilbert space if and

only if every finite subset can be embedded in `2 with the same distortion functions. Johnson and

Randrianarivony [42] subsequently gave a sufficient condition for a metric space to not admit a

coarse embedding into a Hilbert space; this condition is satisfied in particular by `p for p > 2.
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Theorem 2-8 ([55]). A metric space (X ,d) admits a coarse embedding into a Hilbert space if and

only if there exist non-decreasing functions ρ−,ρ+ : [0,∞)→ [0,∞) such that lim
t→∞

ρ−(t) = ∞ and

for every finite subset A⊆ X there exists a map fA : A→ `2 satisfying

ρ−(d(x,y))≤ ‖ fA(x)− fA(y)‖2 ≤ ρ+(d(x,y))

for every x,y ∈ A.

Definition 2-12. A basis (en)n for a Banach space X is a normalized symmetric basis if

‖∑
n

θnaneσ(n)‖= ‖∑
n

anen‖

for any choices of signs θn ∈ {−1,+1}, permutation σ : N→ N , and ∑
n

anen ∈ X.

Theorem 2-9 ([42]). Suppose that a Banach space X has a normalized symmetric basis (en)n and

that liminf
n→∞

n−
1
2

∥∥∥∥ n
∑

i=1
ei

∥∥∥∥= 0. Then X does not coarsely embed into a Hilbert space.

Corollary 2-1 ([42]). The space `p does not admit a coarse embedding into a Hilbert space for

p > 2.

The following definition gives a coarse analogue of covering dimension.

Definition 2-13. Let n be a non-negative integer. A metric space (X ,d) has asymptotic dimension

≤ n if for every R > 0 there exists a cover U of X such that every ball of radius R intersects at

most n+1 elements of U and supU∈U sup{d(x,y) | x,y ∈U}< ∞.

Theorem 2-10 ([58]). If X is a metric space with finite asymptotic dimension, then there exists a

coarse embedding of X into a Hilbert space.

Property A is a simple condition for discrete metric spaces that also implies coarse

embeddability into a Hilbert space.

Definition 2-14 ([70]). A discrete metric space (X ,d) has property A if for any r > 0, ε > 0 there

is a family of finite subsets {Ax}x∈X of X×N such that
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1. (x,1) ∈ Ax for all x ∈ X;

2.
|(Ax \Ay)|+ |(Ay \Ax)|

|Ax∩Ay|
< ε whenever d(x,y)≤ r;

3. there exists R > 0 such that if (x,m),(y,m) ∈ Az for some z ∈ X, then d(x,y)≤ R.

Theorem 2-11 ([70]). If a discrete metric space X has property A, then X admits a coarse

embedding into a Hilbert space.

The following definition was introduced by Enflo [34] to answer negatively a question of

Smirnov about uniform homeomorphisms into L2[0,1]. Indeed, the negative answer to Gromov’s

question by Dranishnikov et al. was inspired by Enflo’s negative answer to Smirnov’s.

Definition 2-15. Let q≥ 0. A metric space (X ,d) has generalized roundness q if for any n ∈ N

and a1, . . . ,an,b1, . . . ,bn ∈ X, we have

∑
i< j

(d(ai,a j)
q +d(bi,b j)

q)≤∑
i, j

d(ai,b j)
q

Similarly to negative type, we define the generalized roundness of a metric space (X ,d) to be the

supremum of the set of q ∈ [0,∞) such that (X ,d) has generalized roundness q.
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CHAPTER 3
COARSE EMBEDDINGS OF PERSISTENCE DIAGRAMS INTO HILBERT SPACES

3.1 Coarse Embeddability of Persistence Diagrams with Bottleneck Distance

The main result of this section is that there does not exist a coarse embedding of

(Dgm∞,w∞) into a Hilbert space. This implies that the generalized roundness and asymptotic

dimension of (Dgm∞,w∞) are 0 and ∞, respectively. We also show that any separable, bounded

metric space has an isometric embedding into the space of persistence diagrams with the

bottleneck distance. The isometric embedding in question can be thought of as a shifted version

of the Kuratowski embedding.

0.5

0.8
0.3

x3

x1

x2

x

y

∆

(0,2)

(0,3)

(2,4)

(2,5)

(4,6)

(4,7)

Figure 3-1. Example of Embedding into Persistence Diagrams with Bottleneck Metric.
A metric space with three points and its image in (Dgm∞,w∞) under the
map defined in Theorem 3-1 for c = 1, xi 7→ {(2(k−1),2k+d(xi,xk)}3

k=1.

Theorem 3-1. Suppose (X ,d) is a separable, bounded metric space. Then there exists an

isometric embedding ϕ : (X ,d)→ (Dgm∞,w∞). Moreover, if c > sup{d(x,y) | x,y ∈ X}, we may

choose ϕ such that ϕ(X)⊆ B( /0, 3c
2 )\B( /0,c), where B( /0,r) = {D ∈ Dgm∞ | w∞(D, /0)< r}.

Proof. Let c > sup{d(x,y) | x,y ∈ X}. Let {xk}∞
k=1 be a countable, dense subset of (X ,d).

Consider the following map.

ϕ : (X ,d)→ (Dgm∞,w∞)

x 7→ {(2c(k−1),2ck+d(x,xk)}∞
k=1
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Note that for any x ∈ X and k ∈ N,

d∞((2c(k−1),2ck+d(x,xk)),∆) = c+
d(x,xk)

2
<

3c
2
,

so w̃∞(ϕ(x), /0)< ∞ for every x ∈ X and thus ϕ is well-defined. Moreover, since

w∞(ϕ(x), /0) = sup
1≤k<∞

d∞((2c(k−1),2ck+d(x,xk)),∆),

it follows that ϕ(x) ∈ B( /0, 3c
2 )\B( /0,c). A visualization of the image of ϕ for a metric space with

three points is shown in Figure 3-1. We now show that for y ∈ X an optimal partial matching of

ϕ(x) and ϕ(y) matches points in each diagram with the same first coordinate, and the cost of this

partial matching is d(x,y).

For the equivalence classes ϕ(x) and ϕ(y), choose representative persistence diagrams

Dx : N→R2
< and Dy : N→R2

<. Consider the partial matching (N,N, idN) between Dx and Dy, i.e.

(2c(k−1),2ck+d(x,xk)) is matched with (2c(k−1),2ck+d(y,xk)) for every k ∈ N. Observe

that d∞(Dx(k),Dy(k)) = |d(x,xk)−d(y,xk)| for every k, so the cost of this partial matching is

supk |d(x,xk)−d(y,xk)|. By the triangle inequality,

sup
k
|d(x,xk)−d(y,xk)| ≤ d(x,y).

Since {xk}∞
k=1 is dense, for every ε > 0, there exists a k such that d(x,xk)< ε , so

|d(x,xk)−d(y,xk)| ≥ d(y,xk)−d(x,xk)≥ d(x,y)−2d(x,xk)> d(x,y)−2ε.

This implies that supk |d(x,xk)−d(y,xk)| ≥ d(x,y) and cost∞(idN) = d(x,y).

We will now prove that the partial matching described above is optimal. Suppose I,J ⊆ N

and (I,J, f ) is a different partial matching between Dx and Dy. Then there exists a k ∈ N such that

either k /∈ I or k ∈ I and f (k) 6= k. If k /∈ I, then

cost∞( f )≥ d∞((2c(k−1),2ck+d(x,xk)),∆)≥ c.
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If k ∈ I and f (k) = k′ 6= k, then

cost∞( f )≥ ‖(2c(k−1),2ck+d(x,xk))− (2c(k′−1),2ck′+d(y,xk′))‖∞ ≥ 2c.

Therefore, cost∞( f )≥ c > d(x,y). Hence, w∞(ϕ(x),ϕ(y)) = d(x,y), i.e. ϕ is an isometric

embedding.

We now apply Theorem 3-1 to show the generalized roundness of (Dgm∞,w∞) is 0. To do

so, we embed a family of finite metric spaces, whose generalized roundness was observed by

Enflo [34] to converge to 0, into (Dgm∞,w∞). One element of this family is shown in Figure 3-2.

b1 b2 b3 b4

a1 a2 a3 a4

Figure 3-2. Complete Bipartite Graph Kn,n for n = 4

Corollary 3-1. The generalized roundness of (Dgm∞,w∞) is zero.

Proof. Let n≥ 2. Define Kn,n = {a1, . . . ,an,b1, . . . ,bn} and equip this set with the metric

d(ai,a j) = d(bi,b j) = 2 for any i, j ∈ {1, . . . ,n} with i 6= j and d(ai,b j) = 1. Enflo [34] remarks

that Xn has generalized roundness that converges to 0 as n→ ∞. Indeed,

∑
i< j

(d(ai,a j)
q +d(bi,b j)

q)≤∑
i, j

d(ai,b j)
q ⇐⇒

n(n−1)2q ≤ n2 ⇐⇒

q≤ log2(1+(n−1)−1).

Hence, Xn has generalized roundness at most log2(1+(n−1)−1) which tends to 0 as n increases.

By Theorem 3-1, we may isometrically embed Xn into (Dgm∞,w∞) for any n so the generalized

roundness of (Dgm∞,w∞) must be zero.

Our next result is that (Dgm∞,w∞) does not admit a coarse embedding into a Hilbert space.

The proof relies on a construction of Dranishnikov et al. [32] based on ideas of Enflo [34].
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Theorem 3-2. (Dgm∞,w∞) does not admit a coarse embedding into a Hilbert space.

Proof. Define Zn to be the integers mod n with dn, the metric induced by the standard metric

d(x,y) = |x− y| on Z. Define Zm
n to be the Cartesian product of m copies of Zn with the following

metric,

dn,m(([k1], . . . , [km]),([l1], . . . , [lm])) = max
1≤i≤m

dn([ki], [li]).

Let X be the disjoint union of Zm
n for every n,m≥ 1 and suppose d̃ is a metric on X satisfying the

following.

(1) The restriction of d̃ to each Zm
n coincides with dn,m.

(2) d̃(x,y)≥ n+m+n′+m′ if x ∈ Zm
n , y ∈ Zm′

n′ , and (n,m) 6= (n′,m′).

Proposition 6.3 of Dranishnikov et al. [32] shows that any such (X , d̃) does not admit a

coarse embedding into a Hilbert space. Hence, it suffices to construct such an (X , d̃) and an

isometric embedding of it into (Dgm∞,w∞), since a coarse embedding of (Dgm∞,w∞) into a

Hilbert space would restrict to a coarse embedding of (X , d̃) into a Hilbert space.

Choose an enumeration {(ni,mi)}∞
i=1 of N×N such that i < j implies ni +mi ≤ n j +m j, for

instance, (1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4), etc. Define c1 = 1 and for i≥ 2,

ci = 4max(ci−1,ni +mi). For every (ni,mi), note that ci > ni > max{dni,mi(x,y) | x,y ∈ Zmi
ni }. So

by Theorem 3-1, there exists an isometry ϕi : Zmi
ni → (Dgm∞,w∞) such that

ϕi(Zmi
ni )⊆ B( /0, 3ci

2 )\B( /0,ci).

Define ϕ : X → Dgm∞ by ϕ(x) = ϕi(x) for x ∈ Zmi
ni and define d̃(x,y) = w∞(ϕ(x),ϕ(y)) for

any x,y ∈ X . By the definition of d̃, ϕ : (X , d̃)→ (Dgm∞,w∞) is an isometry. If x,y ∈ Zmi
ni , then

d̃(x,y) = w∞(ϕi(x),ϕi(y)) = dni,mi(x,y) so d̃ satisfies (1) above. It only remains to show d̃

satisfies (2).

Suppose x ∈ Zmi
ni , y ∈ Zm j

n j , and (ni,mi) 6= (n j,m j). We may assume i < j. By construction,

ϕ(x) = ϕi(x) ∈ B( /0, 3ci
2 )\B( /0,ci) and ϕ(y) = ϕ j(y) ∈ B( /0, 3c j

2 )\B( /0,c j), which implies by the
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triangle inequality for w∞ that

d̃(x,y) = w∞(ϕ(x),ϕ(y))≥ w∞(ϕ(y), /0)−w∞(ϕ(x), /0)> c j−
3ci

2
.

Additionally, we have ni +mi ≤ n j +m j and c j ≥ 4max(ci,n j +m j)≥ 2(ci +(n j +m j)), so

d̃(x,y)> c j−
3ci

2
≥ 2(n j +m j)+2ci−

3ci

2
> ni +mi +n j +m j.

We have shown that d̃ satisfies (2) which completes the proof.

Remark 3-1. For a finite metric space, the isometric embedding defined in Theorem 3-1 sends

each point to a persistence diagram of finite cardinality in (Dgm∞,w∞). In particular, the map

ϕi : Zmi
ni → (Dgm∞,w∞) given in the proof of Theorem 3-1 has an image consisting of finite

persistence diagrams. Since X is the disjoint union of Zm
n for every n,m≥ 1, it follows that

ϕ : (X , d̃)→ (Dgm∞,w∞) sends each point in the metric space X to a finite persistence diagram.

Hence, the proof of Theorem 3-2 gives the slightly stronger result that the space of finite

persistence diagrams with the bottleneck distance does not admit a coarse embedding into a

Hilbert space.

Theorem 3-2 and Remark 3-1 give the impossibility of coarsely embedding the space of

finite persistence diagrams with the bottleneck distance into a Hilbert space. The primary

motivation for this result was the application of kernel methods to persistent homology. In

computational settings, the persistence diagrams of interest are frequently the result of applying

homology to a filtered finite simplicial complex. We refer the interested reader to Oudot [56].

Hence, one may ask whether this more restricted space of persistence diagrams, i.e. the subspace

arising from homology of filtered finite simplicial complexes, admits a coarse embedding into a

Hilbert space. Unfortunately, this is easily seen to be false by the following.

Lemma 3-1. Every finite persistence diagram is realizable as the persistent homology of a

filtered finite simplicial complex.
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Proof. Suppose D : {1, . . . ,n}→ R2
< is a persistence diagram and define (xi,yi) = D(i). Let V be

the set {ai,bi,ci}n
i=1. Consider the simplicial complex on V that is the disjoint union of n

2-simplices and has the filtration given by assigning the value xi to

{ai},{bi},{ci},{ai,bi},{ai,ci},{bi,ci} and the value yi to {ai,bi,ci}. Applying the simplicial

homology functor H1(−,Z2) recovers the persistence diagram D. To see this, note that the

persistent homology of the filtration on V is the direct sum of the persistent homology of the

filtration on each individual triangle since the triangles are mutually disjoint. For triangle i, the

1-skeleton appears at time xi giving rise to one degree-1 homology generator that vanishes when

the 2-simplex is added at time yi.

Property A is a concrete condition satisfiable by a discrete metric space that implies it can

be coarsely embedded into a Hilbert space. In the following proposition, we show that a

semi-metric space being of q-negative type for some positive q is similarly a concrete condition

that implies coarse embeddability into a Hilbert space.

Proposition 3-1. A semi-metric space (X ,d) of q-negative type for some q > 0 admits a coarse

embedding into a Hilbert space.

Proof. Suppose there exists a q > 0 such that the metric space (X ,d) has q-negative type. Define

f (t) = tq/2 and observe that f d(x,x) = 0q/2 = 0 and f d(x,y) = f d(y,x) so (X , f d) is a

semi-metric space. Let x1, . . . ,xn ∈ X and a1, . . . ,an ∈ R such that ∑
n
i=1 ai = 0. Then

n

∑
i, j=1

aia j( f d(xi,x j))
2 =

n

∑
i, j=1

aia jd(xi,x j)
q ≤ 0,

so (X , f d) is a semi-metric space of 2-negative type. By Theorem 2-5, there exists an isometric

embedding ϕ from (X , f d) into a Hilbert space H . Define ρ+ = ρ− = f . It follows that ϕ

satisfies the requirements of a coarse embedding of (X ,d) into H , i.e.

ρ+(d(x,y)) = ρ−(d(x,y)) = f d(x,y) = ‖ϕ(x)−ϕ(y)‖H .
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Remark 3-2. Since (Dgm∞,w∞) does not admit a coarse embedding into a Hilbert space,

Proposition 3-1 implies that (Dgm∞,w∞) is of 0-negative type. This also follows from Corollary

3-1 and the result of Lennard et al. [45] on the equivalence of negative type and generalized

roundness. Finally, we state two corollaries of Theorem 3-2 that answer Questions 3.10 and 3.11

of Bell et al. [4].

Corollary 3-2. (Dgm∞,w∞) contains a discrete subspace that fails to have property A.

Proof. In the proof of Theorem 3-2, we consider a discrete metric space (X , d̃) and prove it

embeds in (Dgm∞,w∞) via an isometry ϕ . Dranishnikov et al. [32] have shown that (X , d̃) does

not admit a coarse embedding into a Hilbert space so by Theorem 2-11, ϕ(X) fails to have

property A.

Corollary 3-3. (Dgm∞,w∞) has infinite asymptotic dimension.

Proof. If (Dgm∞,w∞) had finite asymptotic dimension, then it would admit a coarse embedding

into a Hilbert space by Theorem 2-10, which contradicts Theorem 3-2.

3.2 Coarse Embeddability of Persistence Diagrams with p > 2 Wasserstein Metric

In this section, we will show (Dgmp,wp) does not coarsely embed into a Hilbert space for

p > 2. As in the case when p = ∞, the proof relies on the fact that wp is the infimum of the `p

norm over all partial matchings.

Proposition 3-2. Let d ∈ N. Every finite subset of (Rd,‖ · ‖p) isometrically embeds into

(Dgmp,wp).

Proof. Let A = {a1, . . . ,an} be a finite subset of Rd . Let c > max{‖ai‖∞,‖ai−a j‖p | 1≤ i, j ≤ n}

and consider the following map.

ϕ : A→ (Dgmp,wp)

ai 7→ Di : [d]→ R2
<, k 7→ {(2c(k−1),2c(k+1)+ai

k)}
d
k=1
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Formally, ϕ(ai) and ϕ(a j) are equivalence classes of persistence diagrams Di : [d]→ R2
<

and D j : [d]→ R2
<. Consider the partial matching ([d], [d], id[d]) between Di and D j, i.e.

(2c(k−1),2c(k+1)+ai
k) is matched with (2c(k−1),2c(k+1)+a j

k) for every k ∈ [d]. Observe

that ‖Di(k)−D j(k)‖∞ = |ai
k−a j

k| for every k, so the cost of this partial matching is

(
d
∑

k=1
|ai

k−a j
k|

p)
1
p = ‖ai−a j‖p.

Suppose I,J ⊆ [d] and (I,J, f ) is a different partial matching between Di and D j. Then there

exists a k ∈ [d] such that either k /∈ I or k ∈ I and f (k) 6= k. If k /∈ I, then

costp( f )≥
Di(k)y−Di(k)x

2
= 2c+

ai
k

2
>

3c
2
.

If k ∈ I and f (k) = k′ 6= k, then

costp( f )≥ ‖(2c(k−1),2ck+ai
k)− (2c(k′−1),2ck′+a j

k′)‖∞ ≥ 2c.

Therefore, costp( f )> c > ‖ai−a j‖p. Hence, ([d], [d], id[d]) is the optimal partial matching and

wp(ϕ(ai),ϕ(a j)) = ‖ai−a j‖p, i.e. ϕ is an isometric embedding.

x

y

x

y

∆

(0,4c)

(0,5c)

(2c,6c)

(2c,7c)

Figure 3-3. Embedding Finite Subset of R2 into (Dgm2,w2). Each point in a finite
subset of R2 is mapped to a persistence diagram consisting of 2 points. The
points lie on intervals in R2

< chosen sufficiently far apart to guarantee the
cost of the optimal matching equals the p-norm distance of the original
points.
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Theorem 3-3. (Dgmp,wp) does not coarsely embed into a Hilbert space for 2 < p < ∞.

Proof. Fix p > 2 and suppose (Dgmp,wp) admits a coarse embedding into a Hilbert space. Then

by Theorem 2-8, there exist non-decreasing functions ρ−,ρ+ : [0,∞)→ [0,∞) such that

lim
t→∞

ρ−(t) = ∞ and for every finite subset S⊆ (Dgmp,wp) there exists a map fS : S→ `2

satisfying

ρ−(wp(x,y))≤ ‖ fS(x)− fS(y)‖2 ≤ ρ+(wp(x,y)) (3-1)

for every x,y ∈ S. Define ρ̃− : [0,∞)→ [0,∞) by ρ̃−(t) = ρ−(max(t−1,0)) and observe that ρ̃−

is non-decreasing and lim
t→∞

ρ̃−(t) = ∞. We will show that for any finite subset A⊆ `p there exists a

map gA : A→ `2 satisfying

ρ̃−(‖x− y‖p)≤ ‖gA(x)−gA(y)‖2 ≤ ρ+(‖x− y‖p) (3-2)

for every x,y ∈ A. This implies by Theorem 2-8 that `p coarsely embeds into a Hilbert space

which contradicts Corollary 2-1.

For any m ∈ N, define πm,ρm : `p→ `p by πm(x) = (x1, . . . ,xm,0,0, . . .) and

ρm(x) = (0, . . . ,0,xm+1,xm+2, . . .). Let A = {a1, . . . ,an} be a finite subset of `p and choose m ∈ N

sufficiently large such that ‖ρm(ai)‖p ≤ 1
2 for every i = 1, . . . ,n. Then

‖ai−a j‖p ≥ ‖πm(ai)−πm(a j)‖p ≥ ‖ai−a j‖p−‖ρm(ai)−ρm(a j)‖p

≥ ‖ai−a j‖p− (‖ρm(ai)‖p +‖ρm(a j)‖p)

≥ ‖ai−a j‖p−1.

Since πm(A) is isometric to a finite subset of (Rm,‖ · ‖p), there exists an isometric

embedding ϕ : πm(A)→ (Dgmp,wp) by Proposition 3-2. Let S = ϕ(πm(A)) and fS be as in (3-1).

Define gA : A→ `2 by gA = fS ◦ϕ ◦πm.

35



The following two series of inequalities show gA satisfies (3-2). In both cases, the first

inequality follows from (3-1), the equality follows from ϕ being an isometric embedding, and the

second inequality follows from the monotonicity of ρ+ and ρ̃−, respectively.

‖gA(ai)−gA(a j)‖2 ≤ ρ+(wp(ϕπm(ai),ϕπm(a j))) = ρ+(‖πm(ai)−πm(a j)‖p)≤ ρ+(‖ai−a j‖p)

‖gA(ai)−gA(a j)‖2 ≥ ρ−(wp(ϕπm(ai),ϕπm(a j))) = ρ−(‖πm(ai)−πm(a j)‖p)≥ ρ̃−(‖ai−a j‖p)
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CHAPTER 4
APPROXIMATION OF PERSISTENCE MODULES WITH DISCRETE MORSE THEORY

Definition 4-1. Let f and f ′ be filtrations on a cell complex (X ,∂ ) and δ > 0. We say f ′ is a

δ -approximation of f if ‖ f − f ′‖∞ < δ . A δ -approximation f ′ is monotone if there exists a

monotone map g : f (X)→ R such that f ′ = g◦ f .

The distinction between these two concepts is relevant in Section 4.1.2 where we prove the

optimality of a particular approximate filtration upon restricting the search space to monotone

δ -approximations. Obviously, all monotone δ -approximations are δ -approximations. If (X ,∂ , f )

is a filtered complex and (A,w : Q→ K) is an acyclic partial matching, there is an induced filtered

acyclic partial matching.

Definition 4-2. Consider a filtered cell complex (X ,∂ , f ) and an acyclic partial matching

(A,w : Q→ K). Then Qt = {q ∈ Q∩X t | f (q) = f (w(q))},

Kt = {k ∈ K∩X t | f (k) = f (w−1(k))}, At = X t \ (Kt ∪Qt), and wt = w|Qt : Qt → Kt defines a

filtered acyclic partial matching, called the induced filtered acyclic partial matching. We write w f

as a shorthand and call it an induced matching. We define ‖w f ‖ to be the number of q ∈ Q such

that q ∈ Qt for some t, which equals |Qmax( f (X))|.

Suppose you are given a filtered cell complex (X ,∂ , f ) and want to efficiently approximate

the persistence diagram of the sub-level set filtration of f , denoted H∗( f ), within δ in the

bottleneck distance. As a proxy for efficient computation, the algorithms in the following section

are designed to find a filtered acyclic partial matching of a δ -approximation of f , denoted f ′,

minimizing the number of cells in the Morse complex associated to the approximate filtration,

denoted (A,∂ A). Since H∗( f ′|A)∼= H∗( f ′) by Theorem 2-2 and w∞(H∗( f ′),H∗( f ))< δ by

Theorem 2-1, we can approximate H∗( f ) by computing H∗( f ′|A). This procedure is illustrated in

Figure 1-1.

Parts of this work were done in collaboration with Arkadi Schelling, University of Bremen.
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4.1 Approximation Algorithms

4.1.1 Binning

Recall Definition 2-7 of filtered acyclic partial matchings and observe that cells with

distinct filtration values cannot be matched even if they are very close. This suggests binning of

filtration values as an obvious approach to find an approximate filtration that allows further

reduction of the complex.

The most naive approach is to round up all filtration values to lie in δZ. This can be

improved by rounding up all values to lie in 2δZ and subtracting δ from the result. This maps the

intervals (2kδ ,2(k+1)δ ] to the single value (2k+1)δ for k ∈ Z. As these intervals are twice as

long as the intervals resulting from a simple ceiling function, this has the potential to double the

number of possible matches compared to the naive δ -approximation.

However, in most filtrations on a point cloud, all 0-cells appear at time 0. The procedure

above would prevent any matches between 0-cells and 1-cells. Hence, in computations, we shift

the ceiling function by ε � δ such that an interval starts before the minimal filtration value. This

defines the map x 7→min{z ∈ (2δZ− ε) | x≤ z}−δ .

4.1.2 Induced Filtration

This approach constructs an unfiltered acyclic partial matching, like MorseReduce with a

single filtration step. We sort the cells in their filtration order to prefer matches between cells of

zero or small filtration differences. Afterwards, we find an optimal monotone approximation for

this unfiltered acyclic partial matching.

Definition 4-3. Let (X ,∂ , f ) be a filtered complex and (A,w : Q→ K) an acyclic partial

matching. A δ -approximation f ′ of f is optimal with respect to w if ‖w f ′‖ is maximal among all

δ -approximations of f .

Definition 4-4. Let (X ,∂ , f ) be a filtered complex. A δ -discretization of f is a finite subset

D = {d1 < d2 < · · ·< dn} of R such that di−di−1 < δ and f (X)⊆ [d1,dn).

Let (A,w : Q→ K) be an acyclic partial matching of X. For any Y ⊂ R, define P(Y ) to be

the set of q ∈ Q for which Y does not intersect the interval ( f (q), f (w(q))], i.e.
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P(Y ) = {q ∈ Q | Y ∩ ( f (q), f (w(q))] = /0}. Define C(Y ) to be the set of q ∈ Q for which Y

intersects the interval ( f (q), f (w(q))], i.e. C(Y ) = {q ∈ Q | Y ∩ ( f (q), f (w(q))] 6= /0}. Note that

P(Y )∪C(Y ) = Q since every {q,w(q)}-pair is either preserved or cut by Y . We say a

δ -discretization D∗ of f is optimal with respect to w if the following inequality is satisfied for any

other δ -discretization D of f .

|C(D∗)| ≤ |C(D)| ⇐⇒ |P(D∗)| ≥ |P(D)|

The following theorem states that a 2δ -discretization of a filtration f that is optimal with

respect to w induces a δ -approximation of f that is optimal with respect to w among monotone

approximations. In other words, finding optimal filtrations in this restricted setting can be reduced

to finding optimal discretizations.

Theorem 4-1. Let δ > 0 and (X ,∂ ,F) be a filtered complex with an acyclic matching w. If

D∗ = {d1, . . . ,dn} is an optimal 2δ -discretization of F with respect to w, then the map

f ∗ : F(X)→ R given by

f ∗(s) =
di +di+1

2
1[di,di+1)(s)

induces a monotone δ -approximation F∗ = f ∗ ◦F that is optimal with respect to w among

monotone δ -approximations.

Proof. Suppose F ′ = f F is an arbitrary monotone δ -approximation of F . Our goal is to show

‖wF∗‖ ≥ ‖wF ′‖. We prove this in two steps.

1. Construct a 2δ -discretization D of F satisfying ‖wF ′‖ ≤ |P(D)|.

2. Prove |P(D∗)| ≤ ‖wF∗‖.

By the optimality of D∗, this completes the proof. Note that since f F = F ′ is a

δ -approximation of F , we have | f (x)− x|< δ for every x ∈ F(X). Let x1 < x2 < · · ·< xN be an

ordering of F(X) and let i := max{ j = 1, . . . ,N | f (x j) = f (x1)}. Then

|x1− xi| ≤ |x1− f (x1)|+ |xi− f (x1)|= |x1− f (x1)|+ |xi− f (xi)|< 2δ .
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Choose a1 < x1 and b1 ∈ (xi,xi+1) such that b1−a1 < 2δ . Note that f (x j) = f (x1) if and only if

x j ∈ (a1,b1) by monotonicity of f . By repeating this process we obtain a sequence

a1 < b1 < a2 < b2 · · ·< am < bm such that f (xi) = f (x j) if and only if xi,x j ∈ (ak,bk) for some

k = 1, . . . ,m. The set {a1,b1, . . . ,am,bm} is almost a 2δ -discretization of F because

F(X)⊆ [a1,bm) and bi−ai < 2δ for every i. However, it may be the case that ai+1−bi ≥ 2δ .

Extend the set {a1,b1, . . . ,am,bm} to a 2δ -discretization D of F by adding

∪m−1
i=1 {bi + kδ | k ∈ N,bi + kδ < ai+1}. Suppose f (F(q)) = f (F(w(q)). By construction,

F(q),F(w(q)) ∈ (ak,bk) for some k, so D∩ (F(q),F(w(q))] = /0. This completes step one.

For step two, suppose q ∈ Q satisfies D∗∩ (F(q),F(w(q))] = /0. Since F(X)⊆ [d1,dn),

there must exist i such that F(q),F(w(q)) ∈ [di,di+1) so f ∗(F(q)) = f ∗(F(w(q))). This

completes step two.

Figure 4-1. Algorithm to Compute Optimal Discretization.

If we relax the definition of a δ -discretization to allow di−di−1 = δ , the filtration F∗

defined in Theorem 4-1 may no longer be a δ -approximation of F . However, a useful algorithm

to find an optimal such relaxed δ -discretization using an interval tree structure for a set of
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intervals Is and dynamic programming has been proposed by Orson L. Peters.1 An interval tree

is a data structure built from a set of intervals; see Section 14.3 of Cormen et al. [29]. For a set of

n intervals, initial creation of an interval tree requires O(n log(n)) time and intersection queries

require O(log(n)+m) time, where m is the number of intervals returned. We provide the

algorithm in Figure 4-1 and describe it below.

Let (X ,∂ ,F) be a filtered complex, (A,w : Q→ K) an acyclic partial matching, and δ > 0.

Let start= min(F(X)), stop= max(F(X)), Is= {(F(q),F(w(q))] | q ∈ Q}, and delta= δ .

The variable start is used to initialize the output D in Line 3. The while loop on Line 5 repeats

until the last element of D is strictly larger than stop. This is the stopping condition on Line 8 and

the output on Line 9 is D. The variable Is is an interval tree data structure and delta is the

upper-bound on the distance between consecutive points of D. Interval queries of the form

Is[a,b] return the multi-set of intervals in Is which intersect [a,b]. Similarly, point queries of

the form Is[x] return the multi-set of intervals in Is that contain the point x. A dictionary data

structure is a collection of (key, value)-pairs such that each key appears at most once. The

variable Ds is a dictionary data structure. Its values are pairs consisting of a partial solution D and

the multi-subset of intervals in Is cut by D. The key corresponding to each value in Ds is the

number of intervals cut. Ds is initialized on Line 4 to contain the partial solution corresponding to

{start}, which cuts no intervals. The main part of the algorithm is the while loop on Line 5. On

Lines 6-7, D is set to the partial solution in Ds cutting the fewest number of intervals, cuts is set

to the multi-subset of Is cut by D, and the (best k, Ds[best k])-pair is removed from Ds. Lines

10-13 construct a set of possible extensions called exts of D consisting of

{max(D)+δ}∪{F(q) ∈ F(Q) | max(D)< F(q)< max(D)+δ}.

For each such possible extension ext, Lines 15-17 extend D by ext and store this new D as new D.

The number of intervals cut by new D is stored in new k. The if statement on Line 18 checks if

either Ds lacks the key new k, i.e. new k not in Ds, or else if new D extends farther than the

1https://stackoverflow.com/questions/57250782
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value in Ds corresponding to new k, i.e. new D[-1] > Ds[new k][-1]. If either condition is

satisfied, new D is added to Ds with the key new k. The purpose of Line 18 is to add a partial

solution new D to Ds if either Ds does not contain a partial solution cutting the same number of

intervals as new D or if Ds contains such a partial solution but its maximum value is less than that

of new D. The steps of the algorithm are visualized in Figure 4-2. Note that, as in Figure 4-2,

intervals may appear in Is with multiplicity.

0 1

2 2,3

1 2

3 3,4,5

4 4,5

2 4

2 5

0 δ 2δa a+δb b+δ

Figure 4-2. Finding an Optimal Approximation. Vertical lines show a subsolution, with
the furthest point marked in black. Intervals cut by the subsolution are
marked in red, uncut intervals in black, and unseen intervals are dashed.
The number of cuts k for a given subsolution is on the left. On the right are
the iterations of the while loop at the beginning of which the given
subsolution is part of Ds. New subsolutions are built from the existing one
with minimal k.

We now prove the correctness of the algorithm in Figure 4-1. Recall that

C(Y ) = {q ∈ Q | Y ∩ (F(q),F(w(q))] 6= /0} in the following.
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Proposition 4-1. Let (X ,∂ ,F) be a filtered complex and (A,w : Q→ K) be an acyclic partial

matching. The output of

SolveMatchingDiagram(min(F(X)),max(F(X)),{(F(q),F(w(q))] | q ∈ Q},δ ),

denoted S = {s1 < s2 < · · ·< sn}, satisfies the following properties.

(1) F(X)⊂ [s1,sn) and si+1− si ≤ δ for every i.

(2) If Z = {z1 < · · ·< zm} satisfies the previous property then |C(S)| ≤ |C(Z)|.

Proof. We first check that the returned set S satisfies (1). It is initialized at min(F(X)) and every

step of the algorithm extends a subsolution by at most δ ; see Lines 10-13. Hence, it suffices to

check that max(F(X))< sn. Every subsolution is extended either to an element of F(Q) or by δ ,

so by the finiteness of F(X), the algorithm reaches the stopping condition. Since S was output, it

must have satisfied the stopping condition, i.e. max(F(X))< sn, so when the algorithm

terminates, the returned set satisfies (1).

It remains to show the returned set S satisfies (2). Define Di to be the value of the variable D

on the i-th iteration of Line 7, e.g. D1 = {min(F(X))}. Suppose Z = {z1 < · · ·< zm} satisfies (1).

We prove by induction that for every t = 1, . . . ,m, there exists i ∈ N such that Di satisfies

|C(Di)| ≤ |C({z1, . . . ,zt})| and either max(Di)≥ zt or max(Di)> max(F(X)). When t = m, this

implies that S satisfies (2). If t = 1, this condition is satisfied for i = 1 when D1 = {min(F(X))}

because Z satisfying (1) implies z1 ≤min(F(X)) = max(D1) and |C(D1)|= 0 = |C({z1})|.

Suppose t > 1. By induction, there exists i ∈ N such that Di = {x1 < x2 < · · ·< xl} satisfies

|C(Di)| ≤ |C({z1, . . . ,zt−1})| and either max(Di)≥ zt−1 or max(Di)> max(F(X)). If

max(Di)> max(F(X)) or max(Di)≥ zt , we are done, so we may assume max(Di)≤max(F(X))

and max(Di)< zt . Hence, zt−1 ≤ xl < zt , which implies zt ∈ (xl,xl +δ ]. Define

xl+1 = min{x ∈ F(Q)∪{xl +δ} | zt ≤ x≤ xl +δ}.

Let q ∈C({xl+1})\C(Di). Then xl+1 ∈ (F(q),F(w(q))] and xl 6∈ (F(q),F(w(q))], which implies
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xl ≤ F(q). Since zt−1 ≤ xl , we have q 6∈C({z1, . . . ,zt−1}). Since F(q)< xl+1 ≤ xl +δ , if

zt ≤ F(q) then F(q) ∈ {x ∈ F(Q)∪{xl +δ} | zt ≤ x≤ xl +δ}, but this is a contradiction since

xl+1 is by definition the minimum of this set. Hence, F(q)< zt and we have

F(q)< zt ≤ xl+1 ≤ F(w(q)), so q ∈C({zt})\C({z1, . . . ,zt−1}). Together with the inductive

hypothesis, this gives the inequality in the series below. Recall that Di = {x1, . . . ,xl}.

|C({x1, . . . ,xl,xl+1})|= |C(Di)|+ |C({xl+1})\C(Di)|

≤ |C({z1, . . . ,zt−1})|+ |C(zt)\C(z1, . . . ,zt−1)|

= |C({z1, . . . ,zt})|

Since max(Di)≤max(F(X)), the stopping condition on Line 8 is not met on the i-th

iteration. Note that xl+1 above is one of the extensions in exts on Line 13 because every element

of {x ∈ F(Q)∪{xl +δ} | zt ≤ x≤ xl +δ} is one of the extensions in exts. Indeed,

xl +δ = max(Di)+δ and if zt ≤ F(q)≤ xl +δ then xl < zt ≤ F(q)< xl +δ . If Ds contains the

key |C({x1, . . . ,xl+1})| at the beginning of the i-th iteration of the for loop on Line 14, the

associated partial solution will only be replaced if one of the considered extensions extends

farther; see Line 18. Otherwise, the partial solution {x1, . . . ,xl+1} or another partial solution

extending farther will be added to Ds with the key |C({x1, . . . ,xl+1})|. This implies that at the end

of the i-th iteration of the for loop on Line 14, Ds will contain a partial solution D with the key

|C({x1, . . . ,xl+1})| satisfying max(D)≥ xl+1 ≥ zt and

|C(D)|= |C({x1, . . . ,xl+1})| ≤ |C({z1, . . . ,zt})|.

If the algorithm terminates after the i-th iteration with a D that cuts fewer than

|C({x1, . . . ,xl+1})| intervals, then the inductive step is complete because

|C(D)|< |C({x1, . . . ,xl+1})| ≤ |C({z1, . . . ,zt})| and max(D)> max(F(X)). Each iteration of

Line 7 sets D to be the partial solution that cuts the fewest number of intervals, and a key can only

be removed from Ds by Line 7. Hence, if the algorithm does not terminate with a solution cutting

fewer than |C({x1, . . . ,xl+1})| intervals, then for some j > i, we have

|C(D j)|= |C({x1, . . . ,xl+1})|. The if statement on Line 18 only replaces a partial solution in Ds
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if a new one is found cutting the same number of intervals and extending farther. Hence,

|C(D j)|= |C({x1, . . . ,xl+1})| and max(D j)≥ xl+1 ≥ zt , which completes the inductive step and

the proof.

Remark 4-1. Note that since {(F(q),F(w(q))] | q ∈ Q} is finite and the intervals are

right-closed, if S = {s1, . . . ,sn} is the output of SolveMatchingDiagram then

S′ = {s1,s2− ε, . . . ,sn−nε}, for ε > 0 sufficiently small, is an optimal δ -discretization with

respect to w in the sense of Definition 4-4.

4.1.3 Gradient Paths

There is an adaptation of MorseReduce that constructs a non-monotone δ -approximation to

the filtration. The main idea in MorseReduce to construct an acyclic matching consists of

iteratively tagging a random simplex as critical and growing gradient paths towards this critical

cell. In the original algorithm this growth is strictly limited to paths along the same filtration

value, such that it constructs a filtered acyclic partial matching. Instead, the approximation

algorithm we consider grows gradient paths up to a filtration difference of δ over the filtration

value of the initial critical cell. Afterwards, it decreases all filtration values of cells along the

gradient paths to match the filtration value of the critical cell. This new filtration is a

δ -approximation from below in which the constructed gradient paths are a filtered acyclic partial

matching.

4.2 Reduction Sizes in a Synthetic Experiment

When comparing the three approximation approaches, we are mainly interested in the

reduction sizes. MorseReduce already reduces complexes by a substantial fraction. We compare

how many of the remaining cells we are able to reduce by approximate solutions. Given a filtered

complex (X , f ) we first apply MorseReduce until stabilization to get a prereduced complex

(X ′, f ′), which is further reduced using one of the three approximation approaches in Section 4.1.
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Figure 4-3. Reduction Size Experiment.

We apply this pipeline to the alpha complex of 20 independent samples of 200 standard

normally distributed points in Rn. We measure reduction by the relative reduction r = |A|
|X | . The

possible reduction size of a filtered complex depends on the distribution of filtration differences

between faces and cofaces. In the case of a Vietoris-Rips filtration, exact MorseReduce can

already shrink the complex by a substantial fraction because higher dimensional simplices are

added at the same filtration time as their last edge. Approximate solutions become more useful in

a case like Čech or alpha filtrations.

Figure 4-3 shows the results for different values of n and δ . Note that δ = 0 for all three

approaches behaves like exact MorseReduce and already reduces about 35% of the complex

when n = 2. All approaches behave similarly in that they quickly increase reductions to over 80%

with δ = 0.05. The method in Section 4.1.2 picks the optimal solution for a given acyclic

matching w, but this w may be suboptimal despite constructing it in filtration order. Binning can

theoretically reduce more cells than this induced filtration. However, this did not happen in any of

our experimental runs.
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CHAPTER 5
STABILIZING THE UNSTABLE OUTPUT OF PERSISTENT HOMOLOGY

COMPUTATIONS

We propose a general technique for extracting a larger set of stable information from

persistent homology computations than is currently done. The persistent homology algorithm is

usually viewed as a procedure that starts with a filtered complex and ends with a persistence

diagram. This procedure is stable, at least to certain types of perturbations of the input. This

supports the use of the diagram as a signature of the input and the use of features derived from it

in statistics and machine learning. However, these computations also produce other information

of great interest to practitioners that is unfortunately unstable. For example, each point in the

diagram corresponds to a simplex whose addition in the filtration results in the birth of the

corresponding persistent homology class, but this correspondence is unstable. In addition, the

persistence diagram is not stable with respect to other procedures that are employed in practice,

such as thresholding a point cloud by density. We recast these problems as real-valued functions

which are discontinuous but measurable and then observe that convolving such a function with a

suitable function produces a Lipschitz function. The resulting stable function can be estimated by

perturbing the input and averaging the output. We illustrate this approach with a number of

examples, including a stable localization of a persistent homology generator from brain imaging

data.

5.1 Instability of Auxiliary Information

Theorem 2-1 tells us that the persistence diagram obtained in the output of a persistent

homology computation is stable with respect to certain perturbations of the input used to

construct a filtered abstract simplicial complex. However, other outputs of persistent homology

computations are not stable. This includes the simplices and cycles that generate persistent

homology classes. These are of great interest to practitioners hoping to interpret persistence

calculations more directly. In addition, many persistence computations rely on choices of

parameters and the resulting persistence diagrams may be unstable with respect to these choices.

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature Journal of Ap-
plied and Computational Topology [6]
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5.1.1 Instability of Generating Cycles or Simplices

Persistence diagrams are useful and robust measures of the size of topological features.

What they are less good at, on the other hand, is robustly pinpointing the location of important

topological features. We use Figure 2-1 to illustrate this problem. Suppose that we have the fixed

domain X and we observe the function f . One of the most prominent points in H0( f ) is u, which

corresponds to the pair of values f (x) and f (w). We might thus be tempted to say that f has an

important feature, a component of high-persistence, at x. However, consider the nearby function

g. Its degree-0 diagram H0(g) has a point u′ that is very close to u, but this point corresponds to

the pair of values f (y) and f (w). There is still a component born at g(x), but it corresponds to the

much smaller persistence point v′. And so while the persistence of the point u is a stable summary

of the function f , the actual location x of the topological feature it corresponds to is not.

This is unfortunate. Several recent works [5, 7] have shown that the presence of points in

certain regions of the persistence diagram has strong correlation with covariates under study. For

example, each diagram in Bendich et al. [7] came from a filtration of the brain artery tree in a

specific patient’s brain, and it was found that the density of points in a certain middle-persistence

range gave strong correlations with patient age. It would of course be tempting to hold specific

locations in the brain responsible for these points with high distinguishing power. In Section 5.3,

we both rigorously define this non-robustness and give a method for addressing it.

5.1.2 Outliers and Instability of Parameter Choices

Theorem 2-1 guarantees the persistence diagrams associated to two Hausdorff-close point

clouds will themselves be close. However, it says nothing about the outlier problem. For example,

consider the point cloud X in the top left of Figure 5-1 to which we apply the Vietoris-Rips

construction. Its degree-1 persistence diagram (top right of same figure) has one high-persistence

point, which corresponds to the circle that we qualitatively see when looking at the points. On the

other hand, consider the point cloud X ′ on the bottom left, which consists of X and three outlier

points spread across the interior of the circle. The degree-1 persistence diagram of X ′ is not close

to that of X . There is still one point of fairly high persistence, but it is much closer to the diagonal.
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In practice, this problem is often addressed by first de-noising the point cloud in some way.

For example, Carlsson et al. [14] first thresholded by density before computing Vietoris-Rips

filtrations when they discovered a Klein bottle in the space of natural images. There are no

guarantees that a different, nearby choice of density threshold parameter would not give a

qualitatively different persistence diagram. Section 5.3 addresses this by introducing a general

method for handling parameter choice in persistence computations.
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Figure 5-1. Outlier Problem. Illustration of the outlier problem for the persistent
homology of the Vietoris-Rips complex of a point cloud.

5.2 Three Motivating Examples

Before developing the theory, we begin by providing three examples, the first and third to

synthetic data and the second to brain imaging data.
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5.2.1 A Cycle Generating a Persistent Homology Class

0

0.08

0.17

0.25

0.34

Figure 5-2. Finding the First and Second Longest Bars. The first panel shows the
original sample and the representative cycles produced by Dionysus [50] for
the first and second longest bars. The latter two panels show the proportion
of perturbations for which each square in a grid intersected the
representative geometric cycle of the first or second longest bar,
respectively.

We sample 1000 points uniformly from two conjoined annuli of inner and outer radii

(20,50) and (40,50). Using Dionysus [50], we compute the 1-dimensional persistent homology

of the alpha filtration of our sample and obtain a representative cycle for the longest and

second-longest bars. See Figure 5-2, left panel. However, the embedded location of these cycles

is unstable. We would like to quantify the uncertainty of this location. To do so, we consider a

square grid with edge-length 1. Our function h : R2000→ R has input the coordinates of the

sampled points and has output 1 if the geometric cycle produced by Dionysus intersects a given

square in our grid and otherwise has output 0.

We perturb the sampled points 10,000 times by adding Gaussian noise with standard

deviation 3. For each square, we find the proportion of trials in which the representative geometric

cycle for the longest or second-longest bar produced by Dionysus intersects the square. By

performing this procedure simultaneously for every square in the grid, we obtain the second and

third panels in Figure 5-2. To see the effect of varying the choice of bandwidth, see Section 5.4.2.
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5.2.2 Location of a Persistent Homology Generator in Brain Imaging Data

Bendich et al. [7] apply topological data analysis to brain arteries extracted from magnetic

resonance images. Mathematically, each of these brain arteries is a graph embedded in

three-dimensional Euclidean space. Using the height (the z-coordinate) one obtains a filtration on

this graph, which may be used to compute degree-zero persistent homology.

To facilitate statistical analysis of the resulting persistence diagrams, they convert each

persistence diagram to a vector consisting of the lengths of the 100 longest bars in decreasing

order. In their analysis, the length of the 28th longest bar is a numerical feature that yields a

correlation with age that is near-optimal among vector features consisting of the lengths of the ith

through jth longest bars for any 1≤ i≤ j ≤ 100.

If one wants to find a biological interpretation of this result, it is obvious to ask for the

location of the generator of the 28th longest bar for each subject. It is easy to locate the generator

responsible for the birth of the 28th longest bar. It will be a particular vertex of the graph, whose

image is a point in space. However, the location of this point is unstable. As explained in

Section 5.1.1, small perturbations of the spatial coordinates of the vertices of the graph can lead to

large changes of this location.

Figure 5-3. Location of Generating Simplex. The black dot is the location of the
generator of the 28th longest bar in degree-zero persistent homology. We
consider the indicator function on the location of this generator with respect
to the given sphere.

We choose a ball centered at this point and consider the function whose value is 1 if the

location of the generator of the 28th longest bar is located in this ball and is 0 otherwise. The

resulting function h : R3V → R (where V is the number of vertices in the graph) is unstable, but it
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may be stabilized using the method summarized in Figure 1-3. Applying the algorithm in

Figure 1-3 with M = 1000 and σ = 0.1, we obtain an estimate of the stable value of h∗K

evaluated at the observed input, equal to 0.637. This shows that under small perturbations of the

input, over half of the time the generator of the 28th longest bar is located in the chosen ball. This

result holds for a large range of sizes of balls. See Section 5.4.3 for some further discussion.

We remark that this approach provides a resolution of the conflict between TDA theorists

and TDA users expressed in the Fundamental Conundrum of Topological Data Analysis in the

introduction. We can provide TDA users with a location of a generator of a persistent homology

class together with an estimate of a stable real value of how often this location lies in a given

region under certain perturbations.

5.2.3 Persistence of a Homology Class Born in a Region

Consider the function f on the square in Figure 5-4. This induces a function f̄ on the torus

since f (x,y) = 0 on the boundary of the square. Suppose we are only given a finite sample of this

induced function and we are interested in the presence of long-lived bars which are born in the

region of the torus corresponding to the second quadrant of the square.

Figure 5-4. Torus Underlying Function. The graph of the function on the square
[−π,π]2 given by
f (u,v) = sin(u)sin(v)(1−0.9∗1{u<0,v<0}) : [−π,π]2→ R. It induces a
function on the torus, f̄ : T 2→ R, with two global minima with value −1,
one global maximum with value 1, one local maximum with value 0.1, and
four saddle points with value 0.

To be concrete, we start with a sample X of N points from the graph of f̄ , by sampling ui,vi

independently from the uniform distribution on [−π,π] and letting zi = f (ui,vi). Note that X is a
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random variable. We use X to construct a filtered simplicial complex approximating the unknown

function f̄ as follows. From the points {(ui,vi)} we construct a Delaunay triangulation of the

torus. We filter this simplicial complex by assigning the vertex (ui,vi) the value zi and assigning

edges and triangles the maximum value of their vertices.

Figure 5-5. Torus Experiment. Sample of 1000 points from the graph
{(x, f (x)) : x ∈ T 2}, where the function values are indicated using the same
color scale as in Figure 5-4. The points on the torus are used to construct a
Delaunay triangulation, which is filtered using the function values. On the
right we indicate the filtration values by moving the points in the normal
direction.

We compute the 0-dimensional extended1 persistence diagram of this filtered simplicial

complex. Let h(X) be the length of the longest bar if that bar was born in the region

corresponding to the second quadrant (see Figure 5-4) and 0 otherwise. This process defines a

function h : R3N → R, but h is unstable. Consider the sample X = x in Figure 5-5. We have

h(x) = 0 since the global minimum, highlighted in red, is born outside the region corresponding

to the second quadrant. Because of the symmetry of f , the random variable h(X) is 0

approximately half the time and about 2 approximately half the time. Let K denote the 3N-variate

Gaussian with mean 0 and standard deviation 0.2. For M ≥ 1, sample ε1, . . . ,εM independently

from K. Compute 1
M ∑

M
i=1 h(x− εi). See Figure 5-6. As M increases, this quantity converges to

g(x), where g := h∗K is the stabilized version of h.

1Extended persistent homology follows the homology of increasing sublevel sets with the relative homology of the
whole space relative to decreasing superlevel sets [26]. In the case considered here, it pairs the global minimum with
the global maximum.
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Figure 5-6. Locations and Sizes of 100 Longest Bars from the Trials. Averaging the

lengths of the red bars over 1000 trials we get 1.291, which is consistent
with the fact that the random variable h(X) is 0 or about 2 with equal
probability. We should not expect limM→∞

1
M ∑

M
i=1 h(x+ εi) to converge to 1

because unlike f , a particular sample X = x is not symmetric with respect to
the second and fourth quadrants.

5.3 Stability from Convolutions

In this section we show how functions may be stabilized by convolving them with a kernel.

First, we give three general results with various assumptions on the function and the kernel. Next,

we apply them in three particular cases: the simple triangular kernel and the commonly used

Epanechnikov and Gaussian kernels.

5.3.1 Lipschitz Functions and Convolution

Let us start by recalling a few definitions. For C ≥ 0, a function f : Rn→ R is said to be

C-Lipschitz if for all u,v ∈ Rn, | f (u)− f (v)| ≤C|u− v|, where |x| denotes the Euclidean norm.

We will call a function Lipschitz if it is C-Lipschitz for some C ≥ 0. The support of f , denoted

supp( f ), is the closure of the subset of Rn where f is non-zero.

Let h,g : Rn→ R be (Lebesgue) measurable functions that are defined almost everywhere.

The 1-norm of h is given by ‖h‖1 =
∫
Rn|h(t)|dt, if it exists. The essential supremum of h, denoted

by ‖h‖∞, is the smallest number a such that the set {x | | f (x)|> a} has measure 0. If it exists,

the convolution product of h and g, is given by

(h∗g)(t) =
∫
Rn

h(s)g(t− s)ds =
∫
Rn

h(t− s)g(s)ds.
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It exists everywhere, for example, if one function is essentially bounded and the other is

integrable or if one function is bounded and compactly supported and the other is locally

integrable [37]. Throughout this section we assume that h : Rd→R is defined almost everywhere,

K : Rd → R and that that the convolution product h∗K exists almost everywhere.

5.3.2 Stability Theorems

We now give several conditions on a pair of functions which imply that their convolution

product is (locally) Lipschitz. The first result appears in Fremlin [37], but the proof is included

here for completeness.

Theorem 5-1. If ‖h‖1 = a and K is b-Lipschitz, then h∗K is ab-Lipschitz.

Proof. Let g = h∗K. First we have, g(u)−g(v) =
∫
Rn h(s)(K(u− s)−K(v− s))ds. Then,

|g(u)−g(v)| ≤
∫
Rn |h(s)||K(u− s)−K(v− s)|ds≤

∫
Rn|h(s)|b|u− v|ds≤ ab|u− v|.

Let Bα(x) denote the closed ball of radius α centered at x ∈ Rd , and let Vd denote the

volume of the d-dimensional ball of radius 1.

Theorem 5-2. Let x ∈ Rd and let α > 0. If ‖h‖∞ ≤M on B2α(x), K is b-Lipschitz and

supp(K)⊆ Bα(0), then h∗K is 2MbαdVd-Lipschitz in Bα(x).

Proof. Let g = h∗K. Let u,v ∈ Bα(x). As in the previous proof, |g(u)−g(v)| ≤∫
Rn|h(s)||K(u− s)−K(v− s)|ds≤

∫
Bα (u)∪Bα (v)|h(s)|b|u− v|dx≤ 2MbαdVd|u− v|.

Theorem 5-3. If ‖h‖∞ ≤M and
∫
|K(s+ t)−K(s)|ds≤ b|t| for all t ∈ Rd , then h∗K is

Mb-Lipschitz.

Proof. Let g = h∗K. Again,

|g(u)−g(v)| ≤
∫
Rn |h(s)||K(u− s)−K(v− s)|ds≤

∫
M|K(u− v+ x)−K(x)|dx≤Mb|u− v|.

5.3.3 Application to Kernels

We now apply the above theorems to smooth a function h, obtaining a Lipschitz function.

That is, we will take K to be a kernel, a non-negative integrable real-valued function on Rn

satisfying
∫

K(x)dx = 1,
∫

xK(x)dx = 0 and
∫

x2K(x)dx < ∞. For example, we can choose K to be
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the triangular kernel, K(x) = cmax(1−‖x‖,0), for appropriate normalization constant c (see

Figure 5-7). The most common choices are the Gaussian kernel and the Epanechnikov kernel,

which are described below (see Figure 5-7). Notice that if K is a kernel, then so is

Kα(x) = 1
αn K( x

α
).2 The parameter α is called the bandwidth and allows one to control the amount

of smoothing.
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Figure 5-7. Graphs of Three Common Kernels.

5.3.3.1 The triangular kernel

Let α > 0. Let Vd denote the volume of the n-dimensional ball of radius 1. For A⊆ Rd , let

IA denote the indicator function on A. That is, IA(x) = 1 if x ∈ A and 0 otherwise. The triangular

kernel is given by

Kα(x) =
d +1
αdVd

(
1− |x|

α

)
IBα (0).

Note that supp(Kα) = Bα(0) and Kα is d+1
αd+1Vd

-Lipschitz. Applying Theorem 5-2, we have the

following.

Corollary 5-1. Let x ∈ Rd . If ‖h‖∞ ≤M on B2α(x) then h∗Kα is 2M(d+1)
α

-Lipschitz in Bα(x).

Note that it follows that if the bound on h is global then so is the Lipschitz bound.

5.3.3.2 The Epanechnikov kernel

Let α > 0. The Epanechnikov kernel is given by

Kα(x) =
d +2

2αdVd

(
1− |x|

2

α2

)
IBα (0).

2More generally, we can choose the bandwidth to be a symmetric positive definite matrix H and let KH(x) =
1√

detH
K(H−1/2x).
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Now supp(Kα) = Bα(0) and Kα is d+2
αd+1Vd

-Lipschitz. Applying Theorem 5-2, we have the

following.

Corollary 5-2. Let x ∈ Rd . If ‖h‖∞ ≤M on B2α(x) then h∗Kα is 2M(d+2)
α

-Lipschitz in Bα(x).

5.3.3.3 The Gaussian kernel

Let α > 0. The Gaussian kernel is given by

Kα(x) =
1

αd(2π)d/2 e−|x|
2/2α2

.

Lemma 5-1. For the Gaussian kernel Kα , let f (t) =
∫
|Kα(s+ t)−Kα(s)|ds. Then

f (t)≤ 2
α
√

2π
|t| for all t ∈ Rd .

Proof. Change coordinates so that s =− |t|2 e1 and s+ t = |t|
2 e1. Then by symmetry

f (t) = 2
[∫

x1≥− |t|2
Kα(x)dx−

∫
x1≥ |t|2

Kα(x)dx
]

= 4
∫

0≤x1≤ |t|2
Kα(x)dx

=
4

αd(2π)d/2

∫ |t|
2

0
e−x2

1/2α2
dx1

∫
∞

−∞

e−x2
2/2α2

dx2 · · ·
∫

∞

−∞

e−x2
d/2α2

dxd

=
4

α
√

2π

∫ |t|
2

0
e−x2

1/2α2
dx1

It follows that f (t)≤ 4
α
√

2π

∫ |t|/2
0 dx1 =

2
α
√

2π
|t|.

Thus by Theorem 5-3 we have the following corollary.

Corollary 5-3. If ‖h‖∞ ≤M then h∗Kα is 2M
α
√

2π
-Lipschitz.

In practice, the function h will rarely be essentially bounded, but this can be arranged by

setting it to be 0 outside a closed ball centered at a specified configuration.
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5.3.4 Sharpness of the Lipschitz Constants

Assume that Kα : Rd → R is symmetric in the first variable. Let h : Rd → R be defined by

h(x) = 1 if x1 ≥ 0 and −1 otherwise. Let g(t) = h∗Kα(te1)−h∗Kα(−te1). Then we calculate

h∗Kα(te1) =
∫
Rd

h(te1− x)Kα(x)dx

=
∫

x1≤t
Kα(x)dx−

∫
x1>t

Kα(x)dx

= sign(t)
∫
−|t|≤x1≤|t|

Kα(x)dx.

So

g(t) = 2sign(t)
∫
−|t|≤x1≤|t|

Kα(x)dx = 4sign(t)
∫

0≤x1≤|t|
Kα(x)dx.

Let Kα be the Gaussian kernel. Then

g(t) =
4

αd(2π)d/2

∫ t

0
e−x2

1/2α2
dx1

∫
∞

−∞

e−x2
2/2α2

dx2 · · ·
∫

∞

−∞

e−x2
d/2α2

dxd

=
4

α
√

2π

∫ t

0
e−x2

1/2α2
dx1.

It follows that g(t) converges to 4t
α
√

2π
as t approaches 0 by the first fundamental theorem of

calculus. Hence, the Lipschitz constant given in Corollary 5-3 is optimal.

When d = 1 and Kα is the triangular kernel, g(t) = 4·2
αV1

∫ t
0(1−

|x|
α
)dx→ 4t

α
as t→ 0. So the

Lipschitz constant of h∗Kα is at least 2
α

. Hence, the Lipschitz constant given in Corollary 5-1 is

optimal up to at most a factor of 2.

When d = 1 and Kα is the Epanechnikov kernel, g(t) = 4·3
2αV1

∫ t
0(1− x2

α2 )dx→ 3t
α

as t→ 0.

So the Lipschitz constant of h∗Kα is at least 3
2α

. Hence, the Lipschitz constant given in

Corollary 5-2 is optimal up to at most a factor of 4.

5.3.5 Stable Computations in Practice

Suppose that we can compute h(x) for values of x for which it is defined, we can sample

from K, and that for a fixed a ∈ Rd we want to compute g(a) = (h∗K)(a) =
∫
Rd h(a− x)K(x)dx.

In practice, we will not be able to evaluate this integral analytically. We approximate g(a) as

follows. Let V be a random variable with probability distribution given by the kernel K, i.e.
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V ∼ K. Let W be the random variable given by h(a−V ). Then the expected value of W is given

by E[W ] =
∫
Rd h(a−x)K(x)dx = g(a). We will approximate E[W ] by drawing a sample ε1, . . . ,εM

where εi ∼ K are independent. Then E[W ] can be approximated by W M = 1
M ∑

M
i=1 h(a− εi). By

the law of large numbers, W M→ E[W ], where the convergence may be taken to be in probability

(the weak law) or almost surely (the strong law). Let us record this result.

Theorem 5-4. Let a ∈ Rd and ε1, . . . ,εM be drawn independently from K. Then

1
M

M

∑
i=1

h(a− εi)→ g(a).

5.3.6 Stability of the Choice of Kernel

As should be clear, the value of (h∗K)(a), for fixed h and a, will certainly depend on K.

However, there is no fragility of output with respect to this choice, as shown by the following fact.

Theorem 5-5. Let h : Rd → R be an essentially bounded function. Then the map K→ h∗K is

Lipschitz from L1(Rd) to L∞(Rd).

Proof. Let φ : L1(Rd)→ L∞(Rd) be given by φ(K) = h∗K. For x ∈ Rd ,

|
[
φ(K)−φ(K′)

]
(x)| ≤

∫
|h(x− t)| |K(t)−K′(t)|dt ≤ ‖h‖∞‖K−K′‖1.

5.4 Experimental Considerations

5.4.1 Theoretical Considerations for Bandwidth Selection

After choosing a family of kernels, such as the Gaussian kernels Kα described in

Section 5.3.3, the most important choice in implementing the method described here is the choice

of bandwidth α . Choosing the amount of smoothing is a well-studied problem in nonparametric

regression, where increasing the bandwidth decreases the estimation variance, but increases the

squared bias. Both of these terms contribute to the error. A bandwidth which optimizes this

trade-off may be estimated using cross-validation. A proper understanding of this problem in our

situation requires analysis that goes beyond the scope of the present work.
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However, we offer some heuristics for the choice of bandwidth. First, it may be chosen to

obtain a desired amount of smoothness of h∗Kα . For example, we may want h∗Kα to be

1-Lipschitz. Second, it seems reasonable to choose the bandwidth to (at least) equal the level of

estimated noise of the input data. One may combine these two to find the minimum bandwidth

that satisfies both requirements.

5.4.2 Practical Considerations for Bandwidth Selection

Our procedures depend on a free parameter, the bandwidth. For example, we chose a

bandwidth of 3 in Section 5.2.1. Here we consider a slightly simpler example and consider the

effect of varying the bandwidth.

We sample 1000 points uniformly from an annulus of inner and outer radius 20 and 40.

Using Dionysus [50], we compute the 1-dimensional persistent homology of the alpha filtration of

our sample and obtain a representative cycle for the longest bar. However, the embedded location

of this cycle is unstable. We would like to quantify and visualize the uncertainty of this location.

To do so, we consider a grid of squares with edge-length 1. We perturb the sampled points 1000

times by adding Gaussian noise and find the proportion of trials in which the representative cycle

produced by Dionysus intersects each square. By performing this procedure simultaneously for

every square in the grid, we obtain Figure 5-8. When the standard deviation of the Gaussian noise

is very small, the representative cycle barely changes between perturbations, resulting in a small

number of squares with high probability of intersecting the cycle. As the standard deviation

increases, the picture becomes more diffuse.

Figure 5-8. Bandwidth Effects. The probability of intersecting a representative cycle for
each square in a grid. The bandwidths of the Gaussian kernel are 0.2, 1, 3,
and 10. The color scale is given in Figure 5-2.
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5.4.3 Possible Choices for the Location of the Generator in the Brain Imaging Data

Section 5.2.2 applies our method to real data. We can obtain the estimate of h∗K for the

observed data in Section 5.2.2 for a ball of any radius by considering the distance from the

location of the generator of the 28th longest bar in one of the iterations of the algorithm in

Figure 1-3 to the location of the generator of the 28th longest bar in the observed data. The

empirical cumulative distribution function of this distance is shown in Figure 5-9. We see that

there is a competitor for the location of the generator of the 28th longest bar.
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Figure 5-9. Empirical Cumulative Distribution Function of Distance to Generator.

5.4.4 Computational Considerations

Our methods applying Theorem 5-4 require repeated computation of persistence diagrams

for similar filtrations. The computational cost may be considerable. In Sections 5.2.2 and 5.2.3

we repeat M = 1000 times. In Section 5.2.1 we repeat 10,000 times. Note that we do not have

convergence results at this time. For repeated persistent homology calculations it is important to

have efficient software. In Section 5.2.1 we use Dionysus [50], in Section 5.2.2 we calculate

persistent homology using a union-find data structure [33], and in Example 5.2.3 we use

Perseus [53]

However, our methods are trivially parallelizable. With access to many cores, our repeated

computations can be computed in parallel without increasing the running time. Note that for

small perturbations, much of the persistent homology computation may be the same. In this case,

there may be considerable computational savings by using vineyard updates [28]. Let us also
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remark that our methods combine nicely with subsampling, which is crucial for allowing

persistent homology computations in the big data setting [20].
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CHAPTER 6
CONCLUSIONS

The stability of persistence diagrams with Wasserstein metrics to changes in the input data

motivates the search for stable and discriminative feature maps on persistence diagrams. In

Chapter 3, we showed that the space of persistence diagrams with the p-Wasserstein metric does

not admit a coarse embedding into a Hilbert space when 2 < p≤ ∞ (Theorems 3-2 and 3-3). In

other words, the distortion caused by a feature map to these Wasserstein metrics is not uniformly

controllable. In fact, even if one restricts to the subspace of (finite) persistence diagrams arising

as the homology of a filtered finite simplicial complex, there still does not exist a coarse

embedding of this subspace into a Hilbert space. The proof when p = ∞ involves embedding a

construction of Dranishnikov et al. [32] and Enflo [34]. The proof when 2 < p < ∞ makes use of

a characterization of coarse embeddability into Hilbert spaces due to Nowak [55] to show a coarse

embedding of persistence diagrams would imply a coarse embedding of `p, contradicting a

theorem of Johnson and Randrianarivony [42]. In future work, we will investigate whether or not

persistence diagrams with the p-Wasserstein metric admit a coarse embedding when p = 1,2.

We address the question of approximating persistent homology in Chapter 4. We investigate

three approximation techniques that replace a filtration of a complex with a nearby filtration that

allows for a greater number of cell reductions using the filtered discrete Morse theory of

Mischaikow and Nanda [49]. The main theoretical result of this chapter is Theorem 4-1, which

shows that the optimal solution to a certain combinatorial problem induces a nearby filtration that

is optimal over a restricted search space. We compared the approximation algorithm associated to

Theorem 4-1 to a simple binning and to relaxation of the original algorithm of Mischaikow and

Nanda [49].

In Chapter 5, we introduced a general technique for stabilizing unstable information

produced during persistent homology computations. Examples of such instability were given in

Section 5.1. Our approach is to encode the unstable information as a discontinuous but

measurable real-valued function and stabilize it via convolution with a kernel function. The

Lipschitz constants for the stabilized function are given in Corollaries 5-1, 5-2, and 5-3. This

procedure is stable to the amount of smoothing done (Theorem 5-5), and the value of the
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stabilized function can be approximated via simulation (Theorem 5-4). The procedure is applied

to synthetic and real datasets in Section 5.2.
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homology and dynamical distances to analyze protein binding, Stat. Appl. Genet. Mol. Biol.
15 (2016), no. 1, 19–38. MR 3464008

[44] Solomon Lefschetz, Algebraic Topology, American Mathematical Society Colloquium
Publications, v. 27, American Mathematical Society, New York, 1942. MR 0007093

[45] C. J. Lennard, A. M. Tonge, and A. Weston, Generalized roundness and negative type,
Michigan Math. J. 44 (1997), no. 1, 37–45. MR 1439667

[46] Chunyuan Li, M. Ovsjanikov, and F. Chazal, Persistence-based structural recognition,
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, June 2014,
pp. 2003–2010.

[47] Yuriy Mileyko, Sayan Mukherjee, and John Harer, Probability measures on the space of
persistence diagrams, Inverse Problems 27 (2011), no. 12, 124007, 22. MR 2854323
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